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Abstract

SOFTWARE engineering has dramatically changed over the past decade
and many of the changes have challenged our most basic assump-
tions about the nature of the software products that we develop. The

most important realization is that modern software has a very complex in-
teraction with the environment in which it executes and it is often not safe
to assume that the behavior of the environment is stable. Designing soft-
ware that anticipates changes in the environment makes the software itself
exhibit dynamic behavior that can only be observed at run time. This asks
for verification techniques that complement design-time approaches and
puts forward trace checking as a viable complementary choice for verifying
modern software. Trace checking is an automatic procedure for evaluating
a formal specification over a trace of recorded events produced by a sys-
tem after execution. The output of the procedure states whether the system
behaves according to its specification.

The goal of this thesis is to develop general and efficient trace checking
procedures that support a broad class of quantitative properties. Quantita-
tive properties can be seen as constraints on quantifiable values observed
in an execution of a system. Quantitative properties typically express non-
functional requirements, like constraints on resource utilization (e.g., num-
ber of computation resources, power consumption, costs), constraints on
the runtime characteristics of the environment (e.g., arrival rates, response
time), or constraints on the runtime behavior of the system (e.g., timing
constraints, QoS, availability, fault tolerance).

The first part of the thesis discusses two algorithms that implement the
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satisfiability procedure for SOLOIST — a specification language based on
metric temporal logic (MTL) used to express quantitative properties. We
show how a satisfiability procedure can be used to perform trace check-
ing and apply the proposed approach to an extensive case study in the do-
main of cloud-based elastic systems. The second part of the thesis focuses
on the problem of distributed trace checking and provides algorithms that
rely on existing distributed computation frameworks (like MapReduce and
Spark) to efficiently check SOLOIST specifications over very large traces.
The thesis also contributes to the state of the art in MTL trace checking
by proposing a novel decomposition technique for MTL formulae. This
decomposition provides a scalable way of trace checking formulae with
large time intervals. Due to known restrictions of the standard point-based
MTL semantics we facilitate the decomposition by proposing an alterna-
tive semantics for MTL, called lazy semantics. The new semantics is more
powerful than point-based semantics and possesses certain properties that
allow us to decompose any MTL formula into an equivalent MTL formula
with smaller time intervals.

II
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Sommario

LA disciplina dell’ingegneria del software è cambiata radicalmente
nell’ultimo decennio e molti dei cambiamenti hanno stravolto le
nostre assunzioni fondamentali sulla natura del software che svilup-

piamo. La consapevolezza più importante è che il software moderno ha una
complessa interazione con l’ambiente in cui viene eseguito e spesso non
si può supporre che il comportamento dell’ambiente sia stabile. La pro-
gettazione di software in grado di anticipare i cambiamenti dell’ambiente
determina che il software stesso esibisca un comportamento dinamico, os-
servabile solo in fase di esecuzione. Questo tipo di software richiede tec-
niche di verifica che siano di complemento agli approcci usati durante lo
sviluppo e propone la tecnica di verifica di tracce (trace checking) come
una soluzione praticabile e complementare per la verifica del software mod-
erno. La verifica di tracce è una procedura automatica per la valutazione di
una specifica formale su una traccia di eventi prodotti dal sistema e salvati
dopo l’esecuzione del sistema stesso. L’output di questa procedura indica
se il sistema è stato conforme alla sua specifica.

L’obiettivo di questa tesi è quello di sviluppare procedure di trace check-
ing che siano generali ed efficienti e che supportino un’ampia classe di pro-
prietà quantitative. Quest’ultime sono dei vincoli su valori quantificabili
osservati durante l’esecuzione di un sistema. Questo tipo di proprietà es-
prime tipicamente requisiti non funzionali, come i vincoli sull’utilizzazione
delle risorse (e.g., numero di risorse, consumo di energia, costi), vincoli
sulle caratteristiche di esecuzione dell’ambiente (e.g., frequenza delle richi-
este, tempo di risposta), o vincoli sul comportamento del sistema durante

III
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la sua esecuzione (per esempio, vincoli temporali, qualità del servizio, af-
fidabilità, tolleranza ai guasti). La prima parte della tesi descrive due algo-
ritmi che implementano la procedura di soddisfacibilità per SOLOIST - un
linguaggio di specifica basato sulla logica temporale con metrica (MTL) ed
utilizzato per esprimere proprietà quantitative. La tesi mostra come si possa
usare una procedura di soddisfacibilità per eseguire la verifica di tracce e
descrive l’applicazione di questa procedura ad un caso di studio nel settore
dei sistemi elastici basati su infrastrutture cloud. La seconda parte della tesi
si concentra sul problema della verifica distribuita di tracce e descrive al-
goritmi basati su modelli di calcolo distribuito (come MapReduce e Spark)
per la verifica, in modo efficiente, di specifiche SOLOIST su tracce di es-
ecuzione molto grandi. La tesi considera anche il dominio della verifica
su tracce di proprietà espresse in MTL e propone una nuova tecnica per la
decomposizione di formule MTL. Questa tecnica permette di effettuare la
verifica di tracce, in modo scalabile, anche in presenza di formule con inter-
valli temporali molto ampi. La tecnica di decomposizione proposta supera
le limitazioni della semantica standard di MTL attraverso la definizione di
una nuova semantica per MTL, chiamata "lazy". Questa nuova semantica
è più espressiva della semantica standard e possiede alcune proprietà che
permettono di decomporre qualsiasi formula MTL in una formula MTL
equivalente con intervalli di tempo più piccoli.

IV
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CHAPTER1
Introduction

1.1 Quantitative properties of Open-world Software

Traditional software systems are products of early approaches in software
engineering that typically employ waterfall software process [109] in the
development phase and handle all the changes after the deployment via
software change requests [24]. These early approaches were designed with
certain fundamental assumptions about the nature of the software under
development:

• software requirements are considered to be known and stable before
the development;

• software modules are statically bound to each other;

• there is a single organization responsible for the complete lifecycle of
software;

• software is deployed on a well-known and centralized infrastructure;

• software runs in a static environment, that does not change.

3
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Chapter 1. Introduction

The last assumption is the most important one and it is usually phrased
as "the external world in which the software executes, is closed [9]". This
means that requirements leading to a specification of the software system’s
interaction with the external world can capture all phenomena of interest.

However, modern software systems invalidate all the assumptions above.
In almost all the practical cases requirements cannot be fully gathered up-
front and frozen before the development [95] since the stakeholders often
do not know beforehand what they expect from a system and the require-
ments get refined as the stakeholders interact with the initial prototypes of
the system. Modern systems are assembled out of components that provide
a specific functionality. The most prominent examples of this approach
are service-based applications (SBA) [62], often created as compositions
of many existing services using service orchestration languages [7]. Bind-
ings among the services are delayed until the execution, thus the specific
functionality of SBA is only known at run-time. Software increasingly re-
lies on functionalities coming from third party organizations. For example,
many Android applications rely on the functionality provided by Google’s
location service [2]. Therefore the maintenance of such software cannot be
performed within a single organization. Finally, with the advent of cloud
computing, many applications run on a cloud-based infrastructure that pro-
vides virtualized and distributed computing resources shared among many
users and typically not under direct control by the owners of the applica-
tions.

Therefore, we say that the modern software systems are embedded in
an open world [9], characterized by continuous change in the environment
in which they are situated and in the requirements they have to meet. The
dynamic behavior of such systems makes traditional design-time verifica-
tion approaches unfeasible, because they cannot analyze all the behaviors
that can emerge at run time. For this reason, techniques like run-time ver-
ification1 [90] and trace checking2 [13] have become promising alterna-
tives. While run-time verification checks the behavior of a system during
its execution, trace checking is a post-mortem technique. In other words,
to perform trace checking one must first collect and store relevant execu-
tion data (called execution traces or logs) produced by the system and then
check them offline against the system specifications. This activity is often
done to inspect server logs, crash reports, and test traces, in order to ana-
lyze problems encountered at run time. More precisely, trace checking is
an automatic procedure for evaluating a formal specification over a trace of

1Also called run-time monitoring [50] or policy monitoring [19]
2Also called trace validation [97] or history checking [64].

4
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1.1. Quantitative properties of Open-world Software

recorded events produced by a system after execution. The output of the
procedure is called verdict and states whether the system’s behavior con-
forms to its specification.

Although runtime verification detects a violation of a property imme-
diately during the execution, it also introduces unnecessary computational
overhead and may affect the system it checks. The difficulty of the problem
of checking if properties of a system hold during its execution directly de-
pends on the complexity of the properties being checked and, in turn, on the
expressiveness of the specification language being used. Research in this
domain [67,74] classifies runtime verification algorithms as algorithms that
must analyze the events in a trace in the order in which they occurred and
keep in memory only some finite amount of information about the trace
seen so far. Trace checking algorithms, on the other hand, can analyze a
trace in an arbitrary order and typically have linear space complexity, i.e.,
in the worst case they need to consider the entire trace, seen so far, during
the evaluation. Trace checking is therefore an offline procedure that does
not introduce any overhead in the execution of the system, other than col-
lecting logs. More importantly, trace checking can support more expressive
specification languages than runtime verification [63].

In this thesis the main focus will be on the specific class of properties
we call quantitative properties. In the last decade, the research efforts in
the area of software verification have mainly focused on verifying qualita-
tive properties of systems (e.g., safety or liveness). However, many impor-
tant software characteristics can be quantitative, such as the ones related
to non-functional requirements like response-time, throughput, availability
or some domain specific functional properties. For example, the follow-
ing properties express bounds on quantitative values derived from a system
execution:

P1: "A service always needs to respond to any request within 30 millisec-
onds." (response time)

P2: "The average response time of a service must not exceed 30 millisec-
onds, within any 10 minute time window." (average response time)

P3: "A client is allowed to submit a maximum of 3 service requests each
hour." (throughput)

P4: "Never allocate more than 3 machines within 2 minute time window."
(resource thrashing)

Informally, we can define quantitative properties as any constraints on
quantifiable values from a system execution [86]. Typically, these quanti-

5
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Chapter 1. Introduction

ties are related to timing, like in P1. The constraints may be defined only
over a subset of the time domain, like in P2, we refer to quantities calcu-
lated for each 10 minute time window. Properties can refer to an array of
quantities, for example timing relations between pairs events (P2) or multi-
plicities of some event (P3 and P4). In the properties that refer to multiple
quantities, we can use aggregations. For example, in P2 we use average,
while in P3 and P4 we use maximum.

At the moment there is no consolidated research into verification of
quantitative properties of open-world software, hence this thesis addresses
this issue by proposing different trace checking techniques.

1.2 Problem Statement and Research Goals

In [9] the authors state what are the research challenges for open-world
software. The authors identify the need for more consolidated approaches
for specification, verification, monitoring, trust, implementation, and self-
management of open-world software. Some of the issues have been ad-
dressed in recent years, namely in [32] the author deals with specification,
verification and reputation management in the context of service-based ap-
plications. In [65] the author addresses the issues of verification and self-
management, while in [113] the author proposes specification and verifica-
tion techniques for the quality of service requirements of open-world soft-
ware. In [94] the author deals with the verification of open-world software
in the context of incomplete models.

This thesis addresses the issue of verification of open-world software in
the context of quantitative properties with the goal of providing practical
and scalable approaches based on trace checking. This can be precisely
stated with the following overall research goal:

"To study quantitative properties of systems occurring in
practice and provide a practical and scalable approach to
verification, driven by the selected specification language
suitable to express such properties."

As stated above this research is driven by quantitative properties encoun-
tered in practice [29,35]. In order to formally specify them, we have chosen
a specification language, called SOLOIST [36], as a baseline language. Al-
though SOLOIST is designed to express properties of service interactions,
it is based on metric temporal logic (MTL) [83] and it is able to specify
both functional and non-functional properties of systems. Moreover, since
the original version of the language from [36] is undecidable due to the

6
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first-order quantification, this thesis focuses on a propositional fragment of
SOLOIST.

Given the choice of a specification language, the overall research goal
can be decomposed into two research sub-goals:

Research goal 1 - Decision procedure for SOLOIST

To demonstrate that significant verification activities are possible, the cho-
sen specification language must be decidable. A language is decidable if
there exists an algorithm that always terminates and given any formula of
the language it can find a satisfying assignment if and only if the formula
is satisfiable. To provide a practical and scalable approach to verification,
one needs to develop not only a proof of the decidability of the language,
but also a decision procedure which is efficient and easily implementable
in existing verification engines (such as SAT or SMT solvers). For the
propositional fragment of SOLOIST decidability has been shown in [36]
via reduction to LTL. However the reduction did not provide an efficient
and practical decision procedure. Showing the existence of a practically
relevant decision procedure for SOLOIST is expressed as the following re-
search goal:

"To study the SOLOIST specification language and develop
a decision procedure that provides a general framework to
perform different verification use cases using SOLOIST, in-
cluding trace checking, and which is amenable to rapid de-
velopment of prototype tools."

Research goal 2 - Scalable trace checking of SOLOIST

The problem of checking a logged event trace against a temporal logic spec-
ification arises in many practical cases. Unfortunately, known algorithms
for an expressive logic like MTL do not scale with respect to two crucial
dimensions: the length of the trace and the size of the time interval of the
formula to be checked. These issues are formulated as the second research
goal:

"To develop a scalable, efficient and practical trace check-
ing algorithm for SOLOIST."

7
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Chapter 1. Introduction

1.3 Contributions

In this section we outline the contributions of the thesis, mapping them to
the research goals stated above.

Contribution 1 - Decision procedure for SOLOIST

We have implemented two efficient decision procedures for SOLOIST that
make use of state-of-the-art SMT solver. The implementation is a transla-
tion that reduces the problem of SOLOIST satisfiability to satisfiability of
a particular logic supported by the SMT solver theories. The major differ-
ence between the two implemented procedures is the logic targeted by the
translation and how it encodes the satisfying assignment of SOLOIST for-
mulae. The two procedures are described in Chapters 3 and 4, respectively.
An efficient decision procedure provides a general framework for building
a SOLOIST verification suite that supports many verification use cases. An
instance of such a use case is trace checking; in Chapter 5, we exploit the
implemented decision procedures for SOLOIST to perform trace checking
and show how the two decision procedures can be used complementarily.

Contribution 2 - Scalable trace checking of SOLOIST

The problem of the algorithms for trace checking logics based on MTL is
that they do not scale with respect to two crucial dimensions: the length of
the trace and the size of the time interval of the formula to be checked. We
address the former issue in Chapter 8 by proposing a distributed and parallel
trace checking algorithm that can take advantage of modern cloud comput-
ing and programming frameworks like MapReduce and Spark. We address
the latter issue in Chapter 9 by proposing an alternative semantics for MTL,
called lazy semantics. Lazy semantics possesses certain properties that al-
low us to decompose any MTL formula into an equivalent MTL formula
with all time intervals of its temporal operators limited by some constant.
This decomposition plays a major role in the context of (distributed) trace
checking of formulae with large time intervals.

Contribution 3 - Specifying quantitative properties

This contribution does not map to neither of the research goals, but it is
rather a side effect of the previous contributions. In the process of specify-
ing quantitative properties we have encountered many complex cases where
SOLOIST is not expressive enough. Therefore, in Chapter 6 we extend

8
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SOLOIST with arithmetical constrains (SOLOISTA) that allow us to ex-
press complex quantitative properties of cloud-based elastic systems, like
elasticity or resource thrashing. Another contribution towards specifying
quantitative properties is lazy semantics. Besides allowing us to optimize
our distributed trace checking algorithm, we believe that lazy semantics
makes the process of specifying system properties using MTL more intu-
itive.

1.4 Dissemination

The research I have conducted during the PhD program has lead to several
publications. This section lists them in order in which they are presented in
the thesis. There are also several unpublished reports listed in this section
that are related to the thesis.

Conference and workshop papers

• Domenico Bianculli, Carlo Ghezzi, Srd̄an Krstić, and Pierluigi San
Pietro. Offline trace checking of quantitative properties of service-
based applications. In Proceedings of the 7h International Conference
on Service Oriented Computing and Application (SOCA 2014), IEEE,
2014.

This paper is the basis of Chapter 3 where we introduce SOLOIST
decision procedure based on CLTLB(D). In Chapter 5 we report on
the evaluation of the trace checking algorithm tailored for dense traces
that is based on the decision procedure.

• Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srd̄an
Krstić, and Pierluigi San Pietro. SMT-based checking of SOLOIST
over sparse traces. In Proceedings of the 17th International Con-
ference on Fundamental Approaches to Software Engineering (FASE
2014), volume 8411 of LNCS, pages 276-290. Springer, 2014

This paper is the basis of Chapter 4 where we introduce SOLOIST
decision procedure based on QF-EUFIDL. In Chapter 5 we also re-
port on the evaluation of the trace checking algorithm and some of its
applications.

• Marcello Maria Bersani, Domenico Bianculli, Schahram Dustdar, Alessio
Gambi, Carlo Ghezzi, and Srd̄an Krstić. Towards the formalization of
properties of cloud-based elastic systems. In Proceedings of the 6th

9
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Chapter 1. Introduction

International Workshop on Principles of Engineering Service-oriented
Systems (PESOS 2014), co-located with ICSE 2014, ACM, 2014
This paper reports on applying our trace checking algorithms to check
properties of Cloud-based Elastic systems. This is detailed in Chap-
ter 6 where we introduce property specification patterns that we iden-
tified for Cloud-based Elastic systems and we report on the effort to
check the properties of Elastic Doodle service.

• Domenico Bianculli, Carlo Ghezzi, and Srd̄an Krstić. Trace checking
of Metric Temporal Logic with Aggregating Modalities using MapRe-
duce. In Proceedings of the 12th International Conference on Soft-
ware Engineering and Formal Methods (SEFM 2014), Springer, 2014.
This paper is the basis of Chapter 8 where we introduce a scalable dis-
tributed trace checking algorithm for SOLOIST based on the MapRe-
duce paradigm.

• Srd̄an Krstić. Quantitative Properties of Software Systems: Specifi-
cation, Verification, and Synthesis. In Proceedings of the 36th Inter-
national Conference on Software Engineering, (ICSE 2014), Doctoral
Symposium, ACM, 2014
This paper motivated the need for verification of quantitative prop-
erties of open-world software and describes my long-term research
agenda.

• Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srd̄an
Krstić, and Pierluigi San Pietro. Efficient large-scale trace checking
using MapReduce. In Proceedings of the 38th International Confer-
ence on Software Engineering (ICSE 2016), ACM, 2016.
This paper is the basis of Chapter 9 where we introduce optimizations
for the trace checking algorithm introduced in Chapter 8. It proposes
an alternative semantics for MTL that enjoys certain properties useful
to perform decomposition of MTL formulae. The decomposition can
be tunes and it is very useful for a distributed algorithm.

Unpublished reports

• Giovanni Paolo Gibilisco and Srd̄an Krstić. InstaCluster: Building A
Big Data Cluster in Minutes. Technical Report, arXiv:1508.04973
This paper is the basis of the evaluation setup described in Chapter 10
where we present a tool that we developed to provision BigData en-
abled clusters on the Amazon public cloud infrastructure in order to
use it for testing our algorithm.

10
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1.5 Structure of the Thesis

This thesis is structured in four parts. Part I overviews the problem state-
ment and contributions of the thesis in Chapter 1, while in Chapter 2 it
provides some background information on notations, formal logic and pro-
gramming models used in the thesis. Part II has five chapters: Chapter 3 in-
troduces the decision procedure for SOLOIST based on CLTLB(D), while
Chapter 4 introduces the decision procedure for SOLOIST based on QF-
EUFIDL. Chapter 5 shows how the two decision procedures can be used
complementary for trace checking of SOLOIST specifications and presents
the evaluation of their performance. Chapter 6 shows our comprehensive
case study in specification and verification of properties of cloud-based
elastic systems using SOLOIST and its decision procedures. Chapter 7
surveys related work in the area of verification of quantitative properties
and describes other languages that can be used to specify quantitative prop-
erties. Part III has three chapters: Chapter 8 presents our distributed and
parallel trace checking algorithm based on MapReduce and Spark. Chap-
ter 9 describes a memory optimization for the algorithm that relies on new
alternative semantics for MTL, called lazy semantics. Chapter 10 presents
a comprehensive evaluation of the algorithm. Chapter 11 surveys related
work in the area of distributed trace checking and describes other attempts
at providing alternative semantics for MTL. Finally, Chapter 12 in Part IV
provides some concluding remarks, discusses limitations of the proposed
approaches and how these limitations can be addressed as part of future
work.

11
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CHAPTER2
Preliminaries

This chapter provides some preliminary information on notations, formal
logic and programming models used in the remaining of the thesis. Sec-
tion 2.1 introduces two standard temporal logics: metric temporal logic
(MTL) and constrained linear temporal logic (CLTLB(D)), that are able
to express real-time properties of systems. In Section 2.2 we introduce
SOLOIST temporal logic designed to capture properties of service com-
position interactions. The novelty of SOLOIST is its ability to formal-
ize aggregated behaviors of systems. Section 2.3 introduces the concept
of bounded satisfiability checking (BSC) and a tool, called ZOT that sup-
ports BSC and implements the decision procedure for CLTLB(D). We use
CLTLB(D) and ZOT to introduce the first decision procedure for SOLOIST
in Chapter 3. BSC is the core principle used to perform trace checking by
exploiting a decision procedure of a language. Section 2.4 introduces the
satisfiability modulo theories (SMT) solvers and two particular theories:
theory of integer difference logic (IDL) and theory of equality and uninter-
preted functions (EUF). These concepts are used to introduce the second
decision procedure for SOLOIST in Chapter 4. Finally, in Section 2.5 we
introduce MapReduce and Spark, the distributed programming models used
to implement distributed and parallel trace checking algorithms.

13
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Chapter 2. Preliminaries

2.1 Temporal Logic for Specifying System Properties

Problem specifications are essential for designing, validating, document-
ing, communicating, reengineering, and reusing solutions. Formality helps
in obtaining higher-quality specifications within such processes; it also pro-
vides the basis for their automated support. Temporal logic is a conve-
nient formalism for formally specifying properties of systems. Informally,
a model of a temporal logic formula is an infinite sequence of events that
satisfy it. Each temporal logic formula defines a set of such sequences.
Such a set of sequences of events in turn represents the admissible sys-
tem behavior. A given system satisfies a temporal logic formula if all of its
computations (i.e., sequences of events) belong to the set defined by the for-
mula. The most well known temporal logic is linear temporal logic (LTL)
and its equally expressive variant propositional linear temporal logic with
both past and future modalities (PLTLB) [91]. LTL can express the order
among the events in a sequence, but cannot enforce the timing relations be-
tween them. This lead to the development of real-time temporal logics as
extensions of LTL, most notably metric temporal logic (MTL).

2.1.1 Metric Temporal Logic (MTL)

Let I be any non-empty interval over N and let Π be a finite set of atomic
propositions. The syntax of MTL is defined by the following grammar,
where p ∈ Π and UI is the metric “Until” operator:

φ ::= p | ¬φ | φ ∨ φ | φUIφ | φSIφ

Informally, MTL extends the well known “Until” temporal operator of the
classical LTL with an interval that indicates the time distance within which
its right-hand side subformula must hold. For example, property “It is al-
ways true when a student accesses a homework assignment, he/she can
provide or modify the answer within a week before a professor revokes the
access.” is expressed as:

G(access→ (can_write ∨ can_modify)U(0,168]revoke) (2.1)

where temporal operator U(0,168] states that its right operand, the revoke
predicate, must occur within a week (or 168 hours) from the moment of ac-
cess (expressed by the access predicate). It also states that the left operand
must be continuously true until that happens. Operator G (called “Glob-
ally”) simply states that property always holds. The operator “Globally”
and the other boolean and temporal operators can be derived using the

14
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2.1. Temporal Logic for Specifying System Properties

usual conventions: “Eventually” is defined as FIφ ≡ >UIφ; “Globally”
is defined as GIφ ≡ ¬FI¬φ; “Eventually in the Past” or just “Past” is de-
fined as PIφ ≡ >SIφ; “Globally in the Past” or “Historically” is defined
as HIφ ≡ ¬PI¬φ, where > means “true”. We adopt the convention that
an interval of the form [i, i] is written as “= i”. The interval [0,+∞) in
temporal operators is omitted for conciseness. We introduce the following
shorthand notation: FK(φ) ≡ FF . . . F︸ ︷︷ ︸

K times

(φ), with F0(φ) = φ. Traditional

semantics for MTL is called point-based semantics and we will denote it as
MTLP semantics.

MTLP semantics. We focus on the finite-word semantics of MTL. A
timed sequence τ = τ0τ1 . . . τ|τ |−1 is a sequence of values τi ∈ R with
τi > 0, such that, τi < τi+1 for each 0 ≤ i < |τ |, i.e., the sequence is strictly
monotonic. A word σ over the alphabet 2Π is a sequence σ0σ1 . . . σ|σ|−1

such that σi ∈ 2Π for all 0 ≤ i < |σ|, where |σ| denotes the length of
the word. A timed word [5] ω = ω0ω1 . . . ω|ω|−1 is a word over 2Π × R,
i.e., a sequence of pairs ωi = (σi, τi) where σ0 . . . σ|ω|−1 is a word over 2Π

and τ0 . . . τ|ω|−1 is a timed sequence. Note that in this definition i refers
to a particular position in the timed word ω, while τi refers to the time
instant at the position i. We abuse the notation and represent a timed word
equivalently as a pair containing a word and a timed sequence of the same
length, i.e., ω = (σ, τ). A timed language over 2Π is a set of timed words
over 2Π. MTLP semantics on timed words is given below in Formula (2.2),
where the point-based satisfaction relation |=P is defined with respect to a
timed word (σ, τ), a position i ∈ N, and MTL formulae φ and ψ.

(σ, τ, i) |=P p iff p ∈ σi for p ∈ Π

(σ, τ, i) |=P ¬φ iff (σ, τ, i) 6|=P φ

(σ, τ, i) |=P φ ∨ ψ iff (σ, τ, i) |=P φ or (σ, τ, i) |=P ψ

(σ, τ, i) |=P φUIψ iff ∃j.(i ≤ j < |σ| and τj − τi ∈ I and
(σ, τ, j) |=P ψ and ∀k.(i < k < j then (σ, τ, k) |=P φ)

(2.2)

Note that, due to the strictly monotonic definition of the timed sequence
τ , the metric “Next” and “Yesterday” operators can be defined as XIφ ≡
⊥UI−{0}φ and YIφ ≡ ⊥SI−{0}φ respectively, where ⊥ means “false”.
Lp(φ) is a timed language defined by a formula φ when interpreted ac-
cording to the MTLP semantics, i.e., Lp(φ) = {(σ, τ) | (σ, τ, 0) |=P φ}

15
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Chapter 2. Preliminaries

2.1.2 Constrained Linear Temporal Logic (CLTLB(D))

CLTLB(D) [26] is an extension of PLTLB (Propositional Linear Temporal
Logic with both past and future modalities) [91] augmented with atomic
formulae built over a constraint system D. In practice, CLTLB(D) defines
a set of variables C and arithmetical constraints over a constraint system
D; in our case,D is the structure (Z,=,+). For this particular combination,
decidability of CLTLB(D) has been proven in [54]. Variables (also called
counters) receive a separate evaluation at each time instant. In addition to
the standard PLTLB temporal operators “Since” and “Until”, CLTLB(D)
introduces the new construct of arithmetic temporal term, defined as

α := c | x | α + c | Y(α) | X(α)

where c ∈ Z is a constant, x ∈ C is a counter and Y and X are temporal
operators applied to counters. These temporal operators for counters return
the value of the counter in the previous and in the next time instant, respec-
tively. Note that we use a syntactically sugared version of PLTLB using
metric temporal operators over time intervals, such as UI . Since time is dis-
crete, they are just a convenient shorthand [104]. The syntax of CLTLB(D)
is the following:

φ ::= p | α = α | α < α¬φ | φ ∧ φ | φUIφ | φSIφ

where p is an atomic proposition, SI , UI are the usual “Since”, and “Until”
modalities of PLTLB. Additional temporal modalities (like G, “Globally”,
and W, “Weak Until”) can be defined using the usual conventions. An
example of a CLTLB(D) formula is G(φ → X(y) = y + 1), which states
that whenever φ is true, the value of counter y in the next time instant must
be incremented of 1 with respect to the value at the current time instant.

CLTLB(D) formulae admit finite, ultimately periodic two-part models
(π,δ). Function π : N → P(Π) associates a subset of the propositions
with each time instant, while function δ : N × C → Z defines the value
of counters at each time position. Hereafter, this two-part model will be
graphically represented as in Fig. 2.1: the topmost row (above the timeline)

i
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Figure 2.1: CLTLB(D) two-part model example
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2.2. SOLOIST

represents function π (e.g., π(5) = {ψ} or π(11) = {} ); the rows of
integers below the timeline represent function δ, i.e., the values of each
counter defined in the model. In the example in the figure there are two
counters, as shown on the left: c1 and c2; the δ function is defined so that we
have, for example in correspondence with the sixth time instant (position
#5), δ(5, c1) = 1 and δ(5, c2) = 0.

2.2 SOLOIST

SOLOIST acronym stands for SpecificatiOn Language fOr servIce com-
poSitions inTeractions, introduced in [36]. SOLOIST was designed with
the goal of supporting the common specification patterns found for service
provisioning; It is a propositional metric temporal logic with additional ag-
gregating modalities. These modalities have been defined based on an ex-
tensive field study [35] of the requirements specifications in the context of
service-based applications, and they are tailored to express the most com-
mon requirements occurring in practice. The study — performed in collab-
oration with an industrial partner — analyzed more than 900 requirements
specifications, extracted both from research papers and industrial data, and
led to the identification of a new class of specification patterns, specific
to the domain of service provisioning (in addition to the well-known ones
like those defined in [60, 82]). The service provisioning patterns refer to:
S1) average response time; S2) counting the number of events; S3) aver-
age number of events; S4) maximum number of events; S5) absolute time;
S6) unbounded elapsed time; S7) data-awareness.

The syntax of SOLOIST is defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | φUIφ | φSIφ | CK./n(φ) | UK,h./n (φ)

|MK,h
./n (φ) | DK

./n(φ, φ)

where p ∈ Π, with Π being a finite set of atoms; I is a nonempty interval
over N; n,K, h range over N; ./ ∈ {<,≤,≥, >,=}. The arguments φ
of modalities C,U,M,D are restricted to atoms in Π. Moreover, the two
arguments in the D modality are required to be different atoms.

The UI and SI modalities have the usual meaning in temporal logic
(“Until” and its past counterpart “Since”), but they are bound to interval
I; additional temporal modalities (like G, “Globally”) can be defined from
them using the usual conventions. The remaining modalities are called ag-
gregate modalities and are used to express the specification patterns S1–
S4 mentioned above. The CK./n(φ) modality states a bound (represented by
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((σ, τ), i) |= p iff p ∈ σi
((σ, τ), i) |= ¬φ iff ((σ, τ), i) 6|= φ
((σ, τ), i) |= φ ∧ ψ iff ((σ, τ), i) |= φ ∧ ((σ, τ), i) |= ψ
((σ, τ), i) |= φSIψ iff for some j < i, τi − τj ∈ I, ((σ, τ), j) |= ψ

and for all k, j < k < i, ((σ, τ), k) |= φ
((σ, τ), i) |= φUIψ iff for some j > i, τj − τi ∈ I, ((σ, τ), j) |= ψ

and for all k, i < k < j, ((σ, τ), k) |= φ
((σ, τ), i) |= CK./n(φ) iff c(τi −K, τi, φ) ./ n and τi ≥ K

((σ, τ), i) |= UK,h./n (φ) iff
c(τi − bKh ch, τi, φ)

bK
h
c

./ n and τi ≥ K

((σ, τ), i) |= MK,h
./n (φ) iff max

{⋃bKh c
m=0 {c(lb(m), rb(m), φ)}

}
./ n and τi ≥ K

((σ, τ), i) |= DK
./n(φ, ψ) iff

∑
(s,t)∈d(φ,ψ,τi,K)(τt − τs)
|d(φ, ψ, τi,K)| ./ n and τi ≥ K and d(φ, ψ, τi,K) 6= ∅

where c(τa, τb, φ) = | {s | τa < τs ≤ τb and ((σ, τ), s) |= φ} |, lb(m) = max{τi −K, τi − (m+ 1)h},
rb(m) = τi −mh, and d(φ, ψ, τi,K) = {(s, t) | τi −K < τs ≤ τi and ((σ, τ), s) |= φ,
t = min{u | τs < τu ≤ τi, ((σ, τ), u) |= ψ}}

Figure 2.2: Formal semantics of SOLOIST

./ n) on the number of occurrences of an event φ in the previousK time in-
stants: it expresses pattern S2. The UK,h./n (φ) (respectively, MK,h

./n (φ)) modal-
ity expresses a bound on the average (respectively, maximum) number of
occurrences of an event φ, aggregated over the set of right-aligned adja-
cent non-overlapping subintervals within a time window K; it corresponds
to pattern S3 (respectively, S4), as in “the average/maximum number of
events per hour in the last ten hours”. A subtle difference in the seman-
tics of the U and M modalities is that M considers events in the (possibly
empty) tail interval, i.e., the leftmost observation subinterval whose length
is less than h, while the U modality ignores them. The DK

./n(φ, ψ) modality
expresses a bound on the average time elapsed between a pair of specific
adjacent events φ and ψ occurring in the previous K time instants; it can be
used to express pattern S1. A more in-depth discussion on the SOLOIST
aggregate modalities and their comparison to similar existing modalities
can be found in [36].

The formal semantics of SOLOIST is defined on timed words (σ, τ) over
2Π×N. Figure 2.2 defines the satisfiability relation ((σ, τ), i) |= φ for every
timed word (σ, τ), every position i ≥ 0 and for every SOLOIST formula φ.

We remark that the version of SOLOIST presented here is a restriction of
the original one in [36]. To simplify the presentation in the next sections, we
dropped first-order quantification on finite domains (which was introduced
to support data-awareness, i.e., pattern S7) and limited the argument of the
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2.2. SOLOIST

D modality to only one pair of events. These restrictions are only syntactic
sugar and we refer to [36] for the details of the transformations that provide
support for them.

Additional notation

This section briefly introduces some concepts used throughout the thesis.
The concepts apply to SOLOIST as well as its fragment — MTL. Let φ and
ψ be SOLOIST (or MTL) formulae. The set of all proper subformulae of φ
is denoted with sub(φ); notice that for atoms p ∈ Π, sub(p) = ∅. The length
of a formula φ, denoted |φ|, is defined as the number of its non-proper
subformulae, i.e., |φ| = |sub(φ)|+1. The size of (the encoding of) a formula
φ, denoted as ||φ|| is equal to |φ| · log(µ), where µ is the largest constant
occurring the formula. The set suba(φ) = {p | p ∈ sub(φ), sub(p) = ∅} is
the set of atoms of formula φ. The set subd(φ) = {α | α ∈ sub(φ),∀β ∈
sub(φ), α /∈ sub(β)} is called the set of all direct subformulae of φ; φ is
called the superformula of all formulae in subd(φ). The set supψ(φ) = {α |
α ∈ sub(ψ), φ ∈ subd(α)} is the set of all subformulae of ψ that have
formula φ as direct subformula. The height h(φ) of φ is defined recursively
as:

h(φ) =

{
max{h(ψ) | ψ ∈ subd(φ)}+ 1 if φ 6∈ Π

1 otherwise.

For example, given the formula γ = F[2,4](a ∧ b)U(30,100)¬c, we have:
sub(γ) = {a, b, c, a ∧ b,¬c,F[2,4](a ∧ b)} is the set of all proper subformu-
lae of γ; suba(γ) = {a, b, c} is the set of atoms in γ; subd(γ) = {F[2,4](a ∧
b),¬c} is the set of direct subformulae of γ; supγ(a) = supγ(b) = {a ∧ b}
shows that the sets of superformulae of a and b in γ coincide; and the
height of γ is 4, since h(a) = h(b) = h(c) = 1, h(¬c) = h(a ∧ b) = 2,
h(F[2,4](a∧b)) = 3 and therefore h(γ) = max{h(F[2,4](a∧b)), h(¬c)}+1 =
4.

2.2.1 Formalizing BPEL process interactions

We consider service compositions defined in terms of the BPEL [10] or-
chestration language. Very briefly, BPEL is a high-level XML-based lan-
guage for the definition and execution of business processes, defined as
workflows that compose external partner services. The definition of a work-
flow contains a set of variables; the business logic is expressed as a compo-
sition of activities. The main types of activities are primitives for commu-
nicating with other services (receive, invoke, reply, pick) and for executing
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assignments (assign) to variables, as well as control-flow structures (se-
quence, while, switch and parallel flows).

Below we list some examples of properties expressed in natural lan-
guage, which can be used to specify the interactions of a BPEL process.
We assume that the process has invoke activities named invA and invB,
three receive activities named recvP, recvQ, and recvR and a reply activity
term that takes no parameters. The detailed workflow structure of the pro-
cess as well as the other variables are of no interest for the purpose of this
section and are omitted for clarity. All properties are under the scope of an
implicit universal temporal quantification as in "In every process run, . . .".

P1: "The execution of activity recvP should alternate with the execution
of activity recvQ, though other activities different from recvQ (respec-
tively, recvP) can be executed in between."

P2: "The response time of activity invB should not exceed 4 time units."

P3: "If activity invB has been invoked 4 times in the past 16 units, than
activity recvR will be executed within 32 time units."

P4: "When activity term is executed, the average response time of all the
invocations of activity invB completed in the past 720 time units should
be less than 3 time units."

P5: "When activity term is executed, the average number of invocations, in
an interval of 60 time units, of activity invB during the past 720 time
units should be less than 4".

P6: "When activity term is executed, the maximum number of invocations,
in an interval of 60 time units, of activity invB during the past 720 time
units should be less than 5".

To specify the properties above in SOLOIST we first need to map the
activities of the BPEL process into its atomic propositions. Let A be the
set of activities defined in a BPEL process; A = Astart−inv ∪ Aend−inv ∪
Arecv ∪ Apick ∪ Areply ∪ Ahdlr ∪ Aother where:

• Astart−inv ( Aend−inv) is the set of start (end) events of all invoke ac-
tivities1

• Arecv is the set of all receive activities;

• Apick is the set of all pick activities;
1A synchronous invoke is characterized both by a start event and by an end event; an asynchronous invoke is

characterized only by a start event.
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• Areply is the set of all reply activities;

• Ahdlr is the set of events associated with all kinds of handlers;

• Aother is the set of activities that are not an invoke, a receive, a pick,
a reply, or related to a handler (e.g., an assign, a control structure
activity).

A set of atomic propositions of SOLOIST Π = A corresponds to the set
of all process activities.

Now we can use SOLOIST to formalize the properties above:

P1: G((recvP→ ¬recvPU(0,∞)recvQ) ∧ (recvQ→ ¬recvQU(0,∞)recvP))

P2: G(invBstart → F[0,4]invBend)

P3: G(C16
=14invBstart → F0,32recvR)

P4: G(termend → D720
<3 (invBstart, invBend))

P5: G(termend → U720,60
≤4 (invBstart))

P6: G(termend →M720,60
≤5 (invBstart))

2.2.2 Translating SOLOIST into LTL

In this section we sketch the translation of SOLOIST into a linear temporal
logic, to show that the two languages are equivalent. The translation sum-
marized here encodes SOLOIST into PLTLB. This is done in two steps for
temporal operators (like UI and SI); they are first translated into a variant
of linear temporal logic called MPLTLB (Metric Linear Temporal Logic
with Past) [104]. MPLTLB is a syntactically-sugared version of classical
PLTLB [80], defined over a mono-infinite discrete model of time repre-
sented by words. The second step is their translation from MPLTLB to
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Figure 2.3: Conversion from timed word to word

21



i
i

“thesis” — 2016/12/13 — 10:42 — page 22 — #34 i
i

i
i

i
i

Chapter 2. Preliminaries

i
i

“external/cex” — 2015/10/3 — 17:55 — page 22 — #1 i
i

i
i

i
i

τ − 3

τ − 3

τ − 3

φ

φ

φ

φ

τ

τ

τ

φ

φ

Y2(φ) ∧ Y1(φ)

∨
Y2(φ) ∧ φ

∨
Y1(φ) ∧ φ

Figure 2.4: Basic translation of the formula C3
>1(φ)

PLTLB which is a standard translation [68]. The rest of the modalities are
translated directly to PLTLB.

Without loss of expressiveness, we consider only SOLOIST formulae in
positive normal form, i.e., where negation may only occur on atoms (see,
for example, [104]). Then, we need to bridge the gap between the semantics
based on timed words, where the temporal information is denoted by a
natural time-stamp, and the one used for MPLTLB, where the temporal
information is implicitly defined by the integer position in an word. The two
temporal models can be transformed into each other. Here we are interested
in pinpointing in an MPLTLB word the positions that correspond to time-
stamps in a SOLOIST timed word where events occurred. To do so, we add
to the set Π a special propositional symbol e, which is true in each position
corresponding to a “valid” time-stamp in the timed word. An example of
this conversion is shown in Fig. 2.3, where a timed word is depicted in the
timeline at the top and the equivalent word corresponds to the timeline at
the bottom. Hereafter, when displaying words, we will omit the symbol
e from positions in the timeline, since its presence can be implied by the
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Figure 2.5: Basic translation of the formula D4
≤1{(φ, ψ)}
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presence of other propositional symbols.
The translation ρ that maps SOLOIST formulae to MPLTLB is straight-

forward for the “standard” propositional and temporal part (UI and SI oper-
ators) of SOLOIST. For example, the SOLOIST formula φUIψ is mapped
into the MPLTLB formula ρ(φUIψ) = (¬e ∨ ρ(φ))UI(e ∧ ρ(ψ)).

Note that, as shown in [68], MPLTLB is simply an exponentially suc-
cinct encoding of PLTLB. Below we show how metric operators from MPLTLB
can be translated into PLTLB. We denote the translation with ς where
0 < l ≤ u <∞, 1 < d <∞, 0 ≤ i <∞, 0 ≤ f ≤ ∞:

ς(X=i(φ)) ≡ XX · · ·X︸ ︷︷ ︸
i times

(e ∧ φ) (TX )

ς(GI(φ)) ≡
∧
i∈I

ς(X=i(φ)) (TG)

ς(φU∅ψ) ≡ ⊥ (TU1 )
ς(φU=iψ) ≡ ς(G(0,i)(φ)) ∧ ς(X=i(ψ)) (TU2 )

ς(φU(0,d)ψ) ≡ X(ς(ψ) ∨ (ς(φ) ∧ ς(φU(0,d−1)ψ))) (TU3 )
ς(φU(l,u)ψ) ≡ ς(G(0,l](φ)) ∧ ς(X=l(φU(0,u−l)ψ)) (TU4 )
ς(φU(i,∞)ψ) ≡ ς(G(0,i](φ)) ∧ ς(X=i(φUψ)) (TU5 )

In the rest of this section we focus on the translation of the new modal-
ities introduced by SOLOIST, i.e., CK./n,U

K,h
./n ,M

K,h
./n ,D

K
./n, and refer the

reader to [36] for the details.
The translation of the C modality considers a formula of the form CK>n(φ)

as the base case. This formula is translated as a disjunction of formulae de-
noting all possible cases where φ holds n+1 times within the time window
K. Consider, for example, the formula C3

>1(φ). Within a time window of
length 3, there are three possible combinations, in terms of positions on the
timeline, for representing 2 (i.e., the bound n in the formula incremented by
1) occurrences of the event φ. These combinations are shown in Fig. 2.4 and
can be characterized by the following formulae (where Y denotes the yes-
terday past MPLTLB modality): Y2(φ)∧Y1(φ), Y2(φ)∧φ, and Y1(φ)∧φ;
these formulae are combined in a disjunction in the final translation. The
translation for other values of the ./ operator is defined by reducing the for-
mula to an equivalent instance of the base case, e.g., CK≤n(φ) is equivalent
to ¬CK>n(φ); other cases can be defined similarly.

The translation of the U and M modalities is defined in terms of the C

modality. A formula like UK,h./n (φ) is equivalent to C
bK
h
c·h

./n·bK
h
c(φ). For the M

modality, a formula like MK,h
<n (φ) is equivalent to

(∧bK
h
c−1

m=0 Ym·h(ρ(Ch<nφ))
)
∧
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Yb

K
h
c·h(ρ(C

(K mod h)
<n φ))

)
.

The translation of a DK
./n(φ, ψ) is defined as a disjunction of formulae

denoting all possible occurrences of instances of the pair of events (φ, ψ),
satisfying the bound related to the average distance. Within a time win-
dow K, the maximum number of possible instances of events pairs is bK

2
c.

For each of these possible numbers of instances, we define a disjunction
of formulae characterizing all their possible combinations in terms of po-
sition on the timeline, such that bound on the average distance is satisfied.
We also need to explicitly state that events pairs do not occur in all other
time instants. Consider, for example, the formula D4

≤1(φ, ψ). One possible
combination of occurrences of a pair of events (φ, ψ) is characterized by
the formula Y3(φ) ∧ Y2(ψ); the absence of other occurrences in the other
time instants is denoted by the formula ¬((Y2(φ)∧Y1(ψ))∨ (Y2(φ)∧ψ)∨
(Y1(φ) ∧ ψ)). A similar template can be followed to characterize other
combinations of events on the time line. All the possible combinations are
depicted on the left side of Fig. 2.5; the disjunction of all the formulae on
the right side is the complete translation of the formula.

For the DK
./n modality in general, an equivalent LTL formula is defined

as follows:

∨
0<h≤bK

2
c


∨

0≤i1<j1<...ih<jh<K
and

(
∑h
m=1

jm−im
h )./n

Yi1(e ∧ φ) ∧ Yj1(e ∧ ψ)∧
. . .

∧Yih(e ∧ φ) ∧ Yjh(e ∧ ψ)∧

¬

∨ 0≤s<t<K
s 6∈{i1,...,ih}
t 6∈{j1,...,jh}

(
Ys(e ∧ φ) ∧ Yt(e ∧ ψ)

)


This translation has been implemented in [85] as a proof of concept.

2.3 Bounded Satisfiability Checking and ZOT

Bounded satisfiability checking [105] (BSC) is a verification technique that
complements bounded model checking [38] (BMC): instead of a custom-
ary operational model (e.g., a state-transition system) used in BMC, BSC
supports the analysis of a descriptive model, denoted by a set of tempo-
ral logic formulae. With BSC, verification tasks become suitable instances
of the satisfiability problem for quite large formulae (written in a certain
logic), which comprehend the model of the system to analyze as well as the
requirement(s) to verify. BSC has been successfully applied in the context
of metric temporal logics and implemented in ZOT [105], a verification
toolset based on SAT- and SMT-solvers
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Figure 2.6: Overview of the ZOT architecture

ZOT is an agile and easily extendible Bounded Model/Satisfiability Checker
written in Common Lisp. The tool supports BMC of different logic lan-
guages through a multi-layered plugin-based architecture: at its core layer
ZOT supports formulae written in LTL (with past operators). Leveraging
the core functionality, the second layer of ZOT supports the propositional,
discrete-time metric temporal logic. On top of the second layer ZOT is able
to support a wide variety of temporal logic languages by means of ded-
icated plug-ins. Figure 2.6 shows the architecture of ZOT. In this thesis
we will make use of the plugin ae2zot (shown in Figure 2.6 as the second
plugin on the right). Plugin ae2zot translates CLTLB(D) into the input lan-
guage of an SMT solver of choice. The underlying theory used in the target
language is either QF_LIA (Quantifier-Free Linear Integer Arithmetic) or
QF_LRA (Quantifier-Free Linear Real Arithmetic) depending on the arith-
metical constraints used in CLTLB(D).

The following steps describe a typical ZOT workflow for BSC: (i) a user
writes the specification to be checked as a set of temporal logic formulae,
selects the plugin and the time bound to be used; (ii) depending on the
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selected plugin, ZOT encodes the received specification in a specific target
logic; (iii) ZOT invokes a solver that is capable of handling the target logic;
(iv) the result obtained by the solver is parsed back and presented to the
user.

Zot supports both SAT solvers (e.g., MiniSat [61]) for Propositional
Logic, and SMT solvers (e.g., Z3 [52]) for the decidable fragments of first-
order logic, like IDL and EUF.

2.4 QF-EUFIDL and Satisfiability Modulo Theories

QF-EUFIDL

Acronym QF-EUFIDL stands for quantifier free integer difference logic
formula with uninterpreted function and predicate symbols. Such a logic
combines decision procedures from two theories, namely theory of equality
and uninterpreted functions (EUF) and theory of integer difference logic
(IDL). This combination is shown to be decidable, and the satisfiability
problem is NP-complete, according to Nelson-Oppen Theorem [99].

Signature of QF-EUFIDL is Σ = (C,F,Π, V, a) where C is a set of
constants; F is a set of function symbols; Π is a set of atomic propositions;
set V is a set of variables; and a : F → N associates arity with each func-
tion symbol. Well-formed QF-EUFIDL formulae conform to the following
grammar:

φ ::= p | t = t | t <d t | ¬φ | φ ∨ φ
t ::= c | v | f(t, . . . , t)

where p ∈ Π is an atomic proposition, c ∈ C is a constant, v ∈ V is a
variable and f ∈ F is a function symbol.

Structure of QF-EUFIDL is (Z, fZ,=, (<d)d∈Z, vv, vp) where fZ : Za(f) →
Z is the interpretation of the function symbol f with a(f) over Z. EUF
theory introduces the equality relation = with a standard interpretation
over Z; IDL theory introduces a family of relations (<d)d∈Z defined as
x <d y ↔ x < y + d with < having the standard interpretation over Z.
vv : V → Z is the valuation function that assigns a value to variables from
V and vp : Π→ {>,⊥} assigns truth values to the atomic propositions.

An example is f(x) = y ∧ x <2 y ∧ (¬p ∨ q), where x and y are
variables, p and q are atomic propositions and f is an uninterpreted function
symbol with arity 1. Note that, QF-EUFIDL can express formulae x < y,
x ≤ y, x ≥ y, x > y and x = y + d using the <d relation as: x <0 y,

26



i
i

“thesis” — 2016/12/13 — 10:42 — page 27 — #39 i
i

i
i

i
i

2.4. QF-EUFIDL and Satisfiability Modulo Theories

x <0 y ∨ x = y, ¬(x <0 y), ¬(x <0 y ∨ x = y) and y <1−d x ∧ x <d+1 y,
respectively.

Satisfiability modulo theories

Most of the work presented in this thesis makes use of solvers for Satis-
fiability Modulo Theories (SMT) problems, also called the SMT solvers.
More specifically, SMT solvers produce a model (i.e., satisfying assign-
ment) for the QF-EUFIDL formula.

In general, an instance of SMT problem is a generalization of a well
known SAT problem over boolean formulae [112], where atoms can be
formulae of an underlying theory. Theories which are typically supported
by the SMT solvers are the theory of equality and uninterpreted functions
(EUF), the theory of quantifier-free linear arithmetic over {Z,Q} (LIA,
LRA), the difference logic theory over {Z,Q} (IDL, RDL) and the theory
of arrays and bit-vectors. The Satisfiability problem amounts to checking
whether there exists a model, i.e. an assignment to variables, functions and
predicates, such that the interpretation of formula is true. When the atoms
of the formulae are interpreted with respect to some theory, we are solving
a satisfiability problem modulo that theory.

SMT solvers can also provide modes for formulae interpreted over mul-
tiple theories with disjoint signatures. We say that two theories T1 and T2

have disjoint signatures when Σ1 ∩ Σ2 = {=} where = is the symbol for
the binary equality relation. In other words, signatures T1 and T2 do not
have any constant, function or predicate symbol in common, except for the
equality predicate. The main idea is to combine separate solvers for the the-
ories into one by using them to solve their respective theories and exchang-
ing the entailed equalities them. Nelson-Oppen combination method [99]
identifies sufficient conditions for combining two theories over disjoint sig-
natures.

In Chapter 4 we will use the EUF combined with IDL to encode the
satisfiability problem for SOLOIST. Algorithms which solve satisfiability
of formulae in EUF are based on the congruence closure of graphs [100].
Terms of a formula are encoded by nodes of a directed graph G. The equal-
ity and dependency relation between terms are encoded with edges between
nodes of G. For instance, in f(a, g(b)) = a the term f(a, g(b)) depends on
a and g(b), hence there are dependency edges between them and f(a, g(b))
and a are equal, hence there is an equality edge between them. Satisfiability
reduces to checking whether the congruence closure is compatible with the
structure of the formula. Let G be a graph of n vertices and m edges; the
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congruence closure for G can be computed in time O(m logm) and space
O(nm), in the worst case. Details about congruence closure algorithms and
implementations can be found in [56, 100, 101]. Negative cycle detection
problem is exploited in [87] to solve satisfiability of conjunctions of IDL
formulae of the form ax + by ≤ d where a, b ∈ {−1, 0,+1}. Constraints
are represented by a direct graph G. Nodes of G represent variables and
DL constraints define edges between nodes. A conjunction of constraints
is satisfiable if the graph G does not contain any negative cycles. The worst
case complexity is O(nm) where n is the number of variables involved in
conjunction of m constraints. Algorithms for negative cycles detections
are deeply studied in literature, for instance in [46]. The combination of
EUF and IDL theories enables the satisfiability procedure for QF-EUFIDL
formulae which is NP-complete [106].

2.5 Distributed Programming Models

2.5.1 MapReduce

MapReduce [53] is a programming model, initially developed by Google,
for processing and analyzing large data sets using a parallel, scalable and
distributed infrastructure. It allows the user to define two functions, map
and reduce, that are inspired by the homonymous functions that are typi-
cally found in functional programming languages. The MapReduce modes
divides the processing into two phases: the map phase and the reduce
phase. Each phase has key-value pairs as input and output, the types of
which may be chosen by the programmer. The map function is applied in
the map phase on every input key-value pair. Its input is a key-value pair
associated with the input data and its output is a set of intermediate key-
value pairs; its signature is map(k:K1,v:V1):list[(k:K2, v:V2)].
The reduce function is applied in the reduce phase to all the values from the
intermediate key-value pairs that have the same key to derive the output data
appropriately; its signature is reduce(k:K2, list(v:V2)):list[v:V2].
In the definitions above, K1 and K2 are types for keys and V1 and V2 are types
for values.

We illustrate how the MapReduce model works with an example that
counts the number of occurrences of each word in a large collection of
documents. Consider the map and reduce functions in the following pseu-
docode:
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map(String key, String value)
//key: document name
//value: document contents
for each word w in value:

Emit(w,"1")

reduce(String key, Iterator values)
//key: a word
//values: a list of partial counts
int result = 0
for each v in values:

result += ParseInt(v)
Emit(result)

The map function takes in input a pair made of the document name and
the document contents; for each word in a document, it emits a pair com-
posed of the word itself and its associated count of occurrences (which is
just 1 initially). The list of all emitted pairs is partitioned into groups and
sorted according to their key for the reduction phase; in the example, pairs
are grouped and sorted according to the key (i.e. the word they contain).
The reduce function takes a word and the list (in the form of an iterator)
of the aggregated partial counts: it sums all the counts emitted for each
particular word (i.e., each unique key).

Besides the programming model, MapReduce also defines a framework
that implements the programming model and provides, in transparent way
to the user, parallelization, fault tolerance, locality optimization, and load
balancing. The main assumption of the MapReduce framework is that the
input data is very large that it must be split and saved on multiple inter-
connected machines (or nodes) in a distributed fashion. The framework
supports computations over the input data by transmitting the code of the
computation between the nodes rather than moving data itself. It is respon-
sible for scheduling and executing the map and reduce function code by
starting remote processes (also called mappers and reducers, respectively)
on a cluster of available nodes storing the data. It also manages the neces-
sary communication and data transfer (usually leveraging a distributed file
system). A very popular open-source distribution of the MapReduce frame-
work is Apache Hadoop [8, 118]. The execution of a Hadoop MapReduce
operation (called job) proceeds as follows. First, the framework splits the
input into blocks2 of a certain size, then, using the so called InputReader,
it parses the blocks in parallel and generates input key-value pairs. It then
assigns each parsed input block to a mapper. A mapper executes the map
function on the input key-value pairs and generates a set of intermediate
key-value pairs. Notice that each run of the map function is stateless, i.e.,
the transformation of a single key-value pair does not depend on any other
key-value pair. The next phase is called shuffle and sort: the framework
takes the intermediate key-value pairs generated by each mapper, divides
them into partitions (each to be processed by a reducer) possibly transmit-

2Also called input splits or chunks.
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ting (also called shuffling) some pairs between the nodes in order to have
complete partitions on the same node. The division of intermediate data
into partitions is done by a partitioning function, which depends on the
(user-specified) number of reducers and the keys of the intermediate pairs.
If there are less reducers than the different intermediate keys, the partition-
ing function will assign pairs with two or more different keys to a single
reducer. After partitioning (and possibly shuffling), the framework sorts
the pairs based on their keys within each partition. Sorting is done based
on the comparison operator for the keys, which can either be user-defined,
or the default one3 that establishes an arbitrary, but consistent ordering by
comparing the hashes of the keys. Sorting saves time for the reducer, help-
ing it easily distinguish when a new key is reached during the execution.
The framework then invokes a reducer on each partition. Each reducer ex-
ecutes the reduce function, which produces the output data. This output is
appended to a final output file for this reduce partition. The output of the
MapReduce job will then be available in several files, one for each used
reducer.

2.5.2 Spark

Spark [120, 121] is another computational framework, which comes with
its own programming model for processing large data sets. It is designed
to support a class of iterative MapReduce applications, called applications
with working sets. These applications reuse a working set of data across
multiple operations and cover a broad range of very common use cases in
BigData analytics like:

• Iterative algorithms, like machine learning or graph algorithms

• Interactive data mining, where large volumes of data are queried re-
peatedly

• Streaming applications that maintain aggregate state over time

Traditional MapReduce framework is suboptimal in these cases because
it is designed to perform simple acyclic operations on data. To support
iterative applications, one must run a sequence of distinct MapReduce jobs,
each reading data from persistent storage and writing it back after applying
the map and reduce operations. Interacting with persistent storage incurs
significant time costs, especially when performed repeatedly.

3Also called HashPartitioner
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The Spark framework offers an abstraction called resilient distributed
dataset (or RDD) to represent the working set of data that can be distributed
over multiple nodes of a cluster. More precisely, an RDD is a collection
of user-defined objects that encapsulates the information about where the
objects are physically stored on the nodes of the cluster. Each RDD is split
into multiple partitions, such that a partition refers to the objects that are
stored on the same cluster node.

The Spark applications are written as a sequence of operations on RDDs.
RDDs support two types of operations: transformations and actions. Trans-
formations create new RDDs from the old ones by modifying their content.
For example, standard operations on collections, like map() and filter() are
transformations. Actions are operations that return a particular result from
an RDD or write an RDD to the persistent storage. Counting the objects in
the RDD is an example of an action. Transformations and actions are also
different in the way the Spark framework applies them on the data. Spark
keeps an acyclic directed graph of different RDDs created by transforma-
tions without applying the transformations directly on the data. Hence,
every RDD has its lineage – a sequence of transformations applied to the
RDD that represents the initial stored data. Once an action is invoked on
an RDD, the Spark framework first reads the data from the storage, applies
the transformations from the RDD’s lineage in the chronological order and
then applies the invoked action.

By default, the Spark framework recomputes the RDDs each time an
action is invoked. However, it also allows the programmers to perform in
memory caching of the RDDs obtained after applying a number of transfor-
mations. This can dramatically save time if several actions are performed
on the RDDs with common lineage.

The underlying assumption of the Spark framework is that computation
is more time efficient than reading or writing data to persistent storage,
therefore it does not persist any intermediate computations on RDDs. If the
computation fails Spark uses the RDD lineage to recompute the data only
on the cluster nodes where the failure occurred.

When executing on a cluster, Spark uses a master/slave runtime archi-
tecture with one central coordinator, called the driver, and many distributed
workers, called executors. When launched, Spark driver relies on an exter-
nal service called cluster manager to obtain resources of the cluster in or-
der to deploy the executors. Besides that, the driver executes the user code:
creates RDDs; performs transformations and actions; maintains the RDD
lineage and when an action is performed on an RDD it packages the code
from its lineage and sends it to the executors to perform the computation.
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The executors are slave processes responsible for running the code received
from the driver and for providing in-memory caching.

Similarly like on the Section 2.5.1, we exemplify using pseudocode how
Spark can be used to count the number of word occurrences in a large col-
lection of documents.
RDD[String] textFile = read("/path/to/input")
RDD[String] words = textFile.flatMap(line => line.split(" "))
RDD[String,Integer] init = words.map(word => (word, 1))
RDD[String,Integer] count = init.reduceByKey((x,y) => x + y)
count.saveAsTextFile("/path/to/output")

In the above driver code, we create four RDDs: textFile, words,
init and count. The textFile RDD refers to the set of strings rep-
resenting the lines from all the input documents. The words RDD is de-
rived from textFile after the flatMap transformation. This transfor-
mation splits each line into individual words, hence each string in words
RDD is a single word. Next, the map transformation associates to each
word the number of its occurrences (initially 1) and produces a key-value
pair RDD init. Finally, the count RDD is obtained after applying the
reduceByKey transformation on the init RDD and passing the sum
operator (+) that is applied to all values with the same keys. The final RDD
contains unique words for keys and the number of occurrences for the val-
ues.
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CHAPTER3
Decision procedure based on CLTLB(D)

3.1 Overview

In Section 2.2.2 we showed how, under certain assumptions, SOLOIST can
be translated into LTL, thus guaranteeing its decidability based on well-
known results in temporal logic. However, this translation was only a proof
of concept and was not meant to guarantee efficiency if one would apply
any LTL-based verification techniques. The SOLOIST operators can spec-
ify very complex quantitative properties whose semantics can be captured
efficiently only by using a more expressive logic. In this chapter we show
how SOLOIST can be encoded into CLTLB(D) and thus effectively re-
ducing the decision procedure for SOLOIST to the decision procedure for
CLTLB(D) that is provided by ZOT, as noted in Section 2.3.

We chose CLTLB(D) as the target of our translation since it has an effi-
cient decision procedure and it supports the definition of arithmetical con-
straints over a set of integer variables (also called counters); as we will
detail in Section 3.2, these counters allow a compact, intuitive and easy-to-
verify translation.

In Section 3.3 we show how this translation can be used in the context
of trace checking. We express the problem of trace checking of SOLOIST
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properties in terms of bounded satisfiability checking (BSC) of CLTLB(D)
and rely on the BSC procedure for metric temporal logic [105] implemented
in ZOT.

In Chapter 5 we show how the approach can be applied for trace check-
ing properties of service compositions [34]. We focus on requirements con-
taining quantitative properties involving aggregate operations on events oc-
curring in a given time window, like the average response time of a certain
operation provided by a partner service.

3.2 Translation

The key point in defining the translation from SOLOIST to CLTLB(D) is
to bridge the gap between the semantics of SOLOIST based on timed ω-
words, where the temporal information is denoted by an integer time-stamp,
and the one of CLTLB(D), where the temporal information is implicitly
defined by the integer position in an ω-word. The two temporal models
can be transformed into each other. Here we are interested in pinpoint-
ing, in a CLTLB(D) ω-word, only the positions that correspond to actual
time-stamps in a SOLOIST timed ω-word. These timestamps correspond
to instants where some event actually occurs. To do so, we add to the set Π
a special propositional symbol e, which is true in each position correspond-
ing to a “valid” time-stamp in the timed ω-word; a “valid” time-stamp is
one where at least an event, represented by a propositional symbol, occurs.
An example of this conversion is shown in Fig. 2.3, where a timed ω-word
is depicted in the timeline at the top and its equivalent ω-word corresponds
to the timeline at the bottom; notice the special symbols ¬e that hold in
positions in the ω-word which do not correspond to a “valid” time-stamp in
the timed ω-word. Hereafter, when displaying ω-words, we will omit the
symbol e from positions in the timeline, since its presence can be implied
by the presence of other propositional symbols in the same position in the
timeline.

To define the translation from SOLOIST to CLTLB(D) we consider,
without loss of expressiveness, only formulae in positive normal form, i.e.,
where negation may only occur on atoms (see, for example, [104]). First,
we extend the syntax of the language by introducing a dual version for
each operator in the original syntax, except for the CK./n,U

K,h
./n ,M

K,h
./n ,D

K
./n

modalities1: the dual of ∧ is ∨; the dual of UI is “Release” RI : φRIψ ≡
¬(¬φUI¬ψ); the dual of SI is “Trigger” TI : φTIψ ≡ ¬(¬φSI¬ψ). A for-

1A negation in front of one of the CK./n,U
K,h
./n ,M

K,h
./n ,D

K
./n modalities becomes a negation of the relation

denoted by the ./ symbol, hence no dual version is needed for them.
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mula is in positive normal form if its alphabet is {∧,∨,UI ,RI , SI ,TI ,C
K
./n,

UK,h./n ,M
K,h
./n ,D

K
./n} ∪Π ∪ Π̄, where Π̄ is the set of formulae of the form ¬p

for p ∈ Π.

3.2.1 Translation of boolean and temporal formulae

We can now illustrate the translation ρ from SOLOIST formulae to CLTLB(D).
For the propositional (¬, ∧ and ∨) and temporal part (UI , SI , RI and TI) of
SOLOIST the translation is straightforward:

ρ(p) ≡ p, p ∈ Π

ρ(¬p) ≡ ¬p, p ∈ Π

ρ(φ ∧ ψ) ≡ ρ(φ) ∧ ρ(ψ)

ρ(φ ∨ ψ) ≡ ρ(φ) ∨ ρ(ψ)

ρ(φUIψ) ≡ (¬e ∨ ρ(φ))UI(e ∧ ρ(ψ))

ρ(φSIψ) ≡ (¬e ∨ ρ(φ))SI(e ∧ ρ(ψ))

ρ(φRIψ) ≡ (e ∧ ρ(φ))RI(¬e ∨ ρ(ψ))

ρ(φTIψ) ≡ (e ∧ ρ(φ))TI(¬e ∨ ρ(ψ))

In the subsequent sections we focus on the translation of the CK./n, UK,h./n ,
MK,h

./n and DK
./n modalities.

3.2.2 Translation of the C modality

The C modality expresses a bound on the number of occurrences of a certain
event in a given time window; it comes natural to use the counters available
in CLTLB(D) for the translation. Indeed, for each sub-formula of the form
CK./n(χ), we introduce a counter cχ, constrained by a set of CLTLB(D) ax-
ioms, detailed below. Informally, these axioms define the value of cχ such
that at each time position it captures the number of occurrences of event χ
seen in the past:
A1) cχ = 0
A2) G((e ∧ χ)→ X(cχ) = cχ + 1)
A3) G((¬e ∨ ¬χ)→ X(cχ) = cχ)

Axiom A1 initializes the counter to zero. Axiom A2 states that if there
is an occurrence of a valid event χ, (denoted by e ∧ χ) the value of the
counter cχ in the next time instant is increased by one with respect to the
value at the current time instant. Axiom A3 refers to the opposite situation,
when either there is no occurrence of the event χ or the time instant is not
valid (i.e., e does not hold in that time instant). In this case, the value of the
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Chapter 3. Decision procedure based on CLTLB(D)

counter in the next time instant must have the same value as in the current
time instant. Both axioms A2 and A3 have to hold at every time instant, so
they are in the scope of a globally temporal operator.

We can calculate the exact number of occurrences by subtracting the val-
ues of the counter at the appropriate time instants; we explain this through
the example in Fig. 3.2, which depicts a short trace of length 21 and the
values assumed by the counter cχ (in the first row) at each time instant, as
determined by the axioms. In the example, to evaluate the formula CK>1(χ)
with K = 11 at time instant t = 16, we subtract from the value of the
counter cχ at time instant t+ 1 = 17 (since we want to consider a possible
occurrence of χ at time instant t) the value of the counter at time instant 6
(i.e., t− (K−1) = 16− (11−1), which is 11 time instants in the past with
respect to time instant t+1); these values are enclosed in the figure with di-
amond markers. The value resulting from the subtraction 6− 1 = 5 is then
compared to the specified bound (5 > 1). In symbols, this can be written as
X(cχ) − Y10(cχ) > 1 evaluated at time instant t. This intuition is captured
by the following CLTLB(D) formula, which generalizes the translation of
a SOLOIST sub-formula of the form CK./n(χ) :

ρ
(
CK./n(χ)

)
≡ X(cχ)− YK−1(cχ) ./ n

Notice that the axioms are conjuncted with the resulting translation of the
SOLOIST formula, thus effectively constraining the behavior of all the
counters of type cχ.

3.2.3 Translation of the U modality

The translation of the U modality is defined in terms of the C modality; it
can then be defined as follows:

ρ
(
UK,h./n (φ)

)
≡ ρ

(
C
bK
h
c·h

./n·bK
h
c(φ)

)
This translation ignores the tail subinterval of the U modality, which is

consistent with the SOLOIST semantics [36].

3.2.4 Translation of the M modality

To translate the M modality we rely on the C modality. The translation of
a formula of the form MK,h

<n (φ) is defined as: ρ
(
MK,h

<n (φ)
)
≡bKh c−1∧

m=0

Ym·h( ρ(Ch<nφ))

 ∧ (Yb
K
h
c·h( ρ(C

(K mod h)
<n φ))

)
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τ −K
3h 2h h

τ

0

φ

1 2

φ

3 4

φ

5

φ

6 7 8

φ

9

φ

10

φ

11 12 13

φ

14

φ

15 16 17

Figure 3.1: Sample trace showing the time window and the observation subintervals con-
sidered for the evaluation of the M14,4

≥1 (φ) formula at time instant τ =16

For a formula of the form MK,h
>n (φ) we have: ρ

(
MK,h

>n (φ)
)
≡bKh c−1∨

m=0

Ym·h( ρ(Ch>nφ))

 ∨ (Yb
K
h
c·h( ρ(C

(K mod h)
>n φ))

)
The formula decomposes the computation of the maximum number of

occurrences of the event (e ∧ φ) by suitably combining constraints on the
number of occurrences of the event in each observation interval h within
the time window K. The other cases of the operator ./ can be defined in a
similar way.

Fig. 3.1 shows an example trace of length 18. We evaluate the for-
mula M14,4

≥3 (φ) at time instant τ = 16. The vertical solid lines delimit
the time window of length K = 14; the dashed lines delimit the adjacent
non-overlapping observation subintervals of length h = 4. The M modal-
ity formula is translated into a disjunction of four C modality formulae each
referring to a different subinterval. The first three (bK

h
c = b14

4
c = 3) formu-

lae have the form C4
≥3(φ) and are evaluated at time instants 16(= 16−0 ·4),

12(= 16 − 1 · 4) and 8(= 16 − 2 · 4). The fourth formula (corresponding
to rightmost disjunct defined in the translation ρ) has the form C2

≥3(φ) and
is evaluated at time instant 4(= 16 − b14

4
c · 4). We can conclude that, the

formula M14,4
≥3 (φ) holds at time instant τ = 16 since formula C4

≥3(φ) holds
at time instant 12 and renders the disjunction true.

3.2.5 Translation of the D modality

The D modality expresses a bound on the average distance between the
occurrences of pairs of events in a given time window. We consider only
(sub)formulae of the D modality that refer to one pair, like DK

./n(φ, ψ).
Events, corresponding to atomic propositions in SOLOIST, can occur

multiple times in a trace; when we refer to a specific occurrence of an event
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Chapter 3. Decision procedure based on CLTLB(D)

φ at a time instant τ , we denote this as φ|τ . Clearly, a pair of events (φ, ψ)
may also have multiple instances in a trace. We call a pair of the form
(φ|i, ψ|j) an instance if there is an occurrence of event φ at time instant i
and an occurrence of event ψ at time instant j, with i < j. We call such
instance open at time instant τ if i ≤ τ < j. Otherwise, the instance is
closed at time instant τ . The distance of a closed (pair) instance is j − i;
for an open pair at time instant τ , the distance is τ − i. A time window of
length K defined for a D modality (sub-)formula evaluated at time instant
τ is bounded by the time instants τ + 1 and τ − K + 1. For a certain
trace, we say that a D modality (sub-)formula for a pair of events (φ, ψ)
has a left-open pair in the trace if there is an open instance of (φ, ψ) at time
instant τ −K + 1 in the trace; similarly, we say that the (sub-)formula has
a right-open pair in the trace if there is an open instance of (φ, ψ) at time
instant τ + 1 in the trace. The translation has then to take into account four
distinct cases, depending on whether a D modality (sub-)formula contains
either (left- and/ or right-) open pairs or none.

As done in the case of the C modality, the translation is based on CLTLB(D)
counters. For each sub-formula of the form DK

./n(φ, ψ), we introduce five
counters, namely:

- gφ,ψ: this binary counter assumes value 1 in the time instants following
an occurrence of φ and it is reset to 0 after an occurrence of ψ. It acts as
a flag denoting the time instants during which the event pair instance is
open;

- hφ,ψ: in each time instant, this counter contains the number of previously-
seen closed pair instances. It is increased after every occurrence of ψ;

- sφ,ψ: at each time instant, the value of this counter corresponds to the
sum of distances of all previously occurred pair instances. It is increased
at every time instant when either gφ,ψ = 1 holds or φ occurs;

- aφ,ψ: this counter keeps track of the sum of the distances of all previously
occurred closed pair instances;

- bφ,ψ: this counter has the values that will be assumed by counter sφ,ψ at
the next occurrence of ψ (more details below).

Counters aφ,ψ, bφ,ψ, and hφ,ψ are directly used in the translation of the D
modality (sub-)formulae, while counters gφ,ψ and sφ,ψ are helper counters,
used to determine the values of the other counters. These five counters are
constrained by the following axioms:
A4) gφ,ψ = 0 ∧ hφ,ψ = 0 ∧ aφ,ψ = 0 ∧ sφ,ψ = 0
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A5) (X(bφ,ψ) = bφ,ψ)W(e ∧ ψ)
A6) G ((e ∧ φ ∧ ¬ψ)→ (X(gφ,ψ) = 1 ∧ X(sφ,ψ) = sφ,ψ + 1 ∧ X(hφ,ψ) =

hφ,ψ ∧ X(aφ,ψ) = aφ,ψ))
A7) G ((e ∧ ψ ∧ ¬φ)→ (X(gφ,ψ) = 0 ∧ X(hφ,ψ) = hφ,ψ + 1 ∧ X(aφ,ψ) =

sφ,ψ ∧X(sφ,ψ) = sφ,ψ ∧ bφ,ψ = sφ,ψ ∧ X((X(bφ,ψ) = bφ,ψ)W(e∧ψ))))
A8) G ((¬e∨(¬φ∧¬ψ))→ (X(gφ,ψ) = gφ,ψ ∧X(hφ,ψ) = hφ,ψ∧X(aφ,ψ) =

aφ,ψ ∧ (gφ,ψ = 1 → X(sφ,ψ) = sφ,ψ + 1) ∧ (gφ,ψ = 0 → X(sφ,ψ) =
sφ,ψ)))

A9) G ((e ∧ φ ∧ ψ)→ (X(gφ,ψ) = gφ,ψ ∧ X(hφ,ψ) = hφ,ψ + 1 ∧ X(aφ,ψ) =
aφ,ψ ∧ X(sφ,ψ) = sφ,ψ ∧ X((X(bφ,ψ) = bφ,ψ)W(e ∧ ψ))

Axiom A4 initializes all counters except counter bφ,ψ, which will as-
sume values determined by counter sφ,ψ. Axiom A5 states that the value
of counter bφ,ψ will stay the same in all the time instants until the first oc-
currence of ψ. Notice that we use the W modality (“weak until”), to deal
with traces without occurrences of ψ. Axiom A6 determines the next time
instant value of the following counters, upon occurrence of a φ and absence
of a ψ event (denoted by e ∧ φ ∧ ¬ψ): counter gφ,ψ is set to 1; counter sφ,ψ
is incremented by 1; counters hφ,ψ and aφ,ψ are constrained not to change
in the next time instant. Axiom A7 determines how the counters are up-
dated when a ψ event occurs and a φ event does not: counter gφ,ψ is set to
0; counters bφ,ψ, Xaφ,ψ, and Xsφ,ψ are set to be equal to sφ,ψ. Moreover, a
formula equivalent to axiom A5 holds in the next time instant, forcing the
value of bφ,ψ to stay the same in all the following time instants until the next
occurrence of ψ. Axiom A8 covers the cases either when there are no valid
events or when neither φ nor ψ occur. In these cases the values of counters
gφ,ψ, hφ,ψ, and aφ,ψ are constrained to stay the same, while counter bφ,ψ is
unconstrained. As for counter sφ,ψ, we need to distinguish two separate
cases: when the pair instance is open (denoted by gφ,ψ = 1), counter sφ,ψ
is incremented by 1, otherwise it stays the same. Axiom A9 handles the
case when both events φ and ψ hold, by incrementing counter hφ,ψ by 1
and constraining the value of counter bφ,ψ in the same way like axiom A7.
The values of the other counters are constrained to stay the same.

As said above, the bφ,ψ counter keeps the values that will be assumed by
counter sφ,ψ at the next occurrence of ψ. The value assumed by both coun-
ters aφ,ψ and bφ,ψ originates from counter sφ,ψ, as enforced by axiom A7.
Axioms A6 and A8 make sure the value of sφ,ψ is propagated in the future
via counter aφ,ψ, while axiom A7 enables the propagation of this value in
the past via counter bφ,ψ. We elaborate this through an example: Fig. 3.2
represents a short trace with event ψ occurring at time instants 5, 14, and
19. Axiom A5 enforces equality between successive values of counter bφ,ψ
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ψ
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8
10
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6
0
3
10
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Figure 3.2: Sample trace showing the counters used for the translation of the C and D
modalities

at adjacent time instants until the first occurrence of ψ (time instants 0–5).
Additional equalities (of the same type) on the values of counter bφ,ψ are
enforced by axiom A7 (time instants 6–14 and 15–19). The same axiom
also determines equality between the values of the sφ,ψ and bφ,ψ counters
upon an occurrence of ψ (time instants 5, 14 and 19).

The translation ρ
(
DK
./n(φ, ψ)

)
is defined as:

if2 (YK−1(gφ,ψ) = 1) then (
X(aφ,ψ)−YK−1(bφ,ψ)

X(hφ,ψ)−YK−1(hφ,ψ)−1
./ n ∧ Z1)

else (
X(aφ,ψ)−YK−1(aφ,ψ)

X(hφ,ψ)−YK−1(hφ,ψ)
./ n ∧ Z2)

The condition YK(gφ,ψ) = 1 checks whether the time window con-
tains an open pair instance on its left bound. Since the semantics of the
D modality considers only closed pairs within the time window to com-
pute the average distance, open pairs must be ignored both on the left and
on the right bound of the time window. There is no need to differenti-
ate between the cases when there is a right-open pair, since counter aφ,ψ
only considers distances between closed pair instances. The numerator of
the fraction in both the then and else branches denotes the total dis-
tance, while the denominator corresponds to the number of pair instances
considered for computing the total distance. Propositions Z1 and Z2 are
respectively X(hφ,ψ) − YK−1(hφ,ψ) 6= 1 and X(hφ,ψ) − YK−1(hφ,ψ) 6= 0;
due to these disjuncts the D modality evaluates to true when there are no
closed pairs in the time window K. Axioms A4, A5, A6, A7, A8, A9 are
conjuncted with the resulting translation and added as constraints that hold
at the initial time instant of the trace.

An example of the use of counters to evaluate a formula with the D
modality is shown in Fig. 3.2, which depicts a simple trace and the values

2“if A then B else C” can be written as (A ∧B) ∨ (¬A ∧ C)
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assumed by the counters gφ,ψ, hφ,ψ, sφ,ψ, aφ,ψ, and bφ,ψ at each time instant,
as determined by the axioms. We notice that there are three instances of the
(φ, ψ) pair. If we evaluate the formula D14

./n(φ, ψ) at time instant 15, the two
pair instances (φ|2, ψ|5) and (φ|9, ψ|14), considered to compute the average
distance, are closed. The left-hand side (lhs) of the comparison operator
(./) is evaluated using the values of counters aφ,ψ and hφ,ψ at time instants
16 and 2 (enclosed in a circle in the figure), resulting in 8

2
= 4. When the

same formula is evaluated at time instant 18, the portion of the trace con-
sidered contains both a left-open (φ|2, ψ|5) pair and a right-open (φ|17, ψ|19)
one. The lhs of the comparison operator is evaluated using the values of
counters aφ,ψ, bφ,ψ, and hφ,ψ at time instants 19 and 5 (enclosed in a trian-
gle in the figure ); its value is 5

1
= 5. Now consider the formula D12

./n(φ, ψ).
When evaluated at time instant 15, it has a left-open pair (φ|2, ψ|5). The
values of the counters aφ,ψ, bφ,ψ, and hφ,ψ considered to compute the lhs
of the comparison operator are those at time instants 16 and 4 (enclosed in
a square in the figure); the lhs evaluates to 5

1
= 5. If the same formula is

evaluated at time instant 18, we find only a right-open pair (φ|17, ψ|19). The
lhs of the comparison operator is evaluated using the value of counters aφ,ψ
and hφ,ψ considered at time instants 19 and 7 (enclosed in a hexagon in the
figure); its value is 5

1
= 5.

3.3 Implementation

The translation described in the previous section has been implemented in
Common Lisp as a plugin3 of the ZOT verification toolset [105] translating
SOLOIST formulae into CLTLB(D). ZOT supports satisfiability checking
of CLTLB(D) formulae by means of SMT solvers. A plugin-based archi-
tecture makes it easy to extend ZOT to support more expressive languages
using CLTLB(D) as a core, and to output code for the different dialects of
various SMT solvers.

Figure 3.3 shows a relevant subset of the ZOT architecture (presented
in its entirety in Section 2.3). The architecture is extended to support
SOLOIST by introducing another layer called soloist that exposes the SOLOIST
operators to be used in the layer above. For example formula G(p →
C5
>0(q)) can be written in the Zot script layer as:

(-G- (-> (-P- p) (-C- 5 > 0 (-P- q))))

As you can see, ZOT adopts prefix notation for all its operators and every
atomic formula φ is denoted as (-P- φ). The soloist layer also performs
the translation of the operators it exposes, into CLTLB(D) and invokes the

3https://github.com/fm-polimi/zot
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SMT solver (z3, yices, ...)

smt-interface
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Zot script (Lisp)

Logic languages

Plugins

Solvers

Zot script

Figure 3.3: The extended ZOT architecture

cltlb layer below to perform satisfiability checking. The cltlb layer invokes
the ae2zot plugin to translate the CLTLB(D) formula into an appropriate
SMT dialect, then uses the smt-interface layer to invoke an SMT solver of
choice and then parse its output.

We now give a rundown of the translation steps applied to an example, to
provide a glimpse of the implementation of our SMT-based trace checking
algorithm. These steps and the example are also sketched in Figure 3.4
where: the first row shows (a fragment of) the example input trace and the
SOLOIST formula to verify on the trace; the second row shows how the
input trace is transformed from timed ω-word to ω-word, the translation of
the input formula and the definition of the counter constraints as described
in Section 3.2.

Let us consider the problem of performing trace checking of the for-
mula φ ≡ C5

<3(p) over the trace H of length 7 depicted in Figure 3.4;
the formula is evaluated at time instant 5. As described in Section 3.2.2,
our plugin translates the SOLOIST formula φ into CLTLB(D) as ρ(φ) ≡
X(cp) − Y4(cp) < 3, where cp is a counter. The behavior of this counter is
constrained by the conjunction of axioms A1, A2, and A3, defined as Ccp ≡
(cp = 0)∧G((e∧p)→ X(cp) = cp+1)∧G((¬e∨¬p)→ X(cp) = cp). In the
next step ZOT translates the input CLTLB(D) formula ¬(X5(ρ(φ))) ∧ Ccp
to SMT dialect and calls the SMT solver with the final translated formula
conjuncted with the trace as input. Notice that the formula φ is negated;
hence, it is satisfied by trace H if the SMT solver returns unsat. The expo-
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Trace Formula Counter constraints

SOLOIST
2
p

5
p C5

<3(p) n/a

CLTLB(D) 0
¬e

1
¬e

2
e

p
3
¬e

4
¬e

5
e

p
6
¬e X(cp)− Y4(cp) < 3

(cp = 0) (A1)

∧
G((e ∧ p)→ X(cp) = cp + 1) (A2)

∧
G((¬e ∨ ¬p)→ X(cp) = cp) (A3)

Figure 3.4: Example of the translation from SOLOIST to CLTLB(D)

nent 5 in the term X5(ρ(φ)) is determined by the evaluation of the formula
fixed at time instant 5. For the the translation from CLTLB(D) to the input
language of the SMT solver, please refer to [105], as the details are out of
the scope of this work.

3.4 Complexity

This section gives an estimate on the complexity of the translation of SOLOIST
to CLTLB(D) and an intuition on the complexity of the satisfiability prob-
lem for SOLOIST.

Let us consider a SOLOIST formula φ of length |φ| = λ (see Sec-
tion 2.2), trace T of length H and let µ be the maximum constant occurring
in the SOLOIST formula φ and trace T . More precisely µ = max{{i | i ∈
I1 ∪ . . . ∪ Iλ} ∪ {K1, . . . Kλ} ∪ {n1 . . . nλ} ∪ {h1 . . . hλ} ∪ {τ1, . . . τH}}
where Ii represent all the intervals, Ki represent all the time windows, ni
represent all the bounds and hi represent the observational subintervals oc-
curring in the SOLOIST formula and τi are the timestamps. The size of
the SOLOIST formula is then O(λlog(µ)). We demonstrate that length of
the CLTLB(D) formula obtained as a translation of φ is O(λµ), i.e., the
translation is PSPACE in the length of the formula λ and EXPSPACE in
the size of the constants used in the formula log(µ).

The translation function ρ, introduces a constant length formula for ev-
ery type of SOLOIST formula. Atomic formulae and boolean operators
(¬, ∧ and ∨) are not changed. Temporal operators (UI , SI ,RI , TI) are
translated into single formula with additional conjunct and disjunct in the
subformulae, however this is still constant length. Translation ρ introduces
a counter cφ for every atom φ occurring in a C modality. In the worst case
O(λ) counters can be introduced. Notice that subformulae occurring in ag-
gregate modalities are restricted only to be atomic. The translation of the
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C includes both its CLTLB(D) translation and the additional axioms that
define the behavior of the counter. However the length of these formulae
is constant. We remark that we use a direct encoding of the exponent K in
formulae of the form YK or XK , both in the case of arithmetical temporal
terms and of boolean formulae. The direct encoding of the exponent al-
lows us to avoid expanding it into nested Y or X formulae and therefore the
length of the translation of the C modality is O(λ). Similar reasoning can
be applied to the other modalities. For M modality we reuse the translation
of the C modality bK

h
c times, therefore its translation is O(λµ).

The size of the trace after encoding the timing implicitly isO(µ), as each
time instant is going to be encoded as a separate position up to the maxi-
mum timestamp. Each position can contain all the atoms in the worst case.
Encoding of the trace considers only atoms that occur in the SOLOIST
formula, therefore at most λ of them. Therefore the complete size of the
translated formula is still O(µ · λ).

Satisfiability of CLTLB(D) [26] is PSPACE in the length of the CLTLB(D)
formula and EXPSPACE in the size of the constants used in the formula.
Let µc be the largest constant occurring in the translated CLTLB(D) for-
mula ρ(φ) and λc its length, i.e., |ρ(φ)| = λc. According to the translation
ρ we have that µc is O(µ) and λc is O(λ · µ) therefore satisfiability of
SOLOIST is EXPSPACE.

Finally, we claim that satisfiability of SOLOIST is EXPSPACE-complete.
EXPSPACE hardness can be obtained by reducing the problem of satisfia-
bility of MTL with point-based semantics (which is known to be EXPSPACE-
complete [6]) to the SOLOIST satisfiability problem. Translation of any
MTL formula to SOLOIST is trivial, since MTL is a strict fragment of
SOLOIST.
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CHAPTER4
Decision procedure based on QF-EUFIDL

4.1 Overview

The translation of SOLOIST to CLTLB(D) paves the way for an efficient
decision procedure for SOLOIST. A decision procedure for a language,
in turn, allows for many different use cases including trace checking, as
shown in Section 3.3. However, a drawback of the translation presented in
the previous chapter is the way it handles timing information in the traces.
Namely, when bridging the gap between the different models of CLTLB(D)
and SOLOIST (ω-words and timed ω-words, respectively) the explicit value
of a timestamp is encoded implicitly, as the position in the ω-word. For ex-
ample, a timed ω word w = ({a}, 1)(({a}, 3)({}, 5)({a}, 8))ω is encoded
as w′ = {a, e}{}({a, e}{}{e}{}{}{a, e})ω, where atom e pinpoints the
original positions from w and, hence, occurs at positions 1, 3, 5 and 8 in
w′. This means that using the translation based on CLTLB(D) for trace
checking a very sparse trace would, in the worst case, generate exponential
number of positions with respect to the size of the maximal value of the
timestamp in the trace. We say that a trace is sparse [30] if the number
of time instants in which events occur1 is much lower than the total time

1Also called valid time instants
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Figure 4.1: Example of a sparse (above) and dense (below) trace modeled as timed words

span of the trace (i.e. the difference between the last and the first times-
tamp). Figure 4.1 shows two example traces modeled as timed words over
alphabet {e}. The first trace is considered sparse with respect to the second
trace; it contains only 3 valid time instants (with timestamps 2, 7 and 13)
and spans over a total of 15 time instants. Considering sparse traces is mo-
tivated by our experience in verification the interactions between service-
based applications [34]. For example, the log used for the Business Process
Intelligence Challenge 2012 (BPIC 2012) [116] was taken from a Dutch
Financial Institute contains 13087 traces, whose average number of time
instants in which events occur is 20.0347: this represents (on average) the
0.003% of the total number of time instants.

To solve this problem, we chose QF-EUFIDL as the target language for
a new translation tailored to handle sparse traces more efficiently. The key
idea behind the translation is to keep the representation of the SOLOIST
model compact and adapt the translation of its operators to account for the
timestamps in the model. The detailed translation of SOLOIST to QF-
EUFIDL and its complexity is described in Section 4.2. Section 4.3 shows
how the translation is incorporated into the ZOT’s plugin architecture and
Section 4.4 discusses the complexity of the translation. Finally, in Chap-
ter 5 we show how the approach can be applied for trace checking proper-
ties of service compositions and we compare it to the translation based on
CLTLB(D).

4.2 Translation

As shown in Section 2.2 SOLOIST can be seen as MTL over discrete time,
enriched with aggregate modalities. The decision procedure for MTL over
discrete time [105] can be efficiently performed by reducing semantics of
UI and SI to suitable propositional formulae which take advantage from the
information about the metric over time defined by I . In [105], however, au-
thors consider ω-words as models for MTL formulae without timestamps.
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4.2. Translation

Therefore, the temporal structure required to translate the semantics of a
formula such as >U[10,10]φ is at least as long as ten discrete positions, be-
cause no timing information is available from the model. In this paper,
we devise a new way to represent information about timing constraints de-
fined in metric temporal modalities (including the aggregate ones); this is
an improvement on the method proposed in [105]. The encoding presented
afterwards is an extension of the one defined in [25], which allows one to
capture timed ω-words. As a consequence, models do not require as many
discrete positions as needed to build the discrete temporal structure in [105],
because the measure of time distances is realized through arithmetical vari-
ables that store how much time elapses among consecutive discrete posi-
tions. Intuitively, by adding an arithmetical variable τ ∈ N measuring the
elapsed time, formula >U[10,10]φ holds at position i if, for instance, at posi-
tion i + 1, φ holds and the time τ elapsed between position i and position
i+ 1 is equal to 10. To realize this counting mechanism with variables and
arithmetical operators, we require a language that incorporates arithmetics,
hence our choice of QF-EUFIDL as the target language of our encoding.

We use the QF-EUFIDL structure with fZ containing only unary func-
tions of the form f : Z+

0 → Z. Each function represents arithmetical
variable used in the encoding. To simplify our presentation we introduce
a set P containing boolean functions of the form p : Z+

0 → {>,⊥}; each
of them represents a predicate whose value is defined over a nonnegative
integer domain. Since QF-EUFIDL supports only atoms, the boolean func-
tions are just a syntactic sugar for an enumeration of atoms. Using this
QF-EUFIDL structure we can define a finite representation of models of
SOLOIST formulae. Since our structure is ordered, let 0, 1, 2, . . . , H be a
finite linear order, with H corresponding to the length of the finite prefix
of the timed ω-word satisfying a SOLOIST formula. The linear order rep-
resents a temporal structure and since it is a subset of the domain of both
the predicates from P and the functions from F , we can interpret them
as having “time dependent” values and hence they can model boolean and
arithmetical entities that change their values over time.

In the encoding, we use the notation JXK to denote any predicate in
P representing a boolean entity X . We denote with |X| an arithmetical
variable in F representing an arithmetical entity X . We use JXKi and |X|i
as a shorthand for JXK(i) and |X|(i), respectively. The truth of JXKi is
interpreted as entity X holding at time instant i in an execution trace (or,
equivalently, a timed word).

We assume SOLOIST formulae to be in positive normal form (PNF).
The PNF of a formula is an equivalent formula where negation may only
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occur on atoms, i.e., atomic propositions (see [104]). PNF can be obtained
by propagating the negation towards the atoms, by means of converting
a negated operator into its dual version and negating its operand(s). To
do so, we introduce the connective ∨, dual of ∧, as well as the dual ver-
sions of all temporal modalities. The dual of UI is “Release” RI : φRIψ ≡
¬(¬φUI¬ψ); the dual of SI is “Trigger” TI : φTIψ ≡ ¬(¬φSI¬ψ)2. A
negation in front of one of the CK./n,U

K,h
./n ,M

K,h
./n ,D

K
./n modalities becomes

a negation of the relation denoted by the ./ symbol, hence no dual version
is needed for them.

Let Φ be a SOLOIST formula in PNF. Its encoding is a set of QF-
EUFIDL constraints over the predicates from P and functions from F . We
introduce a predicate JϕK for each subformula ϕ of Φ.

4.2.1 Translation of boolean and temporal formulae

We first define the constraints for timing information. As defined in Sect. 2,
the temporal structure contains an integer timestamp. An arithmetical vari-
able |τ | denotes the absolute time at positions i = 0 . . . H . Let Ctime be the
conjunction of the following constraints:

Position i Timing information Description

0 . . . H − 1 |τ |i < |τ |i+1 strict monotonicity
(4.1)

Next, we define constraints for atomic propositions and propositional
operators; their conjunction is denoted as Cprop (where↔ stands for a dou-
ble implication):

Position i Propositional operators Description

0 . . . H JpKi ↔ p(i) atomic propositions

0 . . . H J¬pKi ↔ ¬p(i) negation

0 . . . H Jφ ∧ ψKi ↔ JφKi ∧ JψKi conjunction

(4.2)

Notice that for any sub-formula of the form φ∧ψ in a SOLOIST formula Φ
we add in the resulting encoding, instances of formulae from the third row
of (4.2). This encoding completely conforms to the one in [38].

As for the modality UI , we add to the encoding, for any subformula of

2Note that the strict semantics of UI and SI preserve the duality of RI and TI also on finite words.
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the form3 φU(a,b)ψ in Φ, the following formulae, denoted as Ctemp−until :

Position i Temporal operator Description

0 . . . H − 1 JφU(a,b)ψKi ↔
∨H
k=i+1(JψKk∧ “Until”

a < |τ |k − |τ |i ∧ |τ |k − |τ |i < b ∧
∧k−1
p=i+1JφKp)

H JφU(a,b)ψKH ↔ ⊥ “Until” at position H
(4.3)

This is a straightforward encoding of the semantics of the “Until” operator.
The disjunction in the first row represents a case split on all possible future
time instants with respect to i. For each such time instant k a conjunction
is created with JψKk stating that ψ subformula has to hold at time instant k;
moreover, φ needs to hold in all instants from i+1 to k−1, i.e.,

∧k−1
p=i+1JφKp.

Formula (a < |τ |k − |τ |i)∧ (|τ |k − |τ |i < b) enforces the timing constraint
of the U(a,b) modality, i.e., if τk − τi ∈ (a, b).

The case for the SI modality is similar to the above. For any sub-formula
of the form SI in Φ we add to the encoding the following formulae, denoted
as Ctemp−since :

Position i Temporal operator Description

0 JφS(a,b)ψK0 ↔ ⊥ “Since” at position 0

1 . . . H JφS(a,b)ψKi ↔
∨i−1
k=0(JψKk∧ “Since”

a < |τ |i − |τ |k ∧ |τ |i − |τ |k < b ∧
∧i−1
p=k+1JφKp)

(4.4)

The conjunction of all formulae from Ctemp−until and Ctemp−since is de-
noted as Ctemp.

4.2.2 Translation of the C modality

The C modality expresses a bound on the number of occurrences of a certain
event in a given time window; in the encoding, it comes natural to use
arithmetical variables as counters of the events. For each subformula of the
form CK./n(φ), we add an arithmetical variable |cφ| to F , constrained with
the following formulae:

Position i C modality constraints Description

0 |cφ|0 = 0 initialization

0 . . . H − 1 JφKi → (|cφ|i+1 = (|cφ|i + 1)) φ occurs at i

0 . . . H − 1 ¬JφKi → (|cφ|i+1 = |cφ|i) φ does not occur at i

(4.5)

The constraint in the first row initializes the arithmetical variable to zero
at time instant 0. The following H constraints (in the second row) force

3A closed interval [a, b] over N can be expressed as an open one of the form (a− 1, b+ 1).
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|cφ| to increase by 1 at time instant i + 1, if φ occurs at time instant i.
The last H constraints from the third row refer to the opposite situation:
when there is no occurrence of the event φ at time instant i, the value of
|cφ|i+1 is constrained to have the same value as |cφ|i. Let us denote, for a C
modality that has φ as a sub-formula, the conjunction of these constraints
as Cc−cons(φ). Besides Cc−cons(φ), we add to the encoding, for each i =
0 . . . H − 1, the following constraints, denoted as Cc−form(φ):

JCK./n(φ)Ki ↔
min{i,K}∨

z=0

|cφ|i+1 − |cφ|i−z ./ n ∧ |τ |i − |τ |i−z−1 ≥ K ∧ |τ |i − |τ |i−z < K

This formula characterizes each time instant i of the temporal structure in
which the C modality is true. We have presented a simplified version of the
formula here, therefore any value of arithmetical variable before position
0 is considered to be 0. The disjunction is a case split for each position z
in the past with respect to the current position i. Notice that, if K > i we
need to consider all previous positions in the temporal structure; otherwise,
it is enough to consider K previous time instants, since in the worst case all
timestamps can increase by at least one. Each case is a conjunction where
sub-formula |τ |i−|τ |i−z−1 ≥ K ∧|τ |i−|τ |i−z < K determines the correct
position on the left side of the time window, while |cφ|i+1 − |cφ|i−z ./ n
checks that the C modality holds in the considered time window.

4.2.3 Translation of the U modality

To simplify the presentation, we express the U modality in terms of the C

one, based on this definition: UK,h./n (φ) ≡ C
bK
h
c·h

./n·bK
h
c(φ), which can be derived

from the semantics in Fig. 2.2. Therefore, we can reuse the translation of C
modality to encode the semantics of U modality into QF-EUFIDL.

4.2.4 Translation of the M modality

As for the M modality, for each subformula of the form MK,h
./n (φ), we intro-

duce the same arithmetical variable |cφ| and the constraint Cc−cons(φ) (now
denoted Cm−cons(φ)) as for the C modality. Additionally, we add arithmeti-
cal variables |p0| . . . |pbK

h
c+1| to the set F for each M modality sub-formula

of Φ. The encoding of the M modality depends on the operator ./; for
example, when the comparison operator is “<” we have the following con-
straints, denoted Cm−form(φ):

JMK,h
<n (φ)Ki ↔

bK
h
c∧

y=0

(min{i,h·(y+1)}∨
z=0

(|py+1|i = |cφ|i+1 − |cφ|i−z ∧ |py+1|i − |py|i < n ∧

|τ |i − |τ |i−z−1 > (y + 1) · h ∧ |τ |i − |τ |i−z ≤ (y + 1) · h)
)
∧ |p0|i = 0
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In this formula, in each conjunct y we perform a case split, similar to the
case of the C modality, but with a different time window: (y + 1) · h. We
assign the result of counting to the variable |py+1| in each conjunct. There-
fore, values |p0|i . . . |pbK

h
c+1|i contain the number of occurrences of φ in

time windows 0, h, 2h, . . . , bK
h
c · h,K with respect to position i, respec-

tively. With subformula |py+1|i− |py|i < n, we check that in each observa-
tion subinterval with respect to i there is a bounded number of occurrences.
The other cases of ./ can be defined in a similar way.

4.2.5 Translation of the D modality

The D modality expresses a bound on the average distance between the
occurrences of a pair of events in a given time window. Since events can
occur multiple times in the temporal structure, a pair of events (φ, ψ) may
have multiple instances. We call a pair of the form (JφKi, JψKj) an instance
if there is an occurrence of event φ at time instant i and an occurrence of
event ψ at time instant j, with i < j. We call such instance open at time
instant q if i ≤ q < j. Otherwise, the instance is closed at time instant
q. The distance of a closed pair instance is j − i; for an open pair at time
instant q, the distance is q − i. A time window defined for a DK

./n(φ, ψ)
(sub-)formula evaluated at time instant q is bounded by the time instants
q + 1 and q − K + 1. It has a left-open (respectively, right-open) pair in
position q of a temporal structure, if there is an open instance of (φ, ψ) at
time instant q − K + 1 (respectively, q + 1). Depending on whether a D
modality (sub-)formula contains either (left- and/ or right-) open pairs or
none, there are four distinct cases to take into account for the encoding.

For each subformula of the form DK
./n(φ, ψ), we add to F five arithmeti-

cal variables:

• |gφ,ψ|: it assumes value 1 in the time instants following an occurrence
of φ and is reset to 0 after an occurrence of ψ. It acts as a flag denoting
the time instants during which the event pair instance is open.

• |hφ,ψ|: in each time instant, it contains the number of previously seen
closed pair instances. It is increased after every occurrence of ψ.

• |sφ,ψ|: At each time instant, its value corresponds to the sum of dis-
tances of all previously occurred pair instances. It is increased after
every time instant when either |gφ,ψ| is 1 or φ holds.

• |aφ,ψ|: it keeps track of the sum of the distances of all previously
occurred closed pair instances.
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Figure 4.2: Example of trace for the D modality, with the corresponding arithmetical
variables used in the encoding

• |bφ,ψ|: it has the values that will be assumed by variable |sφ,ψ| at the
next occurrence of ψ (more details below).

Variables |aφ,ψ|, |bφ,ψ|, and |hφ,ψ| are directly used in the encoding of the D
modality (sub-)formulae, while variables |gφ,ψ| and |sφ,ψ| are helper vari-
ables, used to determine the values of the other variables. Figure 4.2 shows
a portion of a trace and the values assumed by these variables: the upper-
most row shows instants where atoms φ, ψ, and ϕ hold; the second row
shows the value of |τ | at each time instant; the other rows show the values
of the variables at each time instant.
For each DK

./n(φ, ψ) modality sub-formula we define the set of constraints
Cd−cons(φ, ψ):

Position i D modality constraints Description

0 |gφ,ψ|0 = 0 ∧ |hφ,ψ|0 = 0 ∧ |aφ,ψ|0 = 0 ∧ |sφ,ψ|0 = 0 variable
initialization

0 JBeqK0 |bφ,ψ|
initialization

0 . . . H − 1
JφKi → (|gφ,ψ|i+1 = 1 ∧ |sφ,ψ|i+1 = |sφ,ψ|i + (|τ |i+1 − |τ |i) ∧

|hφ,ψ|i+1 = |hφ,ψ|i ∧ |aφ,ψ|i+1 = |aφ,ψ|i)
φ occurs at i

0 . . . H − 1

JψKi → (|gφ,ψ|i+1 = 0 ∧ |hφ,ψ|i+1 = |hφ,ψ|i + 1 ∧
|aφ,ψ|i+1 = |sφ,ψ|i ∧ |sφ,ψ|i+1 = |sφ,ψ|i ∧
|bφ,ψ|i = |sφ,ψ|i ∧ JBeqKi+1)

ψ occurs at
i

0 . . . H − 1

¬JφKi ∧ ¬JψKi → (|gφ,ψ|i+1 = |gφ,ψ|i ∧ |hφ,ψ|i+1 = |hφ,ψ|i ∧
|aφ,ψ|i+1 = |aφ,ψ|i ∧

(|gφ,ψ|i = 1→|sφ,ψ|i+1 =

|sφ,ψ|i + (|τ |i+1 − |τ |i)) ∧
|gφ,ψ|i = 0→|sφ,ψ|i+1 = |sφ,ψ|i))

neither φ
nor ψ

occurs at i

(4.6)

The formula in the first row of (4.6) initializes all variables at time instant 0
except |bφ,ψ|. In the second row we introduce a new predicate JBeqK; it has
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the following constraints:

Position i JBeqK predicate constraints Description

0 . . . H − 1 JBeqKi ↔ JψKi ∨ ((|bφ,ψ|i+1 = |bφ,ψ|i) ∧ JBeqKi+1) propagation of
value of |bφ,ψ|

H JBeqKH ↔ > last state constraint
(4.7)

These constraints force the values of the variables |bφ,ψ|i to stay the same
in all the consecutive time instants until the first occurrence of ψ or until
the end of the trace; the second constraint in (4.7) deals with traces without
occurrences of ψ.

The third constraint in (4.6) determines the value of variables in the
next time instant, upon occurrence of an event φ at time instant i. Variable
|gφ,ψ|i+1 is set to 1; variable |sφ,ψ|i+1 is incremented by |τ |i+1 − |τ |i with
respect to value of the variable |sφ,ψ|i; variables |hφ,ψ|i+1 and |aφ,ψ|i+1 are
constrained not to change with respect to value of their counterparts at time
instant i. The fourth constraint determines how the variables are updated
when an event ψ occurs at time instant i: variable |gφ,ψ|i+1 is set to 0; vari-
ables |bφ,ψ|i, |aφ,ψ|i+1, and |sφ,ψ|i+1 are set to be equal to |sφ,ψ|i. Moreover,
JBeqKi+1 is constrained to hold, forcing values of |bφ,ψ|j to stay the same
in all the consecutive time instants j > i, until the next occurrence of ψ.
The constraints in the fifth row of (4.6) cover the cases when neither φ nor
ψ occur at time instant i. In these cases the values of variables |gφ,ψ|i+1,
|hφ,ψ|i+1, and |aφ,ψ|i+1 are constrained to have the same value as in their
counterparts at i, variable |bφ,ψ|i+1 is unconstrained, while for |sφ,ψ|i+1 we
need to distinguish two separate cases. If the last event of the pair is φ
(denoted by |gφ,ψ|i = 1), then value of |sφ,ψ|i+1 is |sφ,ψ|i incremented by
|τ |i+1 − |τ |i, otherwise it is just |sφ,ψ|i.

For any sub-formula of the form DK
./n{(φ, ψ)} evaluated at time instant

i, we add to the encoding the constraint Cd−form(φ, ψ):

JDK
./n(φ, ψ)Ki ↔

∨min{i,K}
z=0

(
(if4 (|gφ,ψ|i−z = 1) then (

|aφ,ψ|i+1−|bφ,ψ|i−z
|hφ,ψ|i+1−|hφ,ψ|i−z−1

./ n)

else (
|aφ,ψ|i+1−|aφ,ψ|i−z
|hφ,ψ|i+1−|hφ,ψ|i−z

./ n))

∧|τ |i − |τ |i−z−1 ≥ K ∧ |τ |i − |τ |i−z < K
)

In the above formula, the outer disjunction considers all positions that
are z time instants in the past with respect to i (i.e., i − z) and checks, for
each of them, if they fit into the time window using the |τ |i − |τ |i−z−1 ≥
K ∧ |τ |i − |τ |i−z < K formula. If one position does, the rest of the for-
mula considers whether there is an open (φ, ψ) pair instance at that position

4“if A then B else C” can be written as (A ∧B) ∨ (¬A ∧ C)
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Figure 4.3: The extended ZOT architecture

which is captured by the |gφ,ψ|i−z = 1 formula. In such a case, we compute
the total delay between all pair instances within the time window by sub-
tracting variable |bφ,ψ| from |aφ,ψ| at the appropriate positions. Since the
value of |bφ,ψ| at each position contains the value of |sφ,ψ| at the position of
the next occurrence of ψ, we effectively ignore the delay of the left-open
pair. Otherwise, we use variable |aφ,ψ|, since it contains the delay from the
last closed pair instance. Fractions in this formula are used for the sake of
clarity, however the actual formula conforms to IDL due to the fact that n
is a constant and A

B
= n can be written as A = B +B + . . .+B︸ ︷︷ ︸

n times

.

The final QF-EUFIDL formula obtained from the encoding of the input
SOLOIST formula Φ is the following conjunction of (possibly empty) for-
mulae, which is supplied to the SMT solver: JΦK0 ∧ Ctime ∧ Cprop ∧ Ctemp ∧
Cc ∧Cm ∧Cd, where Cc ↔ Cc−cons ∧Cc−form , Cm ↔ Cm−cons ∧Cm−form and
Cd ↔ Cd−cons ∧ Cd−form .

4.3 Implementation

The translation presented in Section 4.2 has been implemented in Common
Lisp as another plugin5 of the ZOT verification toolset [105]. By virtue
of the new plugin ZOT can translate SOLOIST formulae directly to QF-
EUFIDL.

5https://github.com/fm-polimi/zot
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Trace Formula Counter constraints

SOLOIST

2
p

5
p C5

<3(p) n/a

QF-
EUFIDL

Trace:
JpK0 ∧ |τ |0 = 2∧
JpK1 ∧ |τ |1 = 5

Timing information:
|τ |0 < |τ |1 ∧
|τ |1 < |τ |2

JC5
<3(p)K0 ↔ |cp|1 − |cp|0 < 3 ∧

|τ |0 ≥ 5 ∧

JC5
<3(p)K1 ↔ (|cp|2 − |cp|0 < 3 ∧
|τ |1 ≥ 5 ∧ |τ |1 − |τ |0 < 5) ∨

(|cp|2 − |cp|1 < 3 ∧ |τ |1 − |τ |0 ≥ 5)

|cp|0 = 0 ∧
JpK0 → (|cp|1 = (|cp|0 + 1)) ∧
JpK1 → (|cp|2 = (|cp|1 + 1)) ∧
¬JpK0 → (|cp|1 = |cp|0) ∧
¬JpK1 → (|cp|2 = |cp|1) ∧

Figure 4.4: Example of the translation from SOLOIST to QF-EUFIDL

Figure 4.3 shows the part of the ZOT architecture affected by the ex-
tension. We have introduced a plugin called solzot, to facilitate the direct
translation from SOLOIST to QF-EUFIDL. The plugin is used only by the
soloist layer and it relies on the functionality provided by smt-interface
layer to invoke an SMT solver of choice and parse its output.

We now provide an example of the translation applied to the same exam-
ple from Section 4.3, to provide an intuition of its implementation and our
SMT-based trace checking algorithm. Figure 4.4 shows an example trace
and a SOLOIST formula to verify, in the first row; the second row shows
how the input trace is encoded in QF-EUFIDL with timing information
constraints, the translation of the SOLOIST formula Cc−form and the con-
straints on the arithmetical variable |cp| labeled as Cc−cons in Section 4.2.2.

In the example we want to trace check formula C5
<3(p) at time instant

5 of the trace that has only two positions (H = 2). As you can see in the
second row, the trace is represented as a formula constraining the values
of the arithmetical variable |τ | at positions 0 to H − 1. The strict mono-
tonicity is also enforced using the timing information constraints. For the
C modality we need to introduce one arithmetical variable |cp|. The con-
straints defining the behavior of |cp| are in the rightmost cell of the second
row. The second that the third axiom are introduced for every position from
0 to H − 1.

The C modality formula itself is translated into series of constraints for
every position in the trace. At the position 0 the predicate JC5

<3(p)K0 is true
iff there is less than 3 occurrences of the event p at position 0 (calculated
by the term |cp|1 − |cp|0) and the time window of the C modality refers
to the actual instants in the trace (captured by formula |τ |0 ≥ 5). The
modality does not hold at position 0 since |τ |0 is less than 5. At position
1 we have two disjunctive cases: if the leftmost point of the time window
of the formula is between positions 0 and 1 or before position 0. In the
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first case the formula |τ |1 ≥ 5 ∧ |τ |1 − |τ |0 < 5 characterizes that the
leftmost point of the time window is between positions 0 and 1. Formula
|cp|2−|cp|1 < 3 states that the time window contains less than 3 occurrences
of the event p. The second case is similar to the formula for position 0 only
applied for position 1. The final formula checked by the SMT solver is the
conjunction of the constraints from the second row with the trace and the
formula ¬JC5

<3(p)K1 that evaluates the formula at time instant 5 and make
the SMT solver produce unsat verdict if the trace satisfies the formula.

4.4 Complexity

We provide an estimation of the size of the QF-EUFIDL formula corre-
sponding to a temporal or aggregating modality of SOLOIST. Although
the syntactic complexity of the translation is already known in the case of
standard LTL temporal modalities (e.g., [38]), we still provide a measure
for UI and SI , since we rely on an ad-hoc encoding.

Let us consider first φUIψ; the case for φSIψ is similar. At position
0 ≤ i ≤ H , the formula in (4.3) has size O(H − i)2. We have then∑H

i=0O(H − i)2 < O(H3).
Let µ be the maximum constant occurring in the SOLOIST formula and

in the trace. One variable |cφ| is required for all formulae CK./n(φ) with the
same argument φ. In the worst case, we introduce one variable for each
one. At position 0 ≤ i ≤ H , formula JCK./n(φ)Ki has size O(i). We have
then

∑H
i=0O(log(µ)i) < O(log(µ)H2). The U modality is defined through

C and, therefore, inherits the same syntactic complexity.
Encoding of formula MK,h

./n (φ) requires one variable |cφ|. We can reuse
variable cφ if in the original SOLOIST formula there are M formulae or
C formulae with the same argument φ. Moreover, for each M we need
also bK

h
c + 2 arithmetical variables |p0| . . . |pbK

h
c+1|. In the worst case,

we introduce bK
h
c + 3 variables for each formula MK,h

./n (φ). At position
0 ≤ i ≤ H , formula JMK,h

./n (φ)Ki has size O(log(µ)K
h
· i). We have then∑H

i=0O(log(µ)K
h
i) < O(log(µ)K

h
H2).

The set of formulae translating D is defined by the conjunction of for-
mulae in (4.6) and (4.7) in addition to constraint Cd−form. For each formula
D we introduce five variables related to the pair (φ, ψ). The size of for-
mulae in (4.6) and in (4.7) is O(H). Constraint Cd−form requires a more
careful analysis; notice that its size depends on the parameter n because
of the way formula a

b
< n is expanded. At position 0 ≤ i ≤ H , formula

JDK
./n(φ, ψ)Ki has sizeO(log(µ)in). Then, the complexity for D is obtained
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by
∑H

i=0O(log(µ)in) < O(log(µ)nH2).
The size of the QF-EUFIDL encoding of a SOLOIST formula of length

λ is O(λ log(µ)(H3 + K
h
H2 + nH2)), as the number of sub-formulae is

polynomial in λ, whereas the size of the encoding of a trace isO(log(µ)H).
In the worst-case for K = µ, n = µ and h = 1, the overall size of
the QF-EUFIDL formula encoding a SOLOIST formula is bounded by
O(λ log(µ)µH3).

Given that the initial formula size is inO(λ log(µ)) the encoding is poly-
nomial in length of the trace H , linear in the length of the formula λ and
exponential in the size of the constants occurring in the formula µ. Note
that, as we stated in Section 2.4, the complexity of the satisfiability prob-
lem for QF-EUFIDL is NP-complete. Therefore the overall complexity of
the satisfiability problem of SOLOIST is NEXPSPACE, since we check the
encoded QF-EUFIDL formula of exponential size with respect to the ini-
tial SOLOIST formula. According to the Savitch’s theorem [111] a NEX-
PSPACE problem is equivalent to an EXPSPACE problem, therefore we
obtain same complexity results for SOLOIST satisfiability (EXPSPACE-
complete) as reported in Section 3.4, since hardness can again be demon-
strated by reducing satisfiability of MTL with point-based semantics [6] to
satisfiability of SOLOIST.
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CHAPTER5
Evaluation & Application

5.1 Overview

We evaluated the effectiveness of our approach by investigating the follow-
ing research questions:
RQ1: Can the proposed trace checking procedures, based on CLTLB(D)

and QF-EUFIDL, handle traces more efficiently than the procedure [85]
based on the translation [36] to LTL? (Section 5.2)

RQ2: How do the proposed trace checking procedures scale with respect to
the various parameters (e.g., the length of the trace, the length of the
time window K) involved in SOLOIST trace checking? (Section 5.3)

RQ3: How do the two proposed trace checking procedures compare? (Sec-
tion 5.4)

RQ4: Can our approach to trace checking be applied in a real setting?
(Sections 5.5, 5.6 and Chapter 6)

All traces used for the evaluation were synthesized with the Process Log
Generator (PLG) tool [41], starting from a model of a realistic service com-
position (the “Order Booking” business process [102] distributed with the
Oracle SOA Suite [103]), comprising 37 activities, of which 16 were in-
teractions with external services (invoke, receive, reply activities). This
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Figure 5.1: Comparison between LTL- and CLTLB(D)- and QF-EUFIDL-based encoding

model was defined by specifying the workflow structure, the duration of
each synchronous invoke activity, the branching probabilities, and the error
rates. Other activities (e.g., receive) were given 0 as duration; branching
was used to create loops and simulate the behavior of the pick activity.

For each run of the trace checker, we recorded the memory usage, the
translation time, and the SMT verification time.

The evaluation was performed on a PC equipped with a 2.0GHz Intel
Core i7-2630QM processor, running GNU/Linux Ubuntu 12.10 64bit, with
2GB RAM allocated for the verification tool. We used the Z3 [52] SMT
solver v. 4.3.1. For each experiment we have set a time limit to be 5 minutes
and memory limit to 2GB. Each point shown in the plots, represents an
average value of 10 trace check runs on traces of the same length.

5.2 Comparison with the LTL-based translation

To address RQ1: Can the proposed trace checking procedures, based on
CLTLB(D) and QF-EUFIDL, handle traces more efficiently than the pro-
cedure [85] based on the translation [36] to LTL?, we synthesized a sample
history trace of length 30 and the SOLOIST formula CK>2(r), which checks
whether there have been more than two occurrences of the replay activity
(denoted simply as the event r) within the last K time units. As we have
shown in Section 2.2.2 the drawback of the translation from [36] is that the
size of the output formula depends on parameters K,h and n. Therefore, if
we vary the length of the time window K progressively between 2 and 30
we could see how this impacts the performance of the trace checking proce-
dures of all the three translations. The formula was always evaluated at the
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last time instant of the trace. Figure 5.1 shows the time and memory usage
of the trace checking procedures based on all the three translations. The re-
sults show that with the increase of the time window K procedure based on
LTL uses significantly more time and memory. The translation from [36]
is inefficient and produces a large formula that results in a considerable
increase in time and memory usage of the trace checking procedure; the
two new translations proposed in this thesis address these issues, paving
the way for a more efficient verification.

5.3 Scalability

To address RQ2: How do the proposed trace checking procedures scale
with respect to the various parameters (e.g., the length of the trace, the
length of the time window K) involved in SOLOIST trace checking?, we
considered both translations and synthesized traces of various length in or-
der to check the scalability of both approaches over the same traces. We
also considered the following parameters:
Trace length. It represents the length of the synthesized trace and the bound

given to the SMT solver. The length of each synthesized trace depends
on the duration of the activities invoking an external service as well as
on the branching probabilities of the loop(s) in the process.

Length of the time window. It is used in the aggregate modalities; it cor-
responds to the K parameter.

Bound of the comparison operator. It is used in the aggregate modalities;
it corresponds to the n parameter.

We present only the results of the evaluation done for the C and D modali-
ties, since they are the keystones of the translations. We synthesized 20000
different traces, of variable length between 10 and 2000. We checked the
following properties on them: CK>n(p), and DK

>n(p, q), with propositions p
and q corresponding to the start and end events of CreditCardAuthorization
service invocation of the Order Booking business process.

Evaluation of the CLTLB(D)-based procedure

First we present the measured performance for the trace checking proce-
dure based on CLTLB(D) in the Figures 5.2 and 5.3 which contain four
plots each. Each pair of adjacent plots are grouped and the upper plot shows
the time in seconds taken for the translation and the one taken by the SMT
solver, while the lower plot shows the overall memory usage in megabytes.
Figures 5.2a and 5.2b present the results of trace checking each of the two
properties mentioned above on the synthesized traces classified according
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Figure 5.2: Scalability of CLTLB(D)-based trace checking wrt trace length H
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Figure 5.3: Scalability of CLTLB(D)-based trace checking wrt parameters K and n
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Figure 5.4: Scalability of QF-EUFIDL-based trace checking wrt number of valid events
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to their length; we fixed K = 100 and n = 5 for the both modalities. The
plots provide an intuition of the growth rate of the resources usage with re-
spect to the length of the input trace. The memory usage for the respective
properties yields a very similar plot. The memory dedicated for the evalua-
tion of the C modality was exhausted at 2000 time instances, requiring 2GB
of memory and 40 seconds to solve. For the evaluation of the properties
with the D modality, the maximum number of time instances manageable
before exhausting the preset memory limit was 1600. The lower value with
respect to the C modality is due to the linear multivariate constraints intro-
duced in the translation of the D modality; these constraints are harder to
solve than the univariate ones used for the C modality. As for the scalability
with respect to the other parameters, namely the length of the time window
K and the bound of the comparison operator n, we notice that they do not
affect the resource usage, and only introduce some non-deterministic noise
in the SMT solver time. Results are similar for all the modalities thus we
focus only on C modality in Figures 5.3a (forK) and 5.3b (for n). The plots
show the time and memory usage with respect to the variation of each of
these two parameters when checking formulae over traces of length fixed
to 1000; the upper two plots refer to checking formula CK>5(p), while the
lower two refer to checking formula C100

>n (p).

Evaluation of the QF-EUFIDL-based procedure

To evaluate the QF-EUFIDL-based encoding, we have performed the same
experiments for both modalities. The only difference is that, in this case,
we classify the traces according to the number of valid time instants, as
it corresponds to the length H of the temporal structure of QF-EUFIDL.
The plots in Figures 5.4 and 5.5 show the performance of QF-EUFIDL-
based trace checking procedure using the same traces1 and formulae as
for the evaluation of the CLTLB(D)-based procedure. Figures 5.4a and
5.4b show quadratic increase in time and memory usage with respect to the
number of valid time instants, as anticipated in Sect. 4.4. Similarly like for
CLTLB(D), the plots in Figures 5.5a and 5.5b show that parameters K and
n do not affect the computational time and space. Although the complex-
ity analysis states that the size of the encoding for the D modality linearly
depends on n, the evaluation showes that in the actual implementation this
does not happen, since the SMT decision procedure natively supports mul-
tiplication of terms by a constant. This allows us to write a more concise
encoding for D modality in O(H2).

1sorted differently
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5.4 Comparison

To address RQ3: How do the two proposed trace checking procedures com-
pare? we considered what are the differences in their respective encoding.
Namely, CLTLB(D) encodes timing implicitly using the positions of its
two-part model, while QF-EUFIDL uninterpreted functions to encode tim-
ing information explicitly. Hence, the model of QF-EUFIDL is more com-
pact, however its encoding of the SOLOIST modalities is more complex,
as it needs to explicitly take into account the timing information.

As you can see from Figure 5.2, QF-EUFIDL-based approach can sup-
port the checking of traces containing up to 300 valid time instants, using
up to 2GB of memory. With the same memory limit, the CLTLB(D)-based
encoding could support traces with up to 2000 time instants (both valid and
non-valid). The number of non-valid time instants in the trace does not
affect the scalability of the QF-EUFIDL-based encoding. In other words,
QF-EUFIDL-based encoding can deal with traces of arbitrary length, with
varying degrees of sparseness, and still use up to 2GB of memory if the
trace contains at most 300 valid time instants. The number and type of sup-
ported instants are hard constraints for both approaches, and any trace that
exceeds them cannot be verified. However, one may devise heuristics such
as abstraction [47] or partial order reduction [115] that could transform the
trace in linear time to conform to the constraints.

As suggested earlier, the main difference between the two approaches
is in how they handle traces with different degrees of sparseness. In Sec-
tion 4.1 we defined the degree of sparseness informally, now we give its
precise definition. Let ξ be the number of valid time instants in a trace,
i.e., the instants in which at least one event occurs. This number corre-
sponds to the number of positions in a timed word modeling the trace. Let
ν denote the number of non-valid time instants, i.e., those where no event
occurs. Notice that, in timed words, these events are abstracted away by
using timestamps. We can use the total length of a trace ξ + ν to compute
the degree of sparseness as ς = ξ

ξ+ν
. For example, if we consider traces

from Figure 4.1 their degree of sparseness is 0.2 and 0.8 (or 20% and 80%)
respectively.

We compared the performance of the two approaches by classifying the
synthesized traces according to their degree of sparseness before perform-
ing comparative trace checking runs based on both encodings. Figure 5.6
shows the results of this comparison, in terms of time and memory usage:
the blue line shows the scalability of the approach based on CLTLB(D),
while the seven red lines correspond to the QF-EUFIDL-based approach
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Figure 5.6: Tradeoff between the trace checking approach based on CLTLB(D) [85] and
the one based on the QF-EUFIDL encoding, with respect to the degree of sparseness
of the trace

applied to traces with different degrees of sparseness (100%, 50%, 33%,
25%, 20%, 16.6%, and 14.3%, from left to right, respectively). The re-
sults show that the QF-EUFIDL-based encoding is more efficient than the
CLTLB(D)-based one, only when the degree of sparseness of input traces
is less than 25%.

5.5 Formalization of Quantitative properties

To address RQ4: Can our approach to trace checking be applied in a real
setting?, we consider in this section if SOLOIST can be used to formalize
quantitative properties of systems. In the next section we apply SOLOIST
decision procedures and perform trace checking of real traces.

To exemplify the use of SOLOIST for formalization we consider a vari-
ant of the ATMFrontEnd business process example from the JBoss jBPM
distribution. We present its simplified description in BPEL, depicted in
Figure 5.7 using the (visually intuitive) notation introduced in [10].

The process ATMFrontEnd starts when the receive activity logOn pro-
cesses a message from the SessionManager service. This starts a customer
session: the process verifies whether the customer holds a valid account
at the bank, by invoking the checkAccess operation of the BankAc-
count service. If the latter identifies the customer, a loop is started to
manage the customer’s requests sent via the UserInteraction service. The
customerMenu pick activity, contained in the body of the loop, may
receive four kinds of possible requests: three of them (getBalance,
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deposit, withdraw) are forwarded to the corresponding operations of
the BankAccount service; the logOff request terminates the loop, closing
the customer session.

onMessage onMessage onMessage onMessage
Bank

Account
Service

Session
Manager
Service

User
Interaction
Service

deposit withdraw

logOff getBalance deposit withdraw

getBalancelogOff

check
Access

logOn

Figure 5.7: ATMFrontEnd business process

To annotate a BPEL process with SOLOIST, we denote the execution
of each activity with a predicate symbol. Activities that involve a data ex-
change (e.g., an invoke) are modeled as non-nullary predicates, where the
arguments correspond to the variables by which the input (output) messages
can be represented. Synchronous invoke activities are actually modeled
with two predicates, corresponding to the start and the end of the invoca-
tion; these are denoted with the “_start” and “_end” suffixes, respectively.

Below we list some examples of quantitative properties expressed first
in natural language and then with SOLOIST; more details on the features
of the language are available in [36]. All properties are under the scope of
an implicit universal temporal quantification as in “In every process run,
. . . ”; we assume the time units to be in seconds.

QP1: WithdrawalLimit
The number of withdrawal operations performed within 10 minutes
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before customer logs off is less than or equal to the allowed limit
(assumed to be 3, for example). This property is expressed as:
G(logOff → C600

≤3 (withdraw)).

QP2: CheckAccessAverageResponseTime
The average response time of operation checkAccess provided by
the BankAccount service is always less than 5 seconds within any 15
minute time window. This property is expressed as:
G(D900

<5 {(checkAccess_start , checkAccess_end)}).

QP3: MaxNumberOfBalanceInquiries
The maximum number of balance inquiries is restricted to at most
2 per minute within 10 minutes before customer session ends. This
property is expressed as:
G(logOff →M600,60

≤2 (getBalance)).

Notice that we express time in seconds and use propositions, as the content
of the messages exchanged between the services is not important in the
properties above.

5.6 Application on Real Traces

To address RQ4: Can our approach to trace checking be applied in a real
setting?, we have also applied our approach also to a real application, a
service composition called ACME BOT [88], whose monitoring data are
available2 as part of the “S-Cube Use Case Repository”. We reconstructed
9796 execution traces, based on the monitoring data of the corresponding
service composition instances. On each of these traces, we performed trace
checking with respect to properties based on C, D and M modalities sim-
ilar to ones in the previous section. In the first case, trace checking took
on average 0.672s with a standard deviation of 0.035s and used on average
125.7MB of memory with 0.476MB standard deviation; for the checks with
the D modality, it took on average 0.813s with 0.032s standard deviation
and used on average 127.7MB of memory with 0.476MB standard devia-
tion; finally for the M modality, trace checking took on average 1.335s with
0.032s standard deviation and used on average 163.3MB with 0.476MB
standard deviation. On average, each trace had 31.5 valid time instants and
a total length of 39341.3; the average degree of sparseness was then 0.08%.
This example shows that our approach can efficiently check properties of
realistic systems.

2http://scube-casestudies.ws.dei.polimi.it/index.php/.
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CHAPTER6
Case study: Cloud-based Elastic Systems

6.1 Overview

Cloud computing has become a practical solution to manage and leverage
IT resources and services. Cloud platforms offer several benefits, among
which the ability to access resources or service applications offered as (re-
mote) services, available on-demand and on-the-fly, and billed according to
a pay-per-use model.

Cloud providers offer resources and services at three different layers:
at the Software-as-a-Service (SaaS) layer, users can remotely access full-
fledged software applications; at the Platform-as-a Service (PaaS) layer,
one finds a development platform, a deployment and a run-time execution
environment, which is used to run user-provided code in sandboxes hosted
on cloud-based premises; at the Infrastructure-as-a-Service (IaaS) the user
can access computing resources such as virtual machines, block storage,
firewalls, load balancers, or networking I/O.

This chapter focuses on the IaaS layer, and assumes, without loss of
generality, that resources offered at this level are virtual machines. In par-
ticular, we consider cloud-based elastic systems. Elasticity [77] of com-
puting systems is a quantitative property defined [93] by the (US) National
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Institute of Standards and Technology (NIST) as:

"[Elasticity is the] capability to rapidly and elastically provision
[resources], in some cases automatically, to quickly scale out,
and rapidly release [resources] to quickly scale in. To the con-
sumer, the capabilities available for provisioning often appear to
be unlimited and can be purchased in any quantity at any time."

Application providers exploit resource elasticity at run time to balance
the trade-offs between the quality of service (QoS), the input workload, and
the operational costs. The main goal is, when confronted with fluctuating
workloads, to maintain the QoS at an adequate level while minimizing the
costs. In particular, when the input workload escalates over the current sys-
tem capacity, the acquisition of new resources prevents under-provisioning,
and allows the system to maintain an adequate QoS, even though opera-
tional costs increase. On the other hand, when the input workload decreases
below the current system capacity, releasing some resources prevents over-
provisioning, and contributes to reducing the costs while still providing an
adequate QoS.

The behavior (in terms of dynamically scaling up and down resource
allocation) of a cloud-based elastic system depends on the combination of
many factors, such as the input workload and infrastructure costs. Tech-
niques for designing such systems in terms of these factors can highly ben-
efit from the research in quantitative properties and their verification.

From the point of view of specification and verification the three main
open issues are:1) how to specify the desired elastic behavior of these sys-
tems; 2) how to check whether they manifest or not such an elastic behavior;
3) how to identify when they depart from the intended behavior.

In order to provide a more comprehensive answer to the RQ4 from
Chapter 5, this chapter presents a detailed case study of formalization and
verification of the behavior of cloud-based elastic systems, by characteriz-
ing the properties related to elasticity, resource management, and quality
of service using an extension of SOLOIST and then using CLTLB(D)- and
QF-EUFIDL-based trace checking procedures for the verification. The rest
of the chapter is organized as follows: Section 6.2 provides an overview of
cloud-based elastic systems, describing how they operate. Section 6.3 in-
troduces SOLOISTA, an extension of SOLOIST used for the formalization
of the quantitative properties of cloud-based elastic systems. Section 6.4
formally defines some general aspects of resources used in cloud-based
systems. Section 6.5 illustrates the formalization of the properties that we
have considered. Section 6.6 reports on checking some of the properties on
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Figure 6.1: High level architecture/view of cloud-based elastic systems.

realistic execution traces.

6.2 Cloud-based Elastic Systems

Two hallmarks of cloud computing are the ability to dynamically manage
the allocation of resources in the system and the pay-per-use billing model.
In particular, these traits characterize cloud-based elastic systems, which
are systems that can dynamically adjust their resources allocation to main-
tain a predefined/suitable level of QoS, in spite of fluctuating input work-
loads, while minimizing running costs. The key aspect of cloud-based elas-
tic systems is their ability to adapt at run time, in response to a change
in the operating conditions (e.g., a spike in the number of input requests).
In this context, adaptation means trying to manage the allocation of re-
sources so that they match the capacity required to properly sustain the
input workload. In other words, cloud-based elastic systems aim to pre-
vent both over-provisioning (allocating more resources than required) and
under-provisioning (allocating fewer resource than required).

The behavior of an elastic system can be intuitively described as follows.
Consider the case in which there is an increase in the load of a system,
which might lead to the saturation of system resources, causing a degrada-
tion of the QoS perceived by end-users. To avoid the saturation, an elastic
system stretches, i.e., its capacity is scaled up by allocating additional re-
sources (acquired from a cloud infrastructure); the load can then be spread
over a bigger set of resources. Conversely, when the system load decreases,
some resources might become under-utilized, hence unnecessarily expen-
sive. To reduce costs, an elastic system contracts, i.e., its capacity is scaled
down by deallocating a portion of the allocated resources, which are then
released back to the cloud infrastructure.

Cloud-based elastic systems usually implement the closed-loop archi-
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tecture shown in Figure 6.1, where an elastic controller monitors the actual
system (i.e., the controlled system) and determines its adaptation. End-
users send their requests, which constitute the input workload of the elastic
system, through its public interface. Notice that the workload may fluctu-
ate because of seasonality in the users’ demand or some unexpected events
such as a flash-crowd (i.e., the appearance of a web site on a popular blog
or news column, determining an exponential spike of the requests to the
server).

The controlled system responds to end-user requests by implementing
the business logic of the application. It is deployed onto a cloud infras-
tructure provided by a dedicated IaaS provider, and constituted by a set
of cooperating virtual machines. The controlled system implements also
the logic to change the allocation of resources (i.e., virtual machines) and
adjust the capacity of the system; these are essential functionalities to en-
able an elastic behavior. The controlled system is also characterized by two
attributes that constrain, respectively, the minimum and the maximum num-
ber of allocated resources. The former corresponds to the minimal amount
of resources that must be always allocated to guarantee the provision of
the application functionalities to end-users. As for the latter, it sets an up-
per bound for the maximum amount of allocated resources, beyond which
scaling the system is not cost-effective anymore.

The elastic controller periodically monitors the operating parameters of
the controlled system (e.g., the system load) and determines the control ac-
tions to be executed to perform adaptation. The controller implements the
logic that tries to fulfill the high-level goals (e.g., minimizing running costs
while delivering a certain level of QoS) specified by the service provider
that operates the elastic system. The control actions that the controller can
issue are scale-up and scale-down, which correspond to instantiating and
terminating virtual machines, respectively. These actions are sent to the
controlled system through its cloud interface, which plays the role of the
controller actuator. Notice that executing these actions might take a non-
negligible time, which is called actuation delay. The cloud interface propa-
gates the control actions issued by the controller to the cloud IaaS provider,
which performs the physical allocation/deallocation of virtual machines.
The cloud IaaS provider tracks the total resource usage accumulated by
each service provider, who is then billed for the cost of running the system.
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6.3 SOLOISTA

This section presents SOLOISTA, an extension of SOLOIST with arith-
metical atomic formulae that allows us to formalize the properties of cloud-
based elastic systems. SOLOISTA introduces the concept of variables sim-
ilar to counters and arithmetical variables in CLTLB(D) and QF-EUFIDL.
Intuitively, using this extension one can define values of variables in dif-
ferent adjacent positions by defining arithmetical constraints. For exam-
ple, we can express a property like “whenever an event S occurs, in the
next position, variable z must be incremented by 1 with respect to the
value at the current position”. Recall that the model of SOLOIST for-
mulae is a timed word that is a sequence of timestamped events, like:
(∅, 1) ({Q}, 3) (∅, 6) ({R}, 10) (∅, 15) . . . . Each pair contains a set of
events and a timestamp. The events correspond to observations we make
about the behavior of a system at a particular absolute time represented by
the timestamp. Typically we associate all the positions in the sequence to
time instants where the behavior of the system changes. For example, at
the second position Q occurs, the elapsed time is 3.

To account for the addition of variables we need to extend this model
to consider their values in each observation. For instance, consider the
following sequence: ({Q}, {2}, 3) (∅, {2}, 4) ({R}, {1}, 5) ({Q}, {2}, 15)
({R}, {0}, 20). In each position we have a triple: the first element is a
set of events occurring in that position (e.g., Q or R); the second is a set
of values of variables (e.g., modeling the number of pending jobs inside
the system); the third element is the timestamp. Using the timestamps, all
positions in the sequence correspond to time instants where the behavior of
the system changes. For example, at the first position Q occurs, the elapsed
time is 3 and the number of pending jobs is 2. Position 3 captures the fact
that at time 5 the system replies (denoted with R), completing only one of
the two pending jobs, thus one job remains. Position 4 denotes that at time
15 another query (this time equipped with one job) occurs; the number of
pending jobs is incremented accordingly. The last position indicates that at
time 20 the system generates another reply and, by that time, all the pending
jobs are done (the corresponding variable is equal to 0).

In the rest of this section, we formally define SOLOISTA. Atomic for-
mulae in SOLOISTA can now also be constraints over a structure (Z,=
, (<d)d∈Z), where binary relation(<d)d∈Z is introduced in Section 4.

The syntax of the terms used in the constraints, called arithmetic tempo-
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((σ, π, τ), i) |=A α1 ∼ α2 iff πi(α1) ∼ πi(α2)
((σ, π, τ), i) |=A p iff p ∈ σi
((σ, π, τ), i) |=A ¬φ iff ((σ, π, τ), i) 6|=A φ
((σ, π, τ), i) |=A φ ∧ ψ iff ((σ, π, τ), i) |=A φ ∧ ((σ, π, τ), i) |=A ψ
((σ, π, τ), i) |=A φSIψ iff for some j < i, τi − τj ∈ I, ((σ, π, τ), j) |=A ψ

and for all k, j < k < i, ((σ, π, τ), k) |=A φ
((σ, π, τ), i) |=A φUIψ iff for some j > i, τj − τi ∈ I, ((σ, π, τ), j) |=A ψ

and for all k, i < k < j, ((σ, π, τ), k) |=A φ
((σ, π, τ), i) |=A CK./n(φ) iff c(τi −K, τi, φ) ./ n and τi ≥ K

((σ, π, τ), i) |=A UK,h./n (φ) iff
c(τi − bKh ch, τi, φ)

bK
h
c

./ n and τi ≥ K

((σ, π, τ), i) |=A MK,h
./n (φ) iff max

{⋃bKh c
m=0 {c(lb(m), rb(m), φ)}

}
./ n and τi ≥ K

((σ, π, τ), i) |=A DK
./n(φ, ψ) iff

∑
(s,t)∈d(φ,ψ,τi,K)(τt − τs)
|d(φ, ψ, τi,K)| ./ n and τi ≥ K and d(φ, ψ, τi,K) 6= ∅

where c(τa, τb, φ) = | {s | τa < τs ≤ τb and ((σ, π, τ), s) |=A φ} |, lb(m) = max{τi −K, τi − (m+ 1)h},
rb(m) = τi −mh, and d(φ, ψ, τi,K) = {(s, t) | τi −K < τs ≤ τi and ((σ, π, τ), s) |=A φ,
t = min{u | τs < τu ≤ τi, ((σ, π, τ), u) |=A ψ}}

Figure 6.2: Semantics of SOLOISTA defined as an extension of the semantics of SOLOIST.

ral terms (hereafter simply called terms) is defined as:

α := c | x | Y(x) | X(x)

where c ∈ Z is a constant, x ∈ V is a variable, Y is the arithmetical pre-
vious temporal operator, and X is the arithmetical next temporal operator.
The temporal operators are applied to terms, and they refer to the value of
that term in the previous (Y) and in the next (X) position in the sequence,
i.e., the corresponding discrete position.

The syntax of SOLOISTA formula ψ is extended with term expression
α ∼ α and thus defined as follows:

ψ ::= α ∼ αα ∼ αα ∼ α | p | ¬ψ | ψ ∧ ψ | ψUIψ | ψSIψ | CK./n(ψ) | UK,h./n (ψ) |

MK,h
./n (ψ) | DK

./n(ψ, ψ),

where the relation ∼ belongs to {=, (<d)d∈Z} and all other concepts
are defined in Section 2.2. Notice that we denote a SOLOISTA formula
with a non-terminal ψ, while we retain φ as the non-terminal of SOLOIST
formulae.

Hereafter, we use quantifiers (∀ and ∃) and parameterized propositions
over finite sets as a shorthand for representing a group of constraints. For
example, given the set A = {1, 2, 3} and the parameterized proposition
p(·), the formula ∀a ∈ A : p(a) is a shorthand for p1 ∧ p2 ∧ p3, where
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p1, p2, p3 ∈ Π. We omit the definition of the set when it is clear from the
context.

The formal semantics of SOLOISTA formulae can be defined as fol-
lows. Let τ be a timed sequence and σ word over the alphabet 2Π (see
Section 2.1.1). We additionally define π = π0π1 . . . π|π|−1 be a sequence of
evaluations πi : V → Z used to pinpoint the value of variables at each time
position. We denote the value of x at position i with πi(x) and the value
πi+|α|(xα) with πi(α), where xα is the variable in V occurring in term α,
if any. Given a time instant i ≥ 0 and a structure (σ, π, τ), we define the
satisfaction relation (σ, π, τ), i |=A ψ for SOLOISTA formulae as shown in
Figure 6.2. A formula ψ ∈ SOLOISTA is satisfiable if there exists a triple
(σ, π, τ) such that (σ, π, τ), 0 |=A ψ; in this case, we say that (σ, π, τ) is a
model of ψ, with (σ, τ ) being the timed propositional model and (π, τ ) be-
ing the arithmetic model. Also, we use SOLOISTA over finite words (i.e.,
for trace checking), thus we retain decidability.

In order to provide a decision procedure for SOLOISTA language we
need to extend our translations to support arithmetical terms. We consid-
ered both CLTLB(D) and QF-EUFIDL translation for extension and chose
QF-EUFIDL since the language supports arithmetical variables natively.
Although CLTLB(D) supports counters they cannot be directly used to en-
code arithmetical constraints from SOLOISTA, since they are not defined
over timed words. To be able to capture semantics of SOLOISTA, the
CLTLB(D) needs to support a concept of a freezing operator and use it
to compare values of counters at arbitrary positions, however formal proof
for the lack of expressiveness of CLTLB(D) is still an open issue.

Therefore, we focus on the (more intuitive) extension of the QF-EUFIDL-
based encoding by introducing an arithmetical variable |v| for every term v
in SOLOISTA formula and we also introduce constraints CA that define the
appropriate semantics of the SOLOISTA terms as shown in Figure 6.3.

The first row defines the values of the variables. The second and third
rows define constraints for the equality and integer difference relations as
a straightforward mapping to the same relations in QF-EUFIDL. The forth
and fifth row define semantics of the arithmetical next operator, by associ-
ating the value of the variable |X(v)| at position i to the value of the variable
|v| at position i + 1. The value of the variable |X(v)| at the last position is
0 by convention. Encoding of the arithmetical previous operator is defined
in a similar way.

The final QF-EUFIDL formula obtained from the encoding of the input
SOLOISTA formula Φ is now the following conjunction extended with CA
constraints: JΦK0 ∧CACACA ∧ Ctime ∧ Cprop ∧ Ctemp ∧ Cc ∧ Cm ∧ Cd.
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Position i Propositional operators Description

0 . . . H |v|i = πi(v) arithmetical variables

0 . . . H Jv = wKi ↔ |v|i = |w|i equality

0 . . . H Jv <d wKi ↔ |v|i <d |w|i integer difference

0 . . . H − 1 |X(v)|i = |v|i+1 "arithmetical next" operator

H |X(v)|H = 0 "arithmetical next" operator at position H

1 . . . H |Y(v)|i = |v|i−1 "arithmetical previous" operator

0 |X(v)|0 = 0 "arithmetical previous" operator at position H

Figure 6.3: Extended encoding for the SOLOISTA terms

6.4 Modeling Resources of Cloud-based Systems

At the basis of cloud-based service provisioning there is the possibility of
accessing remote resources. As anticipated in Section 6.1, in this paper we
consider elastic behaviors with respect to the management and adaptation
of resources offered at the IaaS level, in particular virtual machines; here-
after, by slightly abusing the terminology, we will refer to resources and
virtual machines interchangeably. In the rest of this section we introduce
some useful notation and express in SOLOISTA some general aspects that
characterize the lifecycle of resources in a cloud-based system.1 These as-
pects will then be assumed to hold across the formalization of the properties
of cloud-based elastic systems in the next section.

We model the total resources in use by a system at a certain time instant
by means of a non-negative integer variableR ∈ V . We use constantsRmin

and Rmax to denote the minimum and maximum number of resources that
the system can allocate. At any time, the amount of resources allocated to a
system must be within these limits. We capture this constraint on resource
allocation with the following formula:

G(Rmin ≤ R ∧ R ≤ Rmax ) (Mbound )

which states that number of resources R is bounded throughout the entire
execution of the cloud-based system.

We use a non-negative integer variable L ∈ V to denote the current
load of the system, expressed in terms of required resources. We assume

1We use the term “cloud-based system” instead of the one “cloud-based elastic system” used elsewhere in
the paper, since the aspects described here for modeling the resources can be assumed to hold for every kind of
cloud-based system, not necessarily with an elastic behavior.
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that each cloud-based system has always enough resources to support the
current load (the manageable load assumption), as stated below:

G(L ≤ Rmax ) (Mload )

Virtual Machine Lifecycle

At the IaaS layer, users create virtual machines to host their applications;
each virtual machine is uniquely identified by an ID. LetRmax be a positive
integer parameter representing the maximum number of virtual machines
that can be allocated by a system. The set of valid virtual machines IDs is
then defined as ID = {0, . . . , Rmax − 1}.

To model the events characterizing the lifecycle of a virtual machine, we
represent them as parameterized propositions. We use Mstart(·) to denote
a request to instantiate a new virtual machine; conversely, we use Mstop(·)
to denote a shut-down request. After receiving the request to instantiate a
new virtual machine, the cloud infrastructure starts the actual instantiation
process by allocating the physical resources and booting the OS: the end
of the OS boot is denoted with proposition Mboot(·). The actual event in
which the user application is ready to process the input is denoted with
Mready(·). Similarly, in the case of a shut-down request, we denote the
actual termination of the virtual machine (following the shut-down request)
with the propositionMend(·). The order of occurrence of these events has to
match the one defined by the lifecycle of a virtual machine: Mstart–Mboot–
Mready–Mstop–Mend . We state this constraint by AND-ing the following
formulaeMsb ,Mbr ,Mrs ,Mse :

∀id : G(Mstart(id)→((¬Mstart(id) ∧ ¬Mready(id)

∧ ¬Mstop(id) ∧ ¬Mend(id))

UMboot(id))) (Msb)

∀id : G(Mboot(id)→((¬Mboot(id) ∧ ¬Mstart(id)

∧ ¬Mstop(id) ∧ ¬Mend(id))

UMready(id))) (Mbr )
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∀id : G(Mready(id)→((¬Mready(id) ∧ ¬Mstart(id)

∧ ¬Mboot(id) ∧ ¬Mend(id))

UMstop(id))) (Mrs)

∀id : G(Mstop(id)→((¬Mstop(id) ∧ ¬Mready(id)

∧ ¬Mstart(id) ∧ ¬Mboot(id))

UMend(id))) (Mse)

All the formulae above follow the same structure. For example, in the case
of FormulaMsb , we state that after a request to instantiate a certain virtual
machine (Mstart ), all other requests for the same machine (events Mstart ,
Mready , Mstop , Mend ) cannot occur until the OS boot ends (event Mboot ).

In addition, we require that the lifecycle of a virtual machine starts with
event Mstart :

∀id : G(Mend(id)→ P(Mstart(id))) (Mstart )

The formula states that event Mend is always preceded by event Mstart , for
any id.

Finally, we specify that the transition from eventMstart(·) to eventMboot(·)
might take some finite time, bounded by the parameter Tcd defined by each
single provider. This requirement is expressed as:

∀id : G(Mstart(id)→ F(0,Tcd )(Mboot(id)))2 (Mbad )

The formula states that after receiving a request to allocate a new virtual
machine, the boot process has to complete within Tcd time units.

6.5 Properties of Cloud-Based Elastic Systems

In this section we present concepts and properties that can be used to char-
acterize relevant behaviors of cloud-based elastic systems. The concepts
and the properties have been selected and derived based on our research
experience in the field, especially matured within EU-funded projects like
RESERVOIR [98] and CELAR [43]. The presentation is divided in three
groups: elasticity, resource management, and quality of service.

As previously remarked, for the proposed formalization of properties,
we assume that the concepts described in the previous section must always
hold, i.e., if Csystem is the conjunction of all formulae described in Sec-
tion 6.4, we consider execution traces that satisfy Csystem .

2A closed interval [a, b] over N can be expressed as an open one of the form (a− 1, b+ 1), a ≥ 1.
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6.5.1 Elasticity

As we have seen in Section 6.2, elastic systems are supposed to dynami-
cally adapt in reaction to fluctuations in the input workload, by changing
their computing capacity. In the case of cloud-based elastic systems, the
adaptation is performed either by increasing the computing capacity with
the allocation of additional resources, or by decreasing the capacity by re-
leasing a portion of those resources.

Recall that we model the resources currently in use by a system with a
non-negative integer variable R. Since elastic systems usually start with a
minimal allocation of resources, at the beginning we set the value of vari-
able R equal to Rmin :

R = Rmin (Minit )

A cloud-based elastic system must change its resources allocation ac-
cording to the decisions made by the elastic controller. These decisions
result in the requests Mstart and Mstop , to allocate or deallocate resources,
which ultimately determine the amount of resources that are actually in use
by the system, which we model with the variable R. The value of R has to
change when either an Mstart or Mstop event occurs. We set an arithmetic
constraint on the value of R with the following formulae:

∀id : G(Mstart(id)→ R = Y(R) + 1) (Mi )
∀id : G(Mstop(id)→ R = Y(R)− 1) (Md )

The first formula states that after receiving the request to instantiate a new
virtual machine the number of resources in use by the system must be in-
creased; conversely, the second formula states that when there is a request
to shut down a virtual machine, the number of resources must be decreased.

We also require that changes to the allocation of resource should happen
only as a consequence of anMstart orMstop request, triggered by the elastic
controller.3 This requirement is expressed as a constraint on changes to the
value of R with the following formulae:

∃id : G(R = Y(R) + 1→Mstart(id)) (Mix )
∃id : G(R = Y(R)− 1→Mstop(id)) (Mdx )

We explicitly require that the value of R must not change if neither Mstart

nor Mstop occurs with the formula:

G((∀id : ¬Mstart(id) ∧ ¬Mstop(id))↔ R = Y(R)) (Meq )
3We assume that the elastic controller is the only component that can issue the Mstart and Mstop requests.
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After formalizing resource change over time, we introduce the concepts
of eagerness and sensitivity, which capture dynamic aspects of an elastic
behavior, such as the speed of adaptation and the minimum variation in the
load that triggers an adaptation.

Eagerness informally refers to the speed of the reaction of a system
upon a change of the load. It captures the fact that elastic systems must
adapt to changes in the workload in a timely manner. We introduce param-
eter Te to represent the maximum amount of time within which an elastic
system must react to change in the load.

Sensitivity informally refers to the minimum change in the load that
should trigger adaptation. It captures the fact that different elastic systems
may react to different load intensities and variations. Sensitivity prevents
the system from adapting to small, transient changes in the load, possibly
creating unnecessary costs. We model the sensitivity of a system with the
parameter ∆. This parameter defines a range over the currently measured
load: if the load stays within this range, then adaptations are not necessary
and will not be triggered. The parameter ∆ can assume values from the
[0, Rmax ) interval. The case ∆ = 0 identifies an elastic system that reacts
to any change in the load. Under the “manageable load” assumption (see
FormulaMload ), the case ∆ = Rmax would identify a system that is totally
insensitive to the load, i.e., a system that does not adapt. In our understand-
ing this is not an elastic system, and we do not allow this behavior.

We introduce an auxiliary variable, La ∈ V , to model eagerness and
sensitivity. This variable accumulates the change in the value of the load L.
The behavior of La is constrained as shown below:

La = 0 (Prt1 )
G((−∆ ≤ La ≤ ∆)→ X(La) = La + X(L)− L) (Prt2)

The first formula initializes the value of La to zero. The second formula
constraints the value of La to change only if its value stays within the
threshold defined by the parameter ∆; the value of La is incremented ac-
cording to the difference of the values of the system load L in two consec-
utive time positions (X(L)− L).

We can now characterize the behavior of a system when scaling up and
down occur in terms of variables R and La:

G((La > ∆)→ (X(La) = X(L)− L ∧ F(0,Te](X(R) > R))) (Prt3 )
G((La < −∆)→ (X(La) = X(L)− L ∧ F(0,Te](X(R) < R))) (Prt4 )

The two formulae express the possible changes in the number of allo-
cated resources: either an increase (denoted with the arithmetical constraint
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X(R) > R in Prt3 ) or a decrease (denoted with X(R) < R in Prt4 ). In
both cases, the adaptation is triggered when the value of La (the accumu-
lated change of the load) exceeds the threshold defined by parameter ∆.
Moreover, the number of resources R is constrained to change within the
temporal bound Te. Furthermore, the formulae constrain also the value of
La in the next instant, by “resetting” the value accumulated so far.

Plasticity. A distinctive characteristic of elastic systems is their ability
to release resources when the load decreases. In particular, when the load
drops to zero an elastic system must be able to deallocate all its resources
within a reasonable time and return to the minimal configuration of resource
allocation. We call systems that do not show this behavior plastic; a plas-
tic system is a system that cannot return to its minimal configuration after
increasing the number of resources. Ideally, a truly elastic system should
never show a plastic behavior.

We introduce parameters Tp1 and Tp2 . Parameter Tp1 indicates for how
long the system needs to experience no load, before deallocating all the
resources; it is useful to avoid reacting to transient and short-term changes
in the load. The other parameter Tp2 represents the maximum time the
system has to react if a complete deallocation of resources is needed. The
following formula characterizes a system that is not plastic:

G(G(0,Tp1 ](L = 0)→ F(0,Tp2 ]R = Rmin) (Ppl )

It states that, for all time positions, if a load is equal to zero in a time range
bounded by Tp1 , then the number of resources will return to its minimal
configuration within Tp2 . The violation of Formula (Ppl ) is a sufficient
condition for a system to be plastic.

6.5.2 Resource Management

There is a variety of valid elastic behaviors that our model allows. In this
section, we list some properties that can be used to better characterize these
behaviors. All the properties described in this section focus on resource
management, that is, how resources are allocated and deallocated by the
system.

Precision identifies how good is the elastic system in allocating and
deallocating the right number of resources with respect to variation in the
load. In other terms, precision constrains the amount of resources that sys-
tem is allowed to over- or under-provision. We capture precision by means
of parameter ε and Formula Pdiv , under the “manageable load” assumption:

G(|R− L| < ε) (Pdiv )
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The formula4 states that during the course of system execution the over-
all difference between the load and the resources allocation cannot differ
more than the specified amount ε. This parameter should be defined by the
designer of the cloud-based application depending on its requirements.

Oscillation. An elastic system that repeatedly allocates and deallocates
resources even when the load stays stable is said to oscillate. Oscillations
may appear as a consequence of the discrete nature of resources allocation
in combination with poorly-designed conditions that trigger adaptation. For
example, an elastic controller might try to allocate an average capacity of
1.5 virtual machines by switching between the allocation of one virtual ma-
chine and two virtual machines. Despite oscillations being a valid elastic
behavior, they might impact on the running costs of the system. We char-
acterize non-oscillating behaviors with the following formulae:

G(X(R) > R→ P(0,Te](X(L) > L)) (Ppo1 )
G(X(R) < R→ P(0,Te](X(L) < L)) (Ppo2 )

The formulae constrain the increase (decrease) of the number of resources
only in correspondence with an increase, respectively an decrease, of the
load. The formulae use the eagerness parameter (Te) to limit the observa-
tion of load variations in the past (expressed with P(0,Te]). If the controller
performs an adaptation not “justified” by a change in the load, it will violate
the property captured by the formulae above.

Resource Thrashing. Elastic systems may present opposite adaptations
in a very short time; for example, a system may scale up, and then, right
after finishing the adaptation, it can start to scale down. This situation is
commonly known as resource thrashing. In other words, resource thrashing
is a temporary, yet very quick, oscillation in the allocation of resources. In
the case of a resource thrashing situation, the resources that are impacted by
the adaptation generally do not perform any useful work, yet they contribute
to an increment of the running costs. Resource thrashing is parametrized
by a minimum time Trtx allowed between an increase and a decrease in
the number resources. This time is usually defined by the designer of the
cloud-based application, after taking into account the actuation delay of the
controller. For a system not manifesting a resource trashing condition, the

4For clarity, in the formula we use the metric | · |, which does not belong to the SOLOISTA syntax. A
SOLOISTA compliant formulation can be obtained by applying the following rule: |a| ∼ b ≡ (a ∼ b ∧ a ≥
0) ∨ (−a ∼ b ∧ a < 0), where ∼ is a relational operator.
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following formulae should hold:

G(R < X(R)→ ¬F(0,Trtx ](R > X(R))) (Prtx1 )
G(R > X(R)→ ¬F(0,Trtx ](R < X(R))) (Prtx2 )

The formulae constrain the occurrence of opposite adaptations to happen
after a minimum amount of time Trtx .

Cool-down period is a strategy adopted by designers to achieve a bounded
number adaptations over a period of time. It is used to prevent the con-
troller from adapting faster than the time needed for the actual actuation
on the cloud-based system. The controller is required to freeze for a given
amount of time and let the system stabilize after an adaptation. We consider
a system unstable if it is in the process of adaptation; this is represented by
proposition A. In the following formulae

G

∀id :

¬Mready(id)SMstart(id)

∨
¬Mend(id)SMstop(id)

→ A

 (Mai )

G

∃id : A→

¬Mready(id)SMstart(id)

∨
¬Mend(id)SMstop(id)


 (Madp)

we yield the proposition A true whenever an adaptation is currently in
progress: either event Mstart(id) or Mstop(id) were issued, but no Mready

(respectively Mend ) event is observed. This notions are expressed using the
“Since" (S) modality. We can then use proposition A to express the fact
that the controller needs to wait for all recently allocated resources to be
ready before performing a new adaptation. This can be represented as a
constraint on R to not change when A holds:

G(A→ Y(R) = R) (Pcdp)

Bounded concurrent adaptations. Sometimes forcing the controller
not to react during adaption can be considered a very rigid policy. We can
relax this requirement by allowing the controller a fixed number of actions
during the adaptation. This property can be viewed as a generalization of
the previous one, where the fixed number of actions during adaption was
one. To formalize this property we rely on formulae Mai and Madp to
distinguish the time positions during which an adaptation of the system oc-
curs. The constant Ma represents the maximum number of allowed actions
for the controller (either allocations or deallocations) while the system is
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in the unstable state. In the formalization, we also introduce an additional
variable ca that counts how many overlapping adaptations occur.

ca = 0 (Pbca1 )
G((Y(R) 6= R)→ X(ca) = ca + 1) (Pbca2 )
G((A ∧ Y(R) = R)→ X(ca) = ca) (Pbca3 )
G(¬A→ X(ca) = 0) (Pcdp3 )
G(ca < Ma) (Pbca4 )

Formula (Pbca1 ) initializes the variable ca at position 0. Formulae (Pbca2 )
and (Pbca3 ) update ca. Formula (Pbca2 ) increases ca when there is a change
in the number of resources (Y(R) 6= R), while formula (Pbca3 ) propagates
the current value of ca during adaptation (hence, A is required to hold in its
antecedent). When the system is not adapting (denoted by ¬A) we reset the
value of ca to zero, expressed in (Pcdp3 ). Finally, we constrain the value of
ca to be less then Ma over the whole execution trace.

Bounded resource usage. The running costs of elastic systems can
be constrained by specifying properties that apply on the whole set of re-
sources in use. For example, we can specify a constraint on the absolute
amount of resources in use by the system, as done in Section 6.4 with For-
mula Mbound . We can also specify time-dependent constraints that tem-
porarily bound the maximum number of resources to certain predefined
levels. Time dependent constraints are useful if the budget allocated to the
elastic system is very limited, and one must guarantee that the system will
run for a given period of time. If the budget is exhausted while the system is
still running, the infrastructure abruptly stops and deallocates all the virtual
machines. To avoid this situation, an elastic system might need to limit the
use of resources beyond a certain threshold, for a specified time interval.
We call this requirement bounded resource usage and define two parame-
ters to characterize it: a stricter resource bound Rtmax with Rtmax < Rmax ,
that represents the temporary new threshold for allocating resources, and a
time bound Tbru , within which resources above the threshold Rtmax should
be released. This requirement is expressed as follows:

G(R > Rtmax → F(0,Tbru ](R ≤ Rtmax )) (Pbru)

The formula states that whenever the controller allocates more resources
than allowed by the temporary threshold, it needs to release them within
Tbru time.
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6.5.3 Quality of Service

As any other computer system, elastic systems must provide some prede-
fined level of QoS; however, cloud-based elastic systems introduce a new
way to enforce them with respect to non-elastic systems. In the rest of this
section, we describe some properties that determine the QoS perceived for
a cloud-based system.

Bounded QoS degradation. Implementing a system adaptation, such
as scaling up or down resources, may incur in non-trivial operations inside
the system. Component synchronization, registration, data replication and
data migration are just the most widely known examples. During systems
adaptation it may happen that the system shows a degraded QoS. Elastic
systems may be required to limit this amount of QoS degradation.

Assuming that the level of quality of service is measurable with a single
value, we model the normally-required QoS limit with the parameter c. In
addition, we define the parameter d to model the reduced (degraded) bound
on the value of QoS (c ≥ d). We formalize the requirements on bounded
degradation during adaptation as follows:

G(A→ Q > d) ∧ G(¬A→ Q > c) (Pbqos)

The formula above says that the threshold on the normally-required QoS
level c should be satisfied only when the system is not performing any
adaptation. Instead, during adaptation, the relaxed value d for the QoS
is enforced.

Bounded actuation delay. The performance of an elastic system is
greatly impacted by the reaction time of its controller, and a controller with
a slow reaction time may determine non-effective elastic systems, because
adaptations are triggered too late. However, even though the controller
triggers an adaptation in time, the system could still be non-effective if
the resources take too long to be ready. For this reason, we constrain the
actuation delay of the controller with the following formulae:

∀id : G(Mboot(id)→ F(0,Tad )(Mready(id))) (Pbad )
∀id : G(Mstop(id)→ F(0,Tad )(Mend(id))) (Pbad ′)

We introduce a temporal bound, denoted by parameter Tad , in Formula (Pbad )
(respectively, (Pbad ′)) between occurrences of theMboot(id) andMready(id)
events (respectively, Mstop(id) and Mend(id)). Intuitively, the time needed
for the application to be ready to serve requests must be less than Tad .

89



i
i

“thesis” — 2016/12/13 — 10:42 — page 90 — #102 i
i

i
i

i
i

Chapter 6. Case study: Cloud-based Elastic Systems

Table 6.1: Time T(s) and Memory M(MB) evaluation data of the Elastic Doodle service

Trace RT PL CDP

ID Events Time span (s) Max resources T(s)/M(MB) T(s)/M(MB) T(s)/M(MB)

T1 15 1102 2 1.44/120.1 1.20/117.7 2.29/126.2
T2 43 635 4 2.83/135.3 1.47/121.8 1.42/121.5
T3 29 641 3 1.77/131.5 1.21/117.7 1.62/126.2
T4 17 499 3 1.20/116.7 1.27/116.0 1.38/115.9
T5 44 644 3 2.94/135.4 1.45/122.1 1.45/121.7

6.6 Trace checking

We evaluated our formalization of the relevant properties of cloud-based
systems by determining whether it could be effectively applied to check
this class of properties over execution traces of realistic applications. In
particular, we performed trace checking of some of the properties described
in Section 6.5 over system execution traces. Our goal was to evaluate the
resource usage (execution time and memory) of the trace checking proce-
dure for the different types of properties and if the properties are violated
by our example cloud-based elastic system.

6.6.1 Methodology

Traces were obtained from the execution of an instance of the “Elastic Doo-
dle” service (see below), deployed over a private OpenStack cloud infras-
tructure. To trigger elastic behaviors in the application, we created several
input workloads, fluctuating according to sine waves, squared waves, and
sawtooth patterns. We configured the monitoring tools of the application to
create a set of execution traces, each of them containing the timestamped
events corresponding to the allocation and deallocation of virtual machines.
We leveraged the AUToCLES tool [70] to automate the execution of multi-
ple runs of the system with different input workloads, and to perform data
collection.

The following properties were selected for verification over the gener-
ated traces: (RT) Resource thrashing; (PL) Plasticity; (CDP) Cool down
period.

We used the ZOT verification toolset enhanced with our two plugins for
trace checking. We translated the traces collected from the execution of
the “Elastic Doodle” service into a SOLOISTA formula, where each occur-
rence of a virtual machine allocation or deallocation event is mapped onto
an atomic proposition holding at the corresponding timestamp. The logical
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Databasepublic interface

Load Balancer

Doodle Application Servers

. . .

average requests add | remove application server

Elastic Controller

Figure 6.4: High-level architecture of the “Elastic Doodle” service.

conjunction of this formula, of the formulae presented in Section 6.4, and
of the SOLOISTA version of each of the properties to verify was then pro-
vided as input to ZOT. For each verification run, we recorded the memory
usage and the SMT verification time.

6.6.2 The Elastic Doodle

The “Elastic Doodle” service is an open-source clone of the popular Inter-
net calendar tool of the same name. We extended the original code base
to support elastic behaviors, by including both the adaptation logic and the
elastic controller. We also added advanced monitor capabilities.

Figure 6.4 shows the high-level architecture of this elastic service. The
system is organized as a n-tier system with a load-balancer that exposes
the service endpoint to end-users on one side, and forwards client requests
to a lineup of application servers on the other side. The application servers
interact with a shared database that acts as the storage/persistency tier of
the system. The middle tier has an elastic behavior: instances of the appli-
cations server composing this tier can be dynamically added and removed.
This elastic behavior is determined by the controller, which periodically
(e.g., every ten seconds) reads the monitored data and decides on the next
resource allocation strategy using a rule-based approach. The following
two rules are in place:
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scale-up: if the average number of requests per running application server
in the last minute is over a certain maximum threshold, a new instance
of application server is allocated; the controller stops its execution for
one minute;

scale-down: if the average number of requests per running application
server in the last minute is below a certain minimum threshold, a run-
ning instance of application server is deallocated; the controller stops
its execution for two minutes.

6.6.3 Results and Discussion

Our trace checking procedure processes the logs generated by the Elastic
Doodle service and filters only significant events likeMstart , Mboot , Mready ,
Mstop , Mend and any change in the value of the load assigned to L. These
events were conjuncted into a formula representing the trace. Let us define
a formula (MR) as a conjunction of all formulae that define the behavior
of the variable R: (Minit ) ∧ (Mload ) ∧ (Mi ) ∧ (Md ) ∧ (Mix ) ∧ (Mdx )
∧ (Meq ). Similarly, we define (MA) as the conjunction of formulae that
define the behavior of proposition A: (Mai ) ∧ (Madp).

For the property (RT) we perform bounded satisfiability checking of the
formula FRT= (MR) ∧ ¬ ((Prtx1 ) ∧ (Prtx2 )) over the traces. We conjunct
the term (MR) in FRT because resource thrashing formula relies on vari-
able R. We choose Trtx to be 50 seconds. For the property (PL) we check
formula FPL=(MR) ∧ ¬ (Ppl ). Plasticity formula also uses variable R,
hence the conjunct (MR). We choose Tp1 to be 3 minutes and Tp2 30 sec-
onds. Finally, for the property (CDP) we check FCDP=(MR) ∧ (MA) ∧
¬ (Pcdp). Since cool down period formula relies both on variable R and
proposition A we conjunct their definitions with FCDP .

Notice that in FRT , FPL and FCDP we are negating the property formu-
lae. This is done because we perform satisfiability checking and the models
of the formulae in fact represent counterexamples of the properties.

We chose five traces with different values for the number of significant
events, the time span, and the maximum number of resources being allo-
cated during execution. We report time and memory results for the verifica-
tion of each property RT, PL and CDP in Table 6.1. Besides the size of the
formula, the parameters that affect the time and memory of the verification
procedure are the number of significant events in the traces and the number
of resources allocated during the execution.
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The trace checking procedure confirmed that traces T1, T3 and T5 sat-
isfy all three properties. Trace T2 violates property RT due to deallocation
of a resource 30 seconds after its allocation; it also violates property PL
since not all resources are deallocated in the last 3 minutes. Trace T4 vi-
olates both properties RT and CDP because of a single (wrong) decision
made by the elastic controller: it deallocated a resource while another re-
source was still initializing, within 50 seconds.

The results of the evaluation suggest that checking the proposed prop-
erties formalized in SOLOISTA over realistic execution traces is feasible,
since the time needed for executing the checking is small (1.66 seconds
on average) and the amount of memory required is reasonable (123MB on
average). Thus, we answer the RQ4 from Chapter 5.
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CHAPTER7
State of the Art

This work lies in the wider area of research on verification of SBAs; reader
may refer to various surveys [11, 40, 42, 110], illustrating approaches both
for design-time and for run-time verification of functional and QoS prop-
erties. The rest of this section focuses on existing work on trace checking
and verification of quantitative properties specified in languages similar to
SOLOIST, as well as other attempts at developing specification languages
for expressing quantitative properties.

Trace checking of quantitative properties

Finkbeiner et al. [66] describe an approach to collect statistics over run-time
executions. They extend LTL to return values from a trace and use them to
compute aggregate properties of the trace. However, the specification lan-
guage they use to describe the statistics to collect provides only limited sup-
port for timing information. For example, compared to SOLOIST, it cannot
express properties on a certain subset of an execution trace. Furthermore,
their evaluation algorithm relies on the formalism of algebraic alternating
automata. These automata are manually built from the specification; thus
making frequent changes to the property error-prone.
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Chapter 7. State of the Art

In reference [18] authors define an extension of metric first-order tempo-
ral logic (called MFOTLΩ) which supports aggregate modalities from a set
Ω. This language is very similar to SOLOIST and it supports any aggregate
modality defined as a mapping from multi-sets of values from some domain
D to Q ∪ {⊥}. A finite multi-set is mapped to a rational number while in-
finite multi-set is mapped to ⊥. MFOTLΩ is strictly more expressive than
the propositional version of SOLOIST considered in this thesis. Languages
also differ in the way the aggregate modalities are defined: MFOTLΩ ex-
presses aggregate properties over the values of the parameters of first-order
relations from the language signature, while SOLOIST expresses aggregate
properties on the occurrences of propositions in the temporal structure (C,
U and M modalities), as well as on the sequences of timestamps (D modal-
ity). In order to encode a SOLOIST formula into MFOTLΩ, one needs to
extend relation signatures with two parameters: one assuming a constant
value 1 and the other assuming the value of the timestamp at each posi-
tion of the trace. Former can be used to aggregate on the occurrences of
relations, while latter on the timestamps.

In reference [22], authors introduce a specification language PTLTLFO

(past time linear temporal logic with first-order (guarded) quantifiers) with
a counting quantifier. It is used for expressing policies that can categorize
the behavioral patterns of a user based on its transaction history. The count-
ing quantifier counts the occurrences of an event from the beginning of the
trace until the position of evaluation. The difference with the C modality
of SOLOIST is that there is no timing information: this means one cannot
specify the exact part of the trace the modality should consider.

In reference [51], de Alfaro proposes pTL and pTL* as probabilistic
extensions of CTL and CTL*. These new languages include a new modality
D that expresses the bound on the average time between events. This is
achieved by using an instrumentation clock that keeps track of the elapsed
time from the beginning of the computation until the first occurrence of a
specified event. To this end, the extended pTL formulae are evaluated on an
instrumented timed probabilistic Markov decision process. Notice that the
D modality used in [51] differs from the one we introduced here, since it
computes the time passed before the first occurrence of an event, averaged
over the different computations of the underlying Markov decision process.

In [55] the authors define a temporal extension of the OCL specifica-
tion language [72] limited, however, to expressing only common properties
classified within the well-known property specification patterns [60,73,82].
The authors translate their extension of the language into the original OCL
fragment in order to reuse the existing OCL checkers to perform trace
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checking of real time properties.
Du et al. [58] propose an extension of past-time linear temporal logic

(PTLTL) using an aggregate operator called counting quantifier, similar to
the C modality proposed in this thesis. It is able to express the number of
times some sub-policy is satisfied in the past. The authors define a fragment
of the proposed specification language that counts only values with peri-
odic occurrence and therefore can be monitored using constant space. The
authors propose an algorithm that tracks only the finite set of equivalence
classes for the periodic values and although the language does not support
timing information and other possible aggregate operators, it presents an
interesting contribution that can be considered orthogonal to our work.

In [107] the authors propose counting fluents as a generalization of propo-
sitional fluents used in the fluent linear temporal logic. Counting fluents
represent abstract states in event-based systems whose values depend on
the particular events that occurred in the execution of the system. The con-
cept of a counting fluent is very similar to the counters (and arithmetical
variables) used to encode SOLOIST modalities, however counters can be
used to encode any arbitrary complex operator and are not constrained to
increase only when particular events occur.

This work is also related to approaches for SAT/SMT-based trace check-
ing and bounded model checking, which is usually done over properties
expressed in conventional temporal logics. For example, the SAT-based
approach for bounded model checking proposed in [119] verifies Metric
Temporal Logic (MTL) properties of discrete timed automata. SMT-based
techniques like those proposed in [27,28,81] deal with verification of MTL
over real-valued words.

Specification of quantitative properties

Dustdar et al. [59] describe the main principles of elasticity in the context
of elastic processes.

There have been few proposals for modeling and formalizing elastic
properties in the literature so far. Herbst et al. [77] highlight the need for a
precise definition of elasticity in the context of cloud computing. Similarly
to the modeling approach followed in this paper, the authors characterize
the degree of elasticity in terms of speed of adaptation and precision of
adaptation. Starting from basic concepts such as adaptation, demands and
capacity the authors define a set of properties to describe the elastic behav-
ior of cloud-based systems. However, these descriptions are informal; the
paper only described a set of metrics for measuring system elasticity.
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Islam et al. [79] provide a quantitative definition of elasticity using fi-
nancial terms, taking the point of view of a customer of an elastic system
who wants to measure the elasticity provided by the system. The authors
measure the financial penalty for systems under-provisioning (due to SLA
violations) and over-provisioning (unnecessarily costs) using a reference
benchmark suite to characterize the system elasticity. Several critical situa-
tions identified in [79] have been reported/discussed in this paper. However,
Islam and coauthors provide only an informal description for the properties.

A formal definition and modeling of system plasticity is provided in [69].
The authors model elastic systems by means of state transition systems
where transitions are associated with probabilities of switching between
states, i.e., different resources allocations, as they are observed in the sys-
tem run. Plasticity is identified when the model has transitions correspond-
ing to scaling up but lacks (some) transitions corresponding to scaling down.
The authors use the proposed model to define an automated procedure for
the generation of test cases that expose plastic behaviors of cloud-based
elastic systems.

The work from [44, 45, 75, 76] is a part of larger research agenda that
aims at providing a complete quantitative generalization of formal lan-
guages and their decision procedures. In particular in [44] the authors de-
fine nested weighted automaton that serves as an operational formalization
of quantitative properties.
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Scalable Trace Checking
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CHAPTER8
Distributed and Parallel Trace Checking

8.1 Overview

Software systems have become more complex, distributed, and increasingly
reliant on third-party functionality as discussed in Section 1.1. The dy-
namic behavior of such systems makes traditional design-time verification
approaches unfeasible, because they cannot analyze all the behaviors that
can emerge at run time, thus there is a need for runtime or post-mortem
verification techniques. This chapter focuses on the post-mortem technique
called trace checking. To perform trace checking one must first collect and
store relevant execution traces produced by the system and then check them
offline against the system specifications.

The volume of the execution traces gathered for modern systems in-
creases continuously as systems become more and more complex. For
example, an hourly page traffic statistics for Wikipedia articles collected
over a period of seven months amounts to 320GB of data [4]. Execution
traces easily get very large, depending on the 1) running time captured by
the logging infrastructure (e.g., traces are captured over weeks, months or
even years); 2) the complexity of the systems the log refers to (e.g., several
virtual machines running on a cloud-based infrastructure); 3) the types of
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Chapter 8. Distributed and Parallel Trace Checking

events recorded (e.g., high-level events like service invocations or low-level
events like method calls); and 4) the granularity of the captured events (e.g.,
every second or millisecond).

This huge volume of trace data challenges the scalability of current trace
checking tools [17,63,78,108,114], which are centralized and use sequen-
tial algorithms to process the trace. Some log analyzers that process data
streams [49] or perform data mining [117] also partially solve this prob-
lem, because of the limited expressiveness of the specification language
they support. Indeed, the analysis of a trace may require checking for com-
plex quantitative properties, which can refer to specific sequence of events,
conditioned by the occurrence of other event sequence(s), possibly with ad-
ditional constraints on the distance among events, on the number of occur-
rences of events, and on various aggregate values (e.g., average response
time). As we discussed in Section 2.2, SOLOIST specification language
can express these kind of properties.

The recent advent of cloud computing has made it possible to process
large amount of data on networked commodity hardware, using a distributed
model of computation. One of the most prominent programming models for
distributed, parallel computing is MapReduce [53]. The MapReduce model
allows developers to process large amount of data by breaking up the anal-
ysis into independent tasks, and performing them in parallel on the various
nodes of a distributed network infrastructure, while exploiting, at the same
time, the locality of the data to reduce unnecessary transmission over the
network. However, porting a traditionally-sequential algorithm (like trace
checking) into a parallel version that takes advantage of a distributed com-
putation model like MapReduce is a non-trivial task as trace checking is
inherently a sequential task.

The main contribution we present in this chapter is an algorithm that ex-
ploits the MapReduce programming model to check large execution traces
against requirements specifications written in SOLOIST. The algorithm ex-
ploits the structure of a SOLOIST formula to parallelize its evaluation, with
significant gain in time. The algorithm’s iterative execution flow is inspired
by the algorithm from [12] developed to check LTL specifications.

An in-depth description of the algorithm based on MapReduce is given
in Section 8.2. Section 8.3 describes how the algorithm can be ported to the
Spark framework [120, 121] in order to obtain better performance.
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Input Reader

Mapper
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Check first position

i < h(Φ)

Input formula
Φ

Trace
T

i := 1

i ++

Parse

Lift

Evaluate

Verdict

yes

no

Figure 8.1: High-level overview of the trace checking algorithm

8.2 Trace checking with MapReduce

In this section presents the trace checking algorithm that uses MapReduce
framework to check a trace in a distributed and parallel manner. The main
difference between the version presented in this section and in [33], where
algorithm is initially presented, is in how the timing information is dis-
tributed. Instead of using the globally-shared associative list data struc-
ture [33], we make the timing information part of the (input, intermediate
and output) tuples, since it is more elegant and does not change the perfor-
mance of the algorithm.

The algorithm takes as input a non-empty execution trace T and an
SOLOIST formula Φ and provides a verdict whether the trace satisfies the
formula. Figure 8.1 shows a high-level overview of the algorithm’s control
flow. The trace is modeled as a timed word, i.e., we have T = (σ, τ). We
call pi = (σi, τi) an element of the trace T at position i. It contains the set
of atoms σi ⊆ Π that hold at position i and an integer timestamp τi. We
assume that the execution trace is saved in the distributed file system of the
cluster on which the distributed algorithm is executed. This is a realistic
assumption since in a distributed setting it is possible to collect logs, as
long as there is a total order among the timestamp induced by some clock
synchronization protocol.

The trace checking algorithm processes the trace iteratively, through a
sequence of MapReduce executions. The number of MapReduce iterations
is equal to the height of the SOLOIST formula Φ. The first MapReduce
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iteration parses the input trace from the distributed file system, applies the
map and reduce functions and passes the output (a set of tuples) to the
next iteration. Each subsequent iteration receives the set of tuples from the
respective previous iteration in the expected internal format, thus parsing
is performed only in the first iteration. A subsequent iteration l (where
1 < l ≤ h(Φ)) receives the set of tuples from the iteration l− 1. The set of
tuples contains all the positions where the subformulae of Φ of height l− 1
hold. Note that the trace itself is a similar set, containing all the positions
where the atoms (with a height 1) hold. Based on the set it receives, the
l-th iteration can then calculate all the positions where the subformulae of
height l + 1 hold. Note that, atoms have a height 1 and therefore checking
an atomic formula needs no MapReduce iterations. Each iteration consists
of three phases: 1) read phase that reads and splits the input; 2) map phase
that associates each formula with its superformula; and 3) reduce phase
that applies the semantics of the appropriate subformula of Φ. The final set
of tuples represents the all the positions where the input SOLOIST formula
holds, thus to produce the verdict it is only a matter of checking if it holds
in the first position.

8.2.1 Read phase

function INPUT READERΦ(Tk[])
for all (σ, τ) ∈ Tk[] do

for all p ∈ suba(Φ) do
output(p, (p ∈ σ, τ))

end for
end for

end function

(a) Input Reader algorithm

({p1, p3}, τ)
(p1, (>, τ))
(p2, (⊥, τ))
(p3, (>, τ))

Input reader

Φ

(b) Block diagram of the Input reader

Figure 8.2: Input reader algorithm (suba is defined in Section 2.2)

The input reader component of the MapReduce framework is used in
this phase; this component can process the input trace in a parallel way. The
trace saved in a distributed file system is split into several blocks (usually
64MB in size), replicated (usually 3 times) and distributed evenly among
the nodes. The MapReduce framework exploits this block-level paralleliza-
tion both during the read and map phases. For example, the default block
size of the Hadoop deployment is 64MB, which means that a 1GB trace is
split in 16 parts and can be potentially processed using 16 parallel readers
and mappers. However, if we execute the algorithm on 3 nodes with 4 cores
each, we could process up to 12 blocks in parallel. The input reader is used
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only in the first iteration and can be seen as a parser that converts the trace
into a uniform internal representation that is used in the subsequent itera-
tions. As shown in Fig. 8.2a, the k-th instance of the input reader handles
the k-th block Tk of the trace T . For each element (σ, τ) in Tk and every
atom p occurring in the SOLOIST formula Φ, the reader outputs a key-
value pair of the form (p, (p ∈ σ, τ)). The key is the atomic p itself, while
the value is a pair consisting of the truth value of p at time τ (obtained by
evaluating the expression p ∈ σ) and the timestamp τ .

Figure 8.2b is a block diagram of the input reader showing on a high
level how it transforms an example element ({p1, p3}, τ). Suppose that
atoms p1, p2 and p3 occur in the SOLOIST formula to be checked. The input
reader outputs a tuple for each atom, namely tuples (p1(>, τ)), (p2(⊥, τ))
and (p3(>, τ)). The key of each tuple is the atom itself and the value is a
pair consisting of the truth value of the atom and the timestamp τ .

8.2.2 Map phase

function MAPPERΦ((φ, (v, τ)))
for all ψ ∈ supΦ(φ) do

output((ψ,±τ), (φ, v, τ))
end for

end function

(a) Mapper algorithm

(a, (>, 42))
((a ∧ b, 42), (a,>, 42))
((¬a, 42), (a,>, 42))

Mapper

Φ

(b) Block diagram of a Mapper

Figure 8.3: Mapper algorithm (supΦ is defined in Section 2.2)

Each tuple generated by an input reader is passed to a mapper on the
same node. Mappers associate the formula in the tuple with all its super-
formulae in Φ. For example, given Φ = (a ∧ b) ∨ ¬a, if the input reader
returns a tuple (a, (>, 42)), the mapper will associate it with formulae a∧ b
and ¬a, outputting the tuples (a ∧ b, (a,>, 42)) and (¬a, (a,>, 42)). As
shown in Fig. 8.3a, the mapper receives tuples in the form (φ, (v, τ)) from
the input reader and outputs all tuples of the form ((ψ,±τ), (φ, v, τ)) where
ψ ∈ supΦ(φ) (see Section 2.2 for the definition of sup).

Notice that the key of the intermediate tuples emitted by the mapper has
two parts: this type of key is called a composite key and it is used to perform
the so called secondary sorting of the intermediate tuples. As explained
in Section 2.5.1 MapReduce framework partitions the intermediate tuples
using the partition function and sorts each partition using the comparison
operator for each key. Secondary sorting is a technique that allows sorting
intermediate tuples not only by the key, but also “by value” and it’s achieved
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by introducing a composite key and redefining the partition function and
the comparison operator. In our case, we perform secondary sorting based
on the timestamp τ added to the composite key with either a positive or a
negative sign; the sign depends on the type of superformula ψ. If ψ is a
future-time temporal operator then a negative sign is used so that the trace
is sorted in the reverse order. Otherwise, the trace is sorted in the increasing
value of the timestamp. To get an intuition on how the comparison operator
is implemented consider the following Java code:

@Override
public int compareTo(CompositeKey that) {

int result = this.key.compareTo(that.key);
if(result == 0) {

result = this.time.compareTo(that.time);
}
return result;

}

The code above ensures that the tuples with the same key are compared
according to the value of the timestamps. Therefore the reducers will re-
ceive the intermediate tuples in the order of the increasing (or decreasing)
value of timestamps. The partition function is defined to consider only the
formula in the composite key, so that every reducer will receive tuples with
a different formula. Secondary sorting greatly decreases the memory used
by the reducer.

8.2.3 Reduce phase

In this phase, each reducer receives tuples with the same formula in the
composite key and process them in parallel. The reducers exploit the in-
formation produced by the mappers to determine the truth values of the su-
performula at each position, i.e., reducers apply the appropriate SOLOIST
semantics of the appropriate formula. The total number of reducers run-
ning in parallel at the l-th iteration is the minimum between the number of
subformulae with height l in the input formula Φ and number of available
reducers1. Each reducer calls an appropriate reduce function depending on
the type of formula used as key in the received tuple.

In the rest of this section we present the reduce algorithms for each
SOLOIST operator and modality. We also introduce two auxiliary func-
tions checkIteration and updateQueue in Figure 8.4. Function checkIteration
(see Algorithm 8.4a) checks if the formula ψ received as a key by a reducer
can be handled in the iteration l. As explained earlier at iteration l only

1This depends on the configuration of the cluster. Typically, it is the number of nodes in the cluster multiplied
by the number of cores available on each node.
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1 function CHECKITERATION((T, ψ, l))
2 if (h(ψ) > l + 1) then
3 for all (φ, v, τ) ∈ T do
4 output(φ, v, τ)
5 end for
6 return ⊥
7 end if
8 if (h(ψ) = l + 1) return > end if
9 return ⊥

10 end function

(a) Disjunction

1 function UPDATEQUEUE(((φ, v, τ), win, I, f))
2 if (v) win.enqueue((φ, v, τ)) end if
3 while |τ − win.first.τ | 6∈ [0, 0]

⊎
I do

4 f(win.dequeue())
5 end while
6 end function

(b) Conjunction

Figure 8.4: Auxiliary functions used by the reducer algorithms

formulae with height l + 1 can be checked, therefore the function returns
true, that signals the reducer to proceed with processing the tuples. In other
cases the function returns false. Any tuple received before the appropriate
iteration needs to be retransmitted. This is done in lines 3–5 using a for
loop and traversing the intermediate values denoted with variable T . T is
a data structure provided by the MapReduce framework for representing
intermediate tuples. Traversing T is done by fetching each tuple in a lazy
fashion and never materializing all the tuples completely in memory. Re-
transmission of prematurely received tuples is done in order to make sure
that they are processed in the appropriate iteration. For example, if we con-
sider a formula (aUb) ∧ c, in the first iteration the mapper would generate
tuples of the form ((aUb, τ), (a, v, τ)) and ((aUb, τ), (b, v, τ)) for all τ , as
well as tuples of the form (((aUb) ∧ c, τ), (c, v, τ)). These tuples cannot
be handled in the first iteration since the value of the formula aUb is still
not computed. Therefore tuples of the form (c, v, τ) must be retransmitted
and considered again in the second iteration. Function updateQueue is a
function that updates a queue data structure passed as a parameter win. It
is used by the reducer functions for metric temporal operators and aggre-
gate modalities, since implementing their semantics requires storage. As
shown in Algorithm 8.4b, updateQueue also takes as parameters a tuple
(φ, v, τ), an interval I and a generic function f . If value v is true, tuple
(φ, v, τ) is inserted at the end of the queue win (line 2). After that, in the
while loop (lines 3–5) all the tuples from the head of the queue are removed,
if their timestamp is not within the interval [0, 0]

⊎
I from the timestamp

τ . Interval [0, 0]
⊎
I is a convex union2 of intervals [0, 0] and I . Function

updateQueue applies the function f to every removed tuple producing a
side effect defined by the caller. In other words, updateQueue maintains a

2A convex union of intervals is defined as a convex hull of the union of the intervals. For example, convex
union of [0,3] and [5,6] is [0,6].
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queue of selected events φ, with certain truth value v, whose timestamps are
in the interval [0, 0]

⊎
I from τ . We chose this particular function because

it supports a vide range of queue operations that can be used to implement
semantics of various temporal formulae.

1 function REDUCER¬l (ψ, T )
2 if (checkIteration(ψ, T, l))
3 then
4 for all (φ, (v, τ)) ∈ T do
5 output(ψ, (¬v, τ))
6 end for
7 end if
8 end function

(a) Negation operator

1 function REDUCER∧l (ψ, T )
2 if (checkIteration(ψ, T, l))

then
3 τprev ← 0, val← >
4 for all (φ, v, τ) ∈ T do
5 if (τ = τprev) val← val∧v
6 else output(ψ, (val, τprev))
7 val← >
8 end if
9 τprev ← τ

10 end for
11 output(ψ, (val, τprev))
12 end if
13 end function

(b) Conjunction operator

1 function REDUCER∨l (ψ, T )
2 if (checkIteration(ψ, T, l))

then
3 τprev ← 0, val← ⊥
4 for all (φ, v, τ) ∈ T do
5 if (τ = τprev) val← val∨v
6 else output(ψ, (val, τprev))
7 val← ⊥
8 end if
9 τprev ← τ

10 end for
11 output(ψ, (val, τprev))
12 end if
13 end function

(c) Disjunction operator

Figure 8.5: Reducer algorithms for boolean operators

Boolean operators

Figure 8.5 shows reducer algorithms for negation, conjunction and disjunc-
tion boolean operators.

Negation. When the key refers to a negation superformula, the reducer
simply emits a tuple with a negated value. For example if the reducer re-
ceives a tuple (¬a, (a,⊥, 42)) it emits a tuple (¬a,>, 42). Algorithm. 8.5a
shows how output tuples are emitted.

Conjunction. We extend the binary ∧ operator defined in Section 2.2 to
any positive arity; this extension does not change the language but improves
the conciseness of the formulae and the efficiency of the algorithm, since
we reduce the height of the formulae. For example, conjunction a∧b∧c∧d
is represented as a single conjunction with 4 subformulae and has height
equal to 2, rather than 4. This effectively reduces the number of iterations.

Algorithm 8.5b processes all the tuples sequentially. Since the incoming
tuples are sorted by their timestamps, if k is the arity of the conjunction
formula, the reducer will receive k tuples with the same timestamp before
the timestamp value changes. Therefore, it is enough to track when the
value of the received timestamp changes (using a τprev variable) and record
a conjunction of all truth values v with the same timestamp. This is done in
line 5 and the partial conjunction of the values is saved in the val variable.
As soon as the timestamp changes, the reducer can emit the value of val
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variable as the truth value of the conjunction at the time instant τprev (line
6). The variable val is reset to true (line 7) and the process is continues.

Disjunction. Algorithm 8.5c shows the reducer function for disjunction.
It is a dual implementation of Algorithm 8.5b.

1 function REDUCER
U,S
l (ψ, T )

2 if (checkIteration(ψ, T, l)) then
3 val← ⊥
4 for all (φ1, (v1, τ)), (φ2, (v2, τ)) ∈ T do
5 output(ψ, (val, τ))
6 val← v2 ∨ (v1 ∧ val)
7 end for
8 end if
9 end function

(a) Non-metric U and S operators

1 function REDUCER
UI ,SI
l (ψ, T )

2 if (checkIteration(ψ, T, l)) then
3 val← ⊥, valm ← ⊥, win← ∅
4 for all (φ1, (v1, τ)), (φ2, (v2, τ)) ∈ T do
5 if (¬v1) win.removeAll end if
6 updateQueue((φ2, v2, τ), win, I, \x→ ())
7 valm ← |τ − win.first.τ | ∈ I
8 output(ψ, (val ∧ valm, τ))
9 val← v2 ∨ (v1 ∧ val)

10 end for
11 end if
12 end function

(b) Metric UI and SI operators

1 function REDUCER
F,P
l (ψ, T )

2 if (checkIteration(ψ, T, l)) then
3 val← ⊥
4 for all (φ, v, τ) ∈ T do
5 output(ψ, (val, τ))
6 val← v ∨ val
7 end for
8 end if
9 end function

(c) Non-metric F and P operators

1 function REDUCER
FI ,PI
l (ψ, T )

2 if (checkIteration(ψ, T, l)) then
3 win← ∅
4 for all (φ, v, τ) ∈ T do
5 updateQueue((φ, v, τ), win, I, \x→ ())
6 val← |τ − win.first.τ | ∈ I
7 output(ψ, (val, τ))
8 end for
9 end if

10 end function

(d) Metric FI and PI operators

1 function REDUCER
G,H
l (ψ, T )

2 if (checkIteration(ψ, T, l)) then
3 val← >
4 for all (φ, v, τ) ∈ T do
5 output(ψ, (val, τ))
6 val← v ∧ val
7 end for
8 end if
9 end function

(e) Non-metric G and H operators

1 function REDUCER
GI ,HI
l (ψ, T )

2 if (checkIteration(ψ, T, l)) then
3 win← ∅
4 for all (φ, v, τ) ∈ T do
5 updateQueue((φ,¬v, τ), win, I, \x→ ())
6 val← |τ − win.first.τ | ∈ I
7 output(ψ, (¬val, τ))
8 end for
9 end if

10 end function

(f) Metric GI and HI operators

Figure 8.6: Reducer algorithms for temporal operators

Temporal operators

Figure 8.6 shows the reducer algorithms for "Until", "Since", "Eventually",
"Eventually in the Past", "Globally" and "Historically"3. Each algorithm
has two variants: non-metric (shown on the left) and metric (shown on the
right). Non-metric operators have intervals of the form [0,+∞), therefore

3Also known and "Always in the past" or "Globally in the Past".
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algorithms are simpler, as they do not need to consider the timing con-
straints. Metric operators have arbitrary intervals. We present only the
future-time operators, while the past-time operators have the same imple-
mentation are their future counterparts. As discussed in Section 8.2.2, the
only difference is in the way the trace has been sorted in the shuffle and sort
phase of the MapReduce framework.

Until operator. Algorithm 8.6a implements the reducer function for the
non-metric "Until" operator. The reducer expects the trace to be sorted in
the reverse order, such that the first tuple it receives contains the last times-
tamp of the trace. The semantics of the "Until" operator is implemented
in a straightforward manner using its fix-point definition. Variable val is
initialized to false, since the value of the "Until" operator is false in the
last position of the trace (see Figure 2.2). Each subsequent value is calcu-
lated by iterating through the tuples and considering two tuples at a time,
(φ1, (v1, τ)) and (φ2, (v2, τ) corresponding to the left and right subformula
respectively. Line 6, implements the fix-point semantics of "Until" operator
using the current truth values of the left (variable v1) and the right (variable
v2) subformula and the truth value of the "Until" formula from the previous
iteration (variable val).

Reducer algorithm for the metric "Until" operator shown in Algorithm 8.6b
is inspired by the algorithm from [20] for the "Since" temporal operator, in-
terpreted using point-based MTL semantics. Conceptually, the algorithm
is similar to the non-metric version, with the addition of the code that
checks the timing constraints. The timing constraints are checked by uti-
lizing a queue (denoted as variable win). The queue is updated using the
updateQueue function such that it contains only tuples that refer to the right
subformula φ2, with timestamps in the [0, 0]

⊎
I interval from the current

timestamp τ . To output a tuple with a positive truth value, two conditions
need to be satisfied: φ2 must hold at a time instant in the interval I relative
to the current timestamp and and φ1 must continuously hold from the cur-
rent instant until the instant where φ2 holds. The first condition is stored in
the variable valm: it suffices to check if the tuple from the head of the queue
has a timestamp in the interval I . Variable val stores the second condition,
computed in the same way as in the non-metric algorithm. In order to sim-
plify the code, we omit a possible memory optimization present in [20].
It prescribes to keep in the queue only the most recent tuple that satisfies
the timing constraints. Although we omit it here, our prototype tool [84]
implements this optimization.

Eventually operator. Algorithm 8.6c implements the reducer function
for non-metric "Eventually" operator. It uses an auxiliary boolean variable
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val that is initialized to false. It loops through all the tuples received in T ,
already sorted (by the shuffle and sort phase of the MapReduce framework)
in descending order of timestamp values. The algorithm updates, for each
tuple, the variable val with a disjunction of its old value (i.e., from the
previous iteration) and a truth value from each current tuple. Variable val
is emitted in the output tuple as the truth value of Fφ.

Algorithm 8.6d implements the metric version of the reducer function
for "Eventually" temporal operator. It uses an additional variable win as
a queue to keep track of all the tuples with positive truth value that fall
in the convex union of the intervals [0, 0] and I . This is ensured by the
updateQueue function. The final truth value of FIφ depends on whether
the queue win contains a tuple with a timestamp that is in the interval I .

Globally operator. Both non-metric and metric versions of "Glob-
ally" operator are dual of the corresponding "Eventually" operator. Al-
gorithms 8.6e and 8.6f are, therefore, implemented in a similar way. Al-
gorithm 8.6e initializes val to true, and computes the truth value using the
conjunction operator. The only difference introduced in Algorithm 8.6f is
that the queue win keeps track of all the tuples with negative truth value via
the updateQueue function with the parameter v negated. Hence, the truth
value of "Globally" operator depends on whether the queue win contains a
tuple in the interval I that is a witness to its violation (therefore variable
val is negated in line 7).

Aggregating modalities

Algorithms implementing the reducer functions for the aggregating modal-
ities are shown in Figure 8.7. For the aggregating modalities the trace is
ordered in the increasing value of the timestamp, since they are past-time
operators.

C modality. The reduce function for the C modality is outlined in the
Algorithm 8.7a. To correctly determine if C modality holds, we need to
keep track of all the tuples in the past time window [0, K). We use queue
win and update it with updateQueue function, such that it contains all the
tuples with positive truth value and with timestamps in the past time win-
dow [0, K) with respect to the current timestamp. To determine the truth
value, the size of the queue is compared to n according to the ./ comparison
operator.

U modality. To simplify the presentation, we express the U modality

in terms of the C one, based on this definition: UK,h./n (φ) ≡ C
bK
h
c·h

./n·bK
h
c(φ),

demonstrated in previous sections. Therefore, we can reuse the algorithm
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1 function REDUCER
CK./n
l (ψ, T )

2 if (checkIteration(ψ, T, l)) then
3 win← ∅
4 for all (φ, v, τ) ∈ T do
5 f ← (\x→ ())
6 updateQueue((φ, v, τ), win, [0,K), f)
7 output(ψ, (win.size ./ n, τ))
8 end for
9 end if

10 end function

(a) C modality

1 function REDUCER
MK
./n

l (ψ, T )
2 if (checkIteration(ψ, T, l)) then
3 win← ∅
4 for all (φ, (v, τ)) ∈ T do
5 f ← (\x→ ())
6 updateQueue((φ, v, τ), win, [0,K), f)
7 m← win.map(\x→ b τ−x.τ

h
c).maxEqual

8 output(ψ, (m ./ n, τ))
9 end for

10 end if
11 end function

(b) M modality

1 function REDUCER
DK
./n

l (ψ, T )
2 if (checkIteration(ψ, T, l)) then
3 win← ∅, dist← ∅
4 for all (φ1, (v1, τ)), (φ2, (v2, τ)) ∈ T do
5 if (win.size 6= 0 ∧ v2) then
6 dist.enqueue(τ − win.last.τ)
7 end if
8 f ← (\x→ if (x.φ = φ1) dist.dequeue() end if)
9 updateQueue((φ, v, τ), win, [0,K), f)

10 output(ψ, (dist.size 6= 0 ∧ dist.sum
dist.size

./ n, τ))
11 end for
12 end if
13 end function

(c) D modality

Figure 8.7: Reducer algorithms for aggregating modalities

from C modality to also perform distributed trace checking of U modality.
M modality. Algorithm 8.7b shows how the tuples are emitted for the

M modality. Similarly to the C modality, we use queuewin and updateQueue
function to keep track of the all the tuples with positive truth value in the
[0, K) time window in the past. To get the maximum number of occur-
rences of the subformula for all the subintervals of length h we use a map
function to convert all the timestamps in the queue win into subinterval
indexes from the range [0, . . . bK

h
c]. For example, timestamps that get con-

verted to index 0 belong to the subinterval closes to the current timestamp
τ . The maximum value assigned to variable max is the maximum num-
ber of indexes with the same value. The final truth value is computed by
comparing variable max with n.

D modality. The reduce function for the D modality is shown in Al-
gorithm 8.7c. To implement the semantics of the D modality we use two
queues. Queue win keeps track of the tuples of both subformulae with
timestamps in the [0, K) interval from the current timestamp τ . To update
the queue win, updateQueue function is called for either of the two sub-
formulae φ1 or φ2 (represented just as φ) with their respective truth values
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(represented as v). Queue dist is a queue of integers each representing a
timestamp difference between adjacent φ1 and φ2 subformula currently in
the queue win. As stated before, we assume that the two subformulae oc-
curring the D modality alternate in the trace, starting with φ1. Therefore,
we enqueue a new element to queue dist every time φ2 is true at the current
instant and the queue win is not empty (lines 5 and 6). We remove an el-
ement from the head of the dist queue every time a tuple with subformula
φ1 is removed from the win queue. This is done with the f closure passed
to the updateQueue function. Finally, the average distance is calculated as
dist.sum
dist.size

if queue dist is nonempty.
Example: Let us now use our algorithm to evaluate formula Φ = F[3,7](p)

on the following trace (represented as a timed word): ({p}, 1), ({p}, 2),
({q}, 4), ({p, q}, 6), ({p, q}, 8), ({q}, 9), ({q}, 10). In the read phase the
algorithm parses the trace in parallel and creates the input tuples for the
map phase. From the first element ({p}, 1) the InputReader creates only
(p, (>, 1)) tuple since Φ refers only to the atom p. Tuples (p, (>, 1)),
(p, (>, 2)), (p, (⊥, 4)), (p, (>, 6)), (p, (>, 8)), (p, (⊥, 9)), (p, (⊥, 10)) are
thus received by map phase. The Mapper associates the formulae from the
input tuples with their superformulae. In the case of the tuple (p, (>, 1)) it
generates only tuple (F[3,7](p), (p,>, 1)) since F[3,7](p) is the only superfor-
mula of p. Reduce phase, therefore, receives tuples (F[3,7](p), (p, (⊥, 10))),
(F[3,7](p), (p, (⊥, 9))), (F[3,7](p), (p, (>, 8))), (F[3,7](p), (p, (>, 6))),
(F[3,7](p), (p, (⊥, 4))), (F[3,7](p), (p, (>, 2))), (F[3,7](p), (p, (>, 1))) shuffled
and sorted in a descending order of their timestamps. Since all the tu-
ples have the same key only one reducer is needed. The reducer applies
the Algorithm 8.6d and outputs truth values of F[3,7](p) for every posi-
tion in the trace: (F[3,7](p), (⊥, 10)), (F[3,7](p), (⊥, 9)), (F[3,7](p), (⊥, 8)),
(F[3,7](p), (⊥, 6)), (F[3,7](p), (>, 4)), (F[3,7](p), (>, 2)), (F[3,7](p), (>, 1)).

Based on the final list of tuples, we can conclude that the formula holds,
since it has a positive truth value at the first time instant.

8.3 Implementation

We have implemented both of our distributed trace checking algorithms
in the MTLMAPREDUCE tool, which is publicly available [84]. The tool
is implemented in Java and uses the Apache Spark framework [120, 121],
which supports iterative MapReduce applications in a better way than Apache
Hadoop [8, 118] (see Section 2.5.2). Algorithms presented in Section 8.2
are the basis of an older version of the tool implemented in MapReduce.
This section describes how the algorithms are adapted for Spark frame-
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work. The pseudocode has explicit type annotation to provide the reader
with the precise signatures of the various methods.

The iterative execution of the algorithm is implemented as the part of its
main loop (shown in Algorithm 8.8a). As discussed in Section 2.5.2, Spark
framework expresses computation as a set of transformations and actions
performed on resilient distributed datasets (RDDs). The function in Algo-
rithm 8.8a take two parameters: a path to the trace, saved in a distributed file
system and a SOLOIST formula. Line 2 creates an RDD "trace", a collec-
tion of strings corresponding to the lines in the trace file4. At this point no
computation is performed yet, since the read function only creates an RDD
and associates it with a path. Line 3 corresponds to the read phase: transfor-
mation flatMap is invoked on the "trace" RDD and a Reader object is passed
as a parameter. Reader class (shown in Algorithm 8.8b) implements a func-
tion that takes a string as an input, parses it and executes the inner loop of
the Reader function from Algorithm 8.2a to produce a set of input tuples
of the from (φ, (v, τ)). A tuple is produced for each atom in the SOLOIST
formula. The tuple has type (Formula,MapValue), where MapValue is an
alias for (Boolean, Long). The method call of the Reader object is called by
the Spark framework on each member of the "trace" RDD and the result-
ing tuples are in the "formulae" RDD. The algorithm performs a number
of iterations equal to the height of the SOLOIST formula (lines 4–9). The
map phase is executed in line 5 by performing a flatMap transformation
and passing the Mapper object. Mapper class implements the inner loop of
the mapper function from Algorithm 8.3a. It produces tuples of the form
((ψ,±τ), (φ, v, τ)) annotated with type (CompKey,ReduceValue), where
CompKey is an alias for (Formula, Long) and ReduceValue is an alias for
(Formula,Boolean, Long). Next, shuffle and sort phase is implemented
with two transformations provided my the Spark framework:
repartitionAndSortWithinPartitions and groupByKey. RDD "grouped" con-
tains tuples partitioned according to the formula in their composite key.
Each partition is sorted according to the timestamp in the tuples. In line 8
the flatMap transformation implements the reduce phase. Instance of the
Reducer class (shown in Algorithm 8.8d) calls the accept method of the ab-
stract Formula class (shown in Algorithm 8.8f) and passes the iterator with
all the value tuples. Each SOLOIST operator is implemented as a separate
class that inherits from the Formula class and overrides the accept method
to return its own particular Iterable object. Each formula return an iterable
object that implements its semantics. Algorithm 8.8f shows an implemen-
tation of the iterable object for the Negation operator.

4We assume that trace has one timestamp and a set of events per line
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1 function SPARKTRACECHECKING(p: String, Φ: Formula): Boolean
2 trace : RDD[String]← read(p)
3 formulae : RDD[(Formula,MapValue)]← trace.flatmap(new Reader(Φ))
4 for i ∈ {1, 2, . . . h(Φ)} do
5 mapped : RDD[(CompKey, ReduceValue)]← formulae.flatmap(new Mapper(Φ))
6 sorted : RDD[(CompKey, ReduceValue)]← mapped.repartitionAndSortWithinPartitions()
7 grouped : RDD[(CompKey, Iterable[ReduceValue])]← sorted.groupByKey()
8 formuale : RDD[(Formula,MapValue)]← sorted.flatmap(new Reducer(i))
9 end for

10 return formulae.take(1).value.v
11 end function

(a) Main loop of the algorithm
1 class READER extends PAIRFLATMAPFUNCTION
2 field FORMULA: Formula
3 method CALL(s: String): Iterable[(Formula, MapValue)]
4 //Implements the inner loop of the reader function from Algorithm 8.2a
5 end method
6 end class

(b) Reader class
1 class MAPPER extends PAIRFLATMAPFUNCTION
2 field FORMULA: Formula
3 method CALL(t: (Formula, MapValue)): Iterable[(CompKey, ReduceValue)]
4 //Implements the inner loop of the mapper function from Algorithm 8.3a
5 end method
6 end class

(c) Mapper class
1 class REDUCER extends PAIRFLATMAPFUNCTION
2 field FORMULA: Formula
3 field ITERATION: Integer
4 method CALL(ts: (CompKey, Iterable[ReduceValue])): Iterable[(Formula, MapValue)]
5 ts.compKey.φ.accept(ts.values.iterator())
6 end method
7 end class

(d) Reducer class
1 abstract class FORMULA
2 abstract method VALUES: ACCEPT(Iterator[ReduceValue])): Iterable[(Formula, MapValue)]
3 end class

(e) Formula class
1 class NEGATION extends FORMULA
2 method ACCEPT(values: Iterator[ReduceValue])): Iterable[(Formula, MapValue)]
3 return new Iterable[(Formula, MapValue)]()
4 field ITERATOR: Iterator[ReduceValue] = values
5 method NEXT(): (Formula, MapValue)
6 tuple← iterator.next()
7 output(this, (¬tuple.v, tuple.τ))
8 end method
9 end anonymous class

10 end method
11 end class

(f) Negation formula class

Figure 8.8: Implementation of the MTLMAPREDUCE tool in Spark
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CHAPTER9
Lazy semantics for MTL and Optimizations

9.1 Overview

A time interval specified by a metric temporal formula determines a portion
of the trace that needs to be considered to decide if the formula is true in
a single position of the trace. Depending on the particular MTL formula
that is being checked, in the worst case this process needs to be repeated
for every position in the trace.1

Generally speaking, trace checking algorithms scan a trace and buffer
the events that satisfy the temporal constraints of the formula. The buffer is
incrementally updated as the trace is scanned and the algorithms incremen-
tally provide verdicts for the positions for which they have enough infor-
mation (to determine the verdict). The buffer updates consist of adding the
newly scanned positions of the trace and removing positions with times-
tamps not in the time interval relative to the timestamp of the latest scanned
position. Online algorithms are constrained to scan the trace in order in
which it is being produced. They immediately provide a verdict for the
currently scanned position in case of the past temporal operators. For the
future temporal operators, however, they have to delay the verdict until they

1For example, if a “Globally” temporal operator is used.
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have seen enough of the trace. Offline algorithms do not need to do this,
as they assume that the trace is complete and can scan it backwards when
evaluating future operators.

The lower-bound for memory complexity of trace checking algorithms
is known to be exponential in the numeric constants occurring in the MTL
formula encoded in binary [114]. Therefore the strategy of buffering events
creates a memory scalability issue for trace checking algorithms. This issue
also affects distributed and parallel solutions, including the one we intro-
duced in Chapter 8. Specifically, the memory scalability of a trace checking
algorithm on a single cluster node depends exponentially on the numeric
constants defining the bounds of the time intervals in the MTL formula to
be checked.

In this chapter we address this memory scalability issue by proposing a
trace checking algorithm that exploits new semantics for MTL, called lazy
semantics [31].

Unlike traditional point-based semantics [83], our lazy semantics can
evaluate both temporal formulae and boolean combinations of temporal-
only formulae at any arbitrary time instant, while it evaluates atomic propo-
sitions only at time-stamped positions of the trace. We propose lazy seman-
tics because it possesses certain properties that allow us to decompose any
MTL formula into an equivalent MTL formula where the upper bound of all
time intervals of its temporal operators is limited by some constant. This
decomposition plays a major role in the context of (distributed) trace check-
ing of formulae with large time intervals. In practice, if we want to check
a formula with a large time interval, applying the decomposition entails an
equivalent formula, with smaller time intervals. This new formula can be
checked in a more memory efficient way by using our new trace checking
algorithm, which applies lazy semantics.

Motivating example

Let us present an example to motivate the need for lazy semantics.
Consider again the formula Φ = F[3,7](p) and its evaluation on the fol-

lowing trace: ({p}, 1), ({p}, 2), ({q}, 4), ({p, q}, 6), ({p, q}, 8), ({q}, 9),
({q}, 10). The timed word, shown in Figure 9.1, is defined over the set
of atoms Π = {p, q}; its length is 7 and it spans over 10 time units. The
first two rows in the picture represent its atoms and time-stamps; the last
two rows show, respectively, the evaluation of subformula p and formula
F[3,7](p) using point-based semantics. As shown in the last row of Fig-
ure 9.1, according to point-based semantics, formula F[3,7](p) holds at time
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Atoms: {p} {p} {q} {p, q} {p, q} {q} {q}
Time-stamps: 1 2 4 6 8 9 10

Time instants: 1 2 3 4 5 6 7 8 9 10

p > > ⊥ > > ⊥ ⊥
F[3,7](p) > > > ⊥ ⊥ ⊥ ⊥

Figure 9.1: Evaluation of formula Φ = F[3,7](p).

instants 1, 2 and 4.
For a formula of the form F[a,b](p), the algorithm needs to buffer, in the

worst case (i.e., in case there exists an element at every time instant), at
most b + 1 elements. For example, to evaluate formula F[3,7](p) at time
instant 2, in the worst case the algorithm will buffer 8 elements, i.e., all
the elements whose time-stamp ranges from 2 to 9. The elements with
time-stamps ranging from 6 to 9 satisfy the time interval constraint of the
formula; the others are kept for the evaluation of the formula at subsequent
positions. Let us assume that the execution infrastructure could only store
5 elements in the buffer, because of the limited available memory. The
worst-case requirement of keeping 8 elements in the buffer would then be
too demanding for the infrastructure, in terms of memory scalability. To
lower the memory requirement for the buffer we would need a formula
with a smaller time interval and expressing the same property as Φ. In
other words, one might ask whether there is an MTL formula equivalent to
Φ with all the intervals bounded by the constant 4 (and thus requiring to
store at most 4+1=5 elements in the buffer).

Let us consider formula Φ′ = F[3,4](p) ∨ F[4,4](F[0,3](p)): a naïve and
intuitive interpretation might lead us to think that it defines the same prop-
erty as Φ. Roughly speaking, instead of checking if p eventually occurs
within the entire [3, 7] time interval, Φ′ checks if p either occurs in the [3, 4]
interval (as specified by subformula F[3,4](p)) or in the interval [0, 3] when
evaluated exactly 4 time instants in the future (as specified by subformula
F[4,4](F[0,3](p))). Figure 9.2 shows the evaluation of formula Φ′ over the
same trace used in Figure 9.1. As you can see, formula Φ′ does not have the
same evaluation as Φ on the same trace. More specifically, at time instant
1 Φ′ is false while Φ is true (see the values circled in both figures). By an-
alyzing the evaluation of Φ′, one can notice that subformula F[4,4](F[0,3](p))
at time instant 1 refers to the value of F[0,3](p) at time instant 5, which does
not have a corresponding element in the trace. If there was an element at
time instant 5, F[0,3](p) would be true since p holds at time instant 6.
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The above example shows that the evaluation of temporal subformulae
according to point-based semantics depends on the existence of certain el-
ements in the trace. It also shows that point-based semantics is not suitable
to support the intuitive decomposition of MTL formulae into equivalent
ones with smaller time intervals, like the one from Φ to Φ′ shown above.
We maintain that this constitutes a limitation for the application of point-
based semantics in the context of trace checking. Therefore, in this paper
we propose a new, alternative semantics for MTL, called lazy semantics.

The main feature of lazy semantics is that it evaluates temporal formu-
lae and boolean combinations of temporal-only formulae at any arbitrary
time instant, regardless of the existence of the corresponding elements in
the trace. The existence of the elements is only required when evaluat-
ing atoms. This feature allows us to decompose any MTL formula into an
equivalent MTL formula in which the upper bound of all time intervals of
its temporal operators is limited by some constant. Such a decomposition
can be used as a preprocessing step of a trace checking algorithm, which
can then run in a more memory-efficient way.

In the following sections we first introduce lazy semantics (Section 9.2)
and formalize the notion of the decomposition exemplified above (Sec-
tion 9.3). Afterwards, in Section 9.4 we describe the modifications to our
trace checking algorithm from Chapter 8, required to preprocess the for-
mula and support lazy semantics.

9.2 Lazy Semantics for MTL

The following example shows an anomalous case of MTLP semantics that
lazy semantics for MTL (denoted as MTLL semantics) intends to remedy.
Consider a timed word w = (σ, τ) = ({q}, 1)({p}, 7) and two MTL for-

Atoms: {p} {p} {q} {p, q} {p, q} {q} {q}
Time-stamps: 1 2 4 6 8 9 10

Time instants: 1 2 3 4 5 6 7 8 9 10

p > > ⊥ > > ⊥ ⊥
F[3,4](p) ⊥ > > ⊥ ⊥ ⊥ ⊥
F[0,3](p) > > > > > ⊥ ⊥
F[4,4](F[0,3](p)) ⊥ > > ⊥ ⊥ ⊥ ⊥
Φ′ ⊥ > > ⊥ ⊥ ⊥ ⊥

Figure 9.2: Evaluation of formula Φ′ = F[3,4](p) ∨ F[4,4](F[0,3](p)).
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(σ, τ, t) |=L p iff ∃i.(0 ≤ i < |σ| and t = τi and p ∈ σi)
(σ, τ, t) |=L ¬φ iff (σ, τ, t) 6|=L φ

(σ, τ, t) |=L φ ∨ ψ iff (σ, τ, t) |=L φ or (σ, τ, t) |=L ψ

(σ, τ, t) |=L φUIψ iff ∃t′.(t′ ≥ t and t′ − t ∈ I and
(σ, τ, t′) |=L ψ and ∀t′′.(t < t′′ < t′ and ∃i.(0 ≤ i < |σ| and

t′′ = τi) then (σ, τ, t′′) |=L φ))

Figure 9.3: MTLL semantics on timed words.

mulae ψ1 = F=6p and ψ2 = F=3F=3p. The intuitive meaning of the two
formulae is the same: p holds 6 time units after the origin, i.e., at time-
stamp 7. However, when evaluated on w using the MTLP semantics, the
two formulae have different values: ψ1 correctly evaluates to true, but ψ2

to false. Indeed, in ψ2 the outermost F=3 subformula is trivially false, be-
cause there is no position that is exactly 3 time instants in the future with
respect to the origin. The two formulae, instead, are equivalent over the
MTLL semantics, where they both evaluate to true. Indeed, this is true also
over signal-based semantics [39]; however, signals are not very practical
for monitoring and trace checking, which usually operate on logs that are
best modeled as a sequence of individual time-stamped observations, i.e.,
timed words.

MTLL semantics. MTLL semantics on timed words is given in Fig-
ure 9.3, in terms of the satisfaction relation |=L, with respect to a timed
word (σ, τ) and a time instant t ∈ R+; p is an atom and φ and ψ are
MTL formulae. An MTL formula φ, when interpreted over MTLL seman-
tics, defines a timed language LL(φ) = {(σ, τ)|(σ, τ, 0) |=L φ}. The main
difference between MTLP and MTLL semantics is that MTLP evaluates for-
mulae only at positions i of a timed word, while MTLL inherits a feature
of signal-based semantics, namely it may evaluate (non-atomic) formulae at
any possible time instant t, even if there is no time-stamp equal to t. For ex-
ample, according to the MTLP semantics, an “Until” formula φ ≡ ψ1UIψ2

evaluates to false in case there are no positions in the interval I , due to the
existential quantification on j (see Figure 2.2). Conversely, over the MTLL

semantics, the evaluation of φ depends on the evaluation of ψ2. If the latter
is an atom then formula φ also evaluates to false, because of the existential
quantifier in the MTLL semantics of atoms. However, if ψ2 is a temporal
formula or a boolean combination of temporal-only formulae (e.g., other
“Until” formulae), it will be evaluated in the part of the timed word that
satisfies the interval of φ. Hereafter we refer to the MTL formulae inter-
preted over the MTLL semantics as “MTLL formulae”; similarly, “MTLP
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formulae” are MTL formulae interpreted over the MTLP semantics.
Let M(Π) be the set of all formulae that can be derived from the MTL

grammar shown in Section 2.1.1, using Π as the set of atoms. We show
that any language LP (φ) defined using some MTLP formula φ can be de-
fined using an MTLL formula obtained after applying the translation l2p :
M(Π)→ M(Π) to φ, i.e., Lp(φ) = LL(l2p(φ)) for any φ. The l2p transla-
tion is defined as follows:

l2p(p) ≡ p, p ∈ Π; l2p(φ ∨ ψ) ≡ l2p(φ) ∨ l2p(ψ)

l2p(¬φ) ≡ ¬l2p(φ); l2p(φUIψ) ≡ l2p(φ)UI(ϕact ∧ l2p(ψ))

where ϕact ≡ a ∨ ¬a for some a ∈ Π.
The goal of l2p is to prevent the occurrence of direct nesting of temporal

operators, i.e., to avoid the presence of (sub)formulae like F=3F=3p. As
discussed in the example above, nested temporal operators are interpreted
differently over the two semantics. Direct nesting is avoided by rewriting
the right argument of every “Until” (i.e., the “existential” component of
“Until”). The argument is conjuncted with a formula ϕact that evaluates to
true (over both semantics) if there exists a position in the underlying timed
word; otherwise ϕact evaluates to false. To explain this intuition, let us
evaluate ϕact over a timed word (σ, τ) over the alphabet Π = {a}. Over
point-based semantics, (σ, τ, i) |=P ϕact ≡ (σ, τ, i) |=P a ∨ ¬a is true for
any position i, since either a belongs to σi or not. However, the same does
not hold for lazy semantics. According to lazy semantics, (σ, τ, t) |=L ϕact
is true only in those time instants t for which there exists i such that τi = t
and therefore exists the corresponding σi (to which a can belong or not).

Lemma 1. Given an MTL formula φ and a timed word ω = (σ, τ), for any
i ≥ 0, the following equivalence (modulo l2p translation) holds: (σ, τ, i) |=P

φ iff (σ, τ, τi) |=L l2p(φ).

Proof. The lemma is proved by structural induction on formula φ. Let γ be
an MTL formula. The inductive hypothesis is (σ, τ, i) |=P γ iff (σ, τ, τi) |=L

l2p(γ).
1. base case γ is p ∈ Π.

(σ, τ, i) |=P p iff p ∈ σi iff ∃i.(0 ≤ i < |σ| ∧ τi = τi ∧ p ∈ σi) iff
(σ, τ, τi) |=L p. Then, we obtain (σ, τ, τi) |=L l2p(p), by definition of
l2p.

2. γ is ¬φ.
(σ, τ, i) |=P ¬φ iff (σ, τ, i) 6|=P φ iff, by inductive hypothesis, (σ, τ, τi) 6|=L

l2p(φ) iff, by definition of l2p, (σ, τ, τi) 6|=L ¬l2p(¬φ) iff (σ, τ, τi) |=L

l2p(¬φ).
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3. γ is φ ∧ ψ.
(σ, τ, i) |=P φ ∧ ψ iff (σ, τ, i) |=P φ and (σ, τ, i) |=P ψ iff, by in-
ductive hypothesis, (σ, τ, τi) |=L l2p(φ) and (σ, τ, τi) |=L l2p(ψ) iff,
(σ, τ, τi) |=L l2p(φ) ∧ l2p(ψ) iff, by definition of l2p, (σ, τ, τi) |=L

l2p(φ ∧ φ).
4. γ is φUIψ.

(σ, τ, i) |=P φUIψ iff
∃j.(i ≤ j < |σ| ∧ τj − τi ∈ I ∧ (σ, τ, j) |=P ψ ∧ ∀k.(i < k < j →
(σ, τ, k) |=P φ) iff, by inductive hypothesis,
∃j.(i ≤ j < |σ| ∧ τj − τi ∈ I ∧ (σ, τ, τj) |=L l2h(ψ) ∧ ∀k.(i < k <
j → (σ, τ, τk) |=L l2p(φ)) iff
∃tj.(ti ≤ tj < t|σ| ∧ tj − ti ∈ I ∧ (σ, τ, tj) |=L (ϕact ∧ l2h(ψ)) ∧
∀tk.(ti < tk < tj∧∃i.(0 ≤ i < |σ|∧tk = τi)→ (σ, τ, tk) |=L l2p(φ))
iff
(σ, τ, ti) |=L l2p(φ)UI(ϕact ∧ l2p(ψ)) iff, by definition of l2p
(σ, τ, ti) |=L l2p(ψUIψ).

The lemma is proved by considering γ = φ.

Theorem 1. Any timed language defined by an MTLP formula can be de-
fined by an MTLL formula over the same alphabet.

Proof. By Lemma 1, for i = 0.

Notice that the translation l2p defines a syntactic MTL fragment where
temporal or boolean combination of temporal-only operators cannot be di-
rectly nested. In this fragment MTLP and MTLL formulae define the same
languages. However, if we consider the complete definition of MTL, with-
out syntactic restrictions, the class of timed languages defined by MTLL

formulae strictly includes the class of languages defined by MTLP formu-
lae. In other words, MTL interpreted over lazy semantics is strictly more
expressive than MTL interpreted over point-based semantics; this result is
established by the following theorem.

Theorem 2. There exists a timed language defined by some MTLL formula
that cannot be defined by any MTLP formula.

Proof. Consider the language of timed words L = {(σ, τ) | ∃i∃j(i ≤ j ∧
(σ, τ, i) |=L b∧(σ, τ, j) |=L c∧τj ≤ 2)}. L is defined by the MTLL formula
Φ = Φ1 ∨ Φ2 ∨ Φ3, where Φ1 = (F(0,1)b) ∧ (F[1,2]c) ∨ (F(0,1]b) ∧ (F(1,2]c);
Φ2 = F(0,1](b ∧ F(0,1]c) and Φ3 = F(0,1]((F(0,1)b) ∧ (F[1,1]c)). L cannot be
defined by any MTLP formula (see reference [39], proposition 6).
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F=K

0 K

(F=K(F[a mod K,K]p ∨ F=K(F[0,K]p ∨ F=K(F[0,b−b a
K

+2c·K]p))))

a ba mod K

Figure 9.4: Example of the LK decomposition of the formula F[a,b]p

9.3 Parametric Decomposition

In this section we show that lazy semantics allows for a parametric decom-
position of MTL formulae into MTL formulae where the upper bound of
all intervals of the temporal operators is limited by some constant K (the
parameter of the decomposition). This structural characteristic will then be
used in the trace checking algorithm presented thereafter.

We first introduce some notation and show some properties of lazy se-
mantics that will be used to prove the correctness of the decomposition.
We define the operator ⊕ over intervals in R with endpoints in N such that
I ⊕ J = {i+ j | ∀i ∈ I and j ∈ J}.
Lemma 2. For any timed word (σ, τ) and t ≥ 0,

(σ, τ, t) |=L FIFJφ iff (σ, τ, t) |=L FI⊕Jφ. (9.1)

Proof. We show two cases. In the first one, both F formulae have left and
right-closed intervals. The second one considers all the other combinations.

F[a,b](F[c,d]φ):
(σ, τ, t) |=L F[a,b](F[c,d]φ) iff
∃t′.(t′ ≥ t ∧ t′ − t ∈ [a, b] ∧ (σ, τ, t′) |=L F[c,d]φ iff
∃t′.(t′ ≥ t ∧ t′ ∈ [t + a, t + b] ∧ (σ, τ, t′) |=L ∃t′′.(t′′ ≥ t′ ∧ t′′ ∈
[t′ + c, t′ + d] ∧ (σ, τ, t′′) |=L φ) iff
∃t′.(t′ ≥ t ∧ (σ, τ, t′) |=L ∃t′′.(t′′ ≥ t′ ∧ t′′ ∈ [t+ a+ c, t+ b+ d] ∧
(σ, τ, t′′) |=L φ)) iff
∃t′′.(t′′ ≥ t ∧ t′′ ∈ [t+ a+ c, t+ b+ d] ∧ (σ, τ, t′′) |=L φ) iff
(σ, τ, t) |=L FI⊕Jφ.

F〈a,b〉(F〈c,d〉φ):
(σ, τ, t) |=L F〈a,b〉(F〈c,d〉φ) iff
∃t′.(t′ ≥ t ∧ t′ − t ∈ 〈a, b〉 ∧ (σ, τ, t′) |=L F〈c,d〉φ iff
∃t′.(t′ ≥ t ∧ t′ ∈ 〈t + a, t + b〉 ∧ (σ, τ, t′) |=L ∃t′′.(t′′ ≥ t′ ∧ t′′ ∈
〈t′ + c, t′ + d〉 ∧ (σ, τ, t′′) |=L φ) iff
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∃t′.(t′ ≥ t ∧ (σ, τ, t′) |=L ∃t′′.(t′′ ≥ t′ ∧ t′′ ∈ (t+ a+ c, t+ b+ d)∧
(σ, τ, t′′) |=L φ)) iff
∃t′′.(t′′ ≥ t ∧ t′′ ∈ (t+ a+ c, t+ b+ d) ∧ (σ, τ, t′′) |=L φ) iff
(σ, τ, t) |=L FI⊕Jφ.

Corollary 1. For any timed word (σ, τ) and t, N ≥ 0,

(σ, τ, t) |=L FN=Kφ iff (σ, τ, t) |=L F=K·N . (9.2)

Lemma 3. For any timed word (σ, τ) and t ≥ 0,

(σ, τ, t) |=L FIφ ∨ FJφ iff (σ, τ, t) |=L FI∪Jφ, if I ∩ J 6= ∅.

Proof. We prove the lemma for the case of I = (a, b), J = (c, d), as we can
always rewrite intervals as left-right open ones. The case F[0,b)φ becomes
F(1,b)φ ∨ φ. The case for unbounded intervals is similar. By I ∩ J 6= ∅
we have both c + 1 < b and a + 1 < d which entails c < b and a < d.
Therefore, we have thatmin{a, b, c, d} = min{a, c} andmax{a, b, c, d} =
max{b, d}.
(σ, τ, t) |=L FIφ ∨ FJψ iff
(σ, τ, t) |=L FIφ or (σ, τ, t) |=L FJφ iff
∃t′.(t′ ≥ t ∧ t′ − t ∈ (a, b) ∧ (σ, τ, t′) |=L F(a,b)φ or ∃t′.(t′ ≥ t ∧ t′ − t ∈
(c, d) ∧ (σ, τ, t′) |=L F(c,d)φ iff,
∃t′.(t′ ≥ t ∧(t′−t ∈ (a, b)∧(σ, τ, t′) |=L φ∨t′−t ∈ (c, d)∧(σ, τ, t′) |=L φ)
iff, as a < b and c < d,
∃t′.(t′ ≥ t ∧ t′ − t ∈ (min{a, c},min{b, d}) ∧ (σ, τ, t′) |=L φ iff
(σ, τ, t) |=L F(min{a,c},max{b,d})φ iff
(σ, τ, t) |=L FI∪Jφ.

Hereafter, we focus on bounded MTL formulae, i.e., formulae where in-
tervals are always finite. Notice that it is this class of formulae that causes
memory scalability issues in trace checking algorithms. We present the
parametric decomposition by referring to the bounded “Eventually” oper-
ator. The bounded “Until” and “Globally” operators can be expressed in
terms of the bounded “Eventually” operator using the usual equivalences;
moreover, we remark that the decomposition does not affect atoms and is
applied recursively to boolean operators. We use angle brackets (symbols
“〈” and “〉”) in the definition of the decomposition to cover all four possi-
ble cases of open (denoted with round brackets) and closed (denoted with
square brackets) intervals; the definition is valid for any instantiation of the
symbols as long as they are consistently replaced on the right-hand side.
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The decomposition LK of MTL formulae with respect to parameter K
is the translation LK : M(Π)→M(Π) such that LK(F〈a,b〉φ) =

F〈a,b〉LK(φ) , b ≤ K

F
b a
K
c

=K (F〈a mod K,b−b a
K
c·K〉LK(φ)) , K < b ≤ b a

K
+ 1c ·K

F
b a
K
c

=K (F〈a mod K,K]LK(φ)∨ , b > b a
K

+ 1c ·K
F
b a
K
c

=K (F=K(DF (LK(φ), K, b− b a
K

+ 1c ·K)))

(9.3)

where

DF (ψ,K, h) =

{
F[0,h〉ψ , h ≤ K

F[0,K]ψ ∨ F=K(DF (ψ,K, h−K)) , h > K
(9.4)

The decomposition LK considers three cases depending on the values of a,
b, and K. In the first case we have b ≤ K, which means that the upper
bound of the temporal interval [a, b] in the input formula is smaller than
K, therefore no decomposition is needed. The other two cases consider
input formulae where b > K. The second case is characterized by b ≤
b a
K

+ 1c · K ≡ b ≤ b a
K
c · K + K. The decomposition yields a formula

of the form F
b a
K
c

=K (α), where α = F[a mod K,b−b a
K
c·K]LK(φ) is equivalent to

the input formula F[a,b](φ) evaluated at time instant b a
K
c · K. Notice that

according to Corollary 1, the argument α in F
b a
K
c

=K (α) is evaluated at time
instant b a

K
c ·K. The third case is characterized by b > b a

K
+ 1c ·K.

We illustrate the decomposition of F[a,b]p with p ∈ Π by referring to
the example in Figure 9.4, where the black squares divide the timeline
into segments of length K. We refer to each position in the timeline pin-
pointed by a black square as a K-position. The big brackets enclose the
interval [a, b] relative to time instant 0. Moreover, we assume some val-
ues for a and K such that b a

K
c = 2; hence, in the figure the position of

a in the timeline is between the marks corresponding to 2K and 3K. The
application of LK(F[a,b]p) returns the formula F=K(F=K(F[a mod K,K]p ∨
F=K(F[0,K]p ∨ F=K(F[0,b−b a

K
+2c·K]p)))), which is shown above the time-

line, spanning through its length such that each subformula (highlighted in
red) is written above the corresponding K-position where it is evaluated.
Since b a

K
c = 2 there are two subformulae of the form F=K evaluated in

the first two K-positions. Unlike the previous case, the interval [a, b] is
too big to allow for rewriting the input formula into another formula with a
single F operator with bounded length. Hence, we use three subformulae:

126



i
i

“thesis” — 2016/12/13 — 10:42 — page 127 — #139 i
i

i
i

i
i

9.3. Parametric Decomposition

1) F[a mod K,K]p evaluated at the thirdK-position, 2) F[0,K]p evaluated at the
fourth K-position, and 3) F[0,b−b a

K
+2c·K]p evaluated at the fifth K-position;

the last two subformulae are obtained from the definition of DF . Notice
that if K is set to be equal to one, the LK decomposition boils down to the
reduction of MTL to LTL.

Theorem 3. Given an MTLL formula φ, a timed word (σ, τ) and a positive
constant K, we have that:

(σ, τ, 0) |=L φ iff (σ, τ, 0) |=L LK(φ) (9.5)

and the upper bound of every bounded interval in all temporal subformulae
of LK(φ) is less than or equal to K.

Proof. We can prove this statement by showing that LK(φ) can always be
rewritten back to φ using lemmata 2 and 3. Let us preform structural in-
duction on the MTLL formula φ. The inductive hypothesis is (σ, τ, i) |=L

θ iff (σ, τ, i) |=L LK(θ). Then, the theorem is proved by choosing θ =
φ and i = 0. In the proof we extensively use the following properties
b a
K

+ 1c ·K = b a
K
c ·K +K denoted with (*); b− b b

K
c ·K = b mod K

denoted with (**); and bn+ εc = n, for n ∈ N and ε ∈ [0, 1) denoted with
(***).

1. Base cases are the atoms which are not affected by the translation.
2. Same holds for boolean connectives.
3. Let θ = F〈a,b〉(φ). We need to consider three cases.

(a) [b ≤ K] : (σ, τ, i) |=L F〈a,b〉(φ) iff (σ, τ, i) |=L ∃j.(j − i ∈
〈a, b〉 and (σ, τ, j) |=L φ)) which is, by inductive hypothesis,
(σ, τ, i) |=L ∃j.(j−i ∈ 〈a, b〉 and (σ, τ, j) |=L LK(φ)) iff (σ, τ, i) |=L

F〈a,b〉(LK(φ)) which is, by definition ofLK , (σ, τ, i) |=L LK(F〈a,b〉(φ)).
Since b ≤ K the right-hand side bound is less then or equal to K.

(b) [K < b ≤ b a
K

+ 1c ·K]: Identically to (a), we have (σ, τ, i) |=L

F〈a,b〉(φ) iff (σ, τ, i) |=L F〈a,b〉(LK(φ)) by inductive hypothesis.
The interval is not bounded byK asK < b. By property (**), we
get (σ, τ, i) |=L F〈a mod K+K·b a

K
c,b−K·b a

K
c+K·b a

K
c〉LK(φ) and, by

Lemma 2, we obtain (σ, τ, i) |=L F=K·b a
K
c(F〈a mod K,b−b a

K
c·K〉LK(φ)).

By Corollary 1 the formula can be rewritten into (σ, τ, i) |=L

F
b a
K
c

=K (F〈a mod K,b−b a
K
c·K〉LK(φ)) and, then, by definition of LK

we obtain (σ, τ, i) |=L LK(φ). By property (*) and the case as-
sumption is b ≤ b a

K
+ 1c · K we have that b − b a

K
c · K ≤ K

therefore the right-hand side bound of the interval is less than or
equal to K.
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(c) [b > b a
K

+ 1c ·K]: Identically to (b) we have

(σ, τ, i) |=L F〈a,b〉(φ) iff (σ, τ, i) |=L F
b a
K
c

=K (F〈a mod K,b−b a
K
c·K〉LK(φ)).

Since b > b a
K

+1c·K then b−b a
K
c·K > K. Let n = b b

K
c−b a

K
c,

we can use Lemma 3 to write
(σ, τ, i) |=L F

b a
K
c

=K (F〈a mod K,K](φ)∨F[K,2K]LK(φ)∨F[2K,3K]LK(φ)∨
. . . ∨ F[(n−1)K,nK]LK(φ) ∨ F[nK,b−b a

K
c·K〉LK(φ))

then, by Lemma 2 and property (*), we get
(σ, τ, i) |=L F

b a
K
c

=K (F〈a mod K,K]∨F=K(F[0,K]LK(φ)∨F[K,2K]LK(φ)∨
. . . ∨ F[(n−2)K,(n−1)K]LK(φ) ∨ F[(n−1)K,b−b a

K
+1c·K〉LK(φ))).

The Lemma 2 is applied n times until we get
(σ, τ, i) |=L F

b a
K
c

=K (F〈a mod K,K]∨F=K(F[0,K]LK(φ)∨F=K(F[0,K]LK(φ)∨
. . . ∨ F=K(F[0,K]LK(φ) ∨ F=K(F[0,b−b a

K
+nc·K〉LK(φ))) . . .))).

According to properties (**) and (***) the value b−b a
K

+nc·K =
b mod K, which is strictly less than K.
By definition of DF (base case) we write
(σ, τ, i) |=L F

b a
K
c

=K (F〈a mod K,K]∨F=K(F[0,K]LK(φ)∨F=K(F[0,K]LK(φ)∨
. . .∨F=K(F[0,K]LK(φ)∨F=K(DF (LK(φ), K, b−b a

K
+nc·K))) . . .))).

By definition of DF (recursive case) we write
(σ, τ, i) |=L F

b a
K
c

=K (F〈a mod K,K]∨F=K(F[0,K]LK(φ)∨F=K(F[0,K]LK(φ)∨
. . . ∨ F=K(DF (LK(φ), K, b− b a

K
+ nc ·K +K)) . . .))).

By property (*) we write
(σ, τ, i) |=L F

b a
K
c

=K (F〈a mod K,K]∨F=K(F[0,K]LK(φ)∨F=K(F[0,K]LK(φ)∨
. . . ∨ F=K(DF (LK(φ), K, b− b a

K
+ n− 1c ·K)) . . .))).

We apply definition ofDF (recursive case) and property (*) n−1
times to get
(σ, τ, i) |=L F

b a
K
c

=K (F〈a mod K,K] ∨ F=K(DF (LK(φ), K, b − b a
K

+
1c ·K))).
Finally, we apply the definition of LK to obtain
(σ, τ, i) |=L LK(F〈a,b〉(φ)).

9.4 Trace checking Lazy semantics

In this section we only detail the modifications (emphasized with grey
boxes in Fig. 9.5) applied to the original algorithm presented in Chapter 8.2
to support MTLL semantics. Although the original algorithm was designed
to perform trace checking of properties written in SOLOIST, here we con-
sider only its MTL subset as the optimization applies only to temporal op-
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erators [31].
The algorithm takes as input a non-empty execution trace T and an

MTL formula Φ and provides a verdict, indicating whether the trace sat-
isfies the formula or not. Before the algorithm is used we assume that
the execution infrastructure, i.e., the cluster of machines, is configured and
running. We also assume that one can easily estimate through experimen-
tation Kcluster, which is the largest time interval bound that can be used in
a formula without triggering memory saturation in the cluster. This bound
depends on the memory configuration of the node in the cluster with the
least amount of memory available. Once we have this information, we can
preprocess the input formula Φ, leveraging the theoretical results of Sec-
tion 9.3. If the temporal operators in Φ have bounded intervals less than
Kcluster, we apply the unmodified version of the original algorithm [33],
which evaluates formulae over point-based semantics. Otherwise, we have
to transform the original formula into an equivalent one that can be checked
in a memory-efficient way. This transformation is achieved by first inter-
preting the input formula Φ over lazy semantics: to preserve its meaning,
we apply the l2p transformation. Afterwards, given the parameter Kcluster,
we rewrite the formula using the LKcluster

decomposition (i.e., the LK de-
composition instantiated with parameter Kcluster) and obtain the formula
ΦKcluster
L = LKcluster

(l2p(Φ)). Thanks to Theorem 3, this formula contains
intervals no greater than Kcluster and is equivalent to Φ.

The basic flow of the algorithm is unchanged and each iteration still
consists of read, map and reduce phase.

Read phase modifications. Read phase remains unmodified.
Map phase modifications. To support the lazy semantics, the algorithm

needs to consider all the positions in the trace where we want to evaluate
the temporal operators. If any of these positions did not exist in the trace
then the original algorithm would evaluate a formula to false (see the ex-
ample in Section 9.1). However, to support the lazy semantics, we do not
need to introduce a position in the trace for each time instant: we know a
priori that only formulae of the form F=K—explicitly introduced by the LK
decomposition— may be evaluated incorrectly if the appropriate positions
are missing in the trace (see Section 9.1). Therefore, we modify the algo-
rithm for the mapper (see Fig. 9.5a) to introduce one position at τ +K only
when the parent formula ψ is a subformula of the form F=K ; this condition
is captured by the lazy() predicate. The emitted tuple contains the tuple
(ϕact,⊥, τ +K) as its value. The mapper is stateless and cannot check if a
tuple at time instant τ + K already exists: it is the reducer’s responsibility
to discard a tuple if it has a duplicate.
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1 function MAPPERΦ((φ, (v, τ)))
2 for all ψ ∈ supΦ(φ) do
3 output(ψ, (φ, v, τ))

if lazy(ψ) then
output(ψ, (ϕact,⊥, τ +K))

end if

4 end for
5 end function

(a) Mapper algorithm

1 function CHECKDUP(T )
2 r ← T.next()
3 a← T.peek()
4 if r.φ 6= ϕact then
5 if (a.φ = ϕact ∧a.τ = r.τ) T.next() end if
6 else
7 if (a.φ 6= ϕact ∧ a.τ = r.τ) r ← T.next()
8 end if
9 end if

10 return r
11 end function

(b) checkDup function
1 function REDUCER

FI ,PI
l (ψ, T )

2 if (checkIteration(ψ, T, l)) then
3 win← ∅
4 for all (φ, v, τ) ∈ checkDup(T) do
5 updateQueue((φ, v, τ), win, I, \x→ ())
6 val← |τ − win.first.τ | ∈ I
7 output(ψ, (val, τ))
8 end for
9 end if

10 end function

(c) Reducer algorithm for operator F

1 function REDUCER
GI ,HI
l (ψ, T )

2 if (checkIteration(ψ, T, l)) then
3 win← ∅
4 for all (φ, v, τ) ∈ checkDup(T) do
5 updateQueue((φ,¬v, τ), win, I, \x→ ())
6 val← |τ − win.first.τ | ∈ I
7 output(ψ, (¬val, τ))
8 end for
9 end if

10 end function

(d) Metric GI and HI operators

Figure 9.5: Mapper and Reducer algorithm changes. (supΦ is defined in Section 2.2)

Reduce phase modifications. All reducer algorithms are thus modified
to discard all duplicates of tuple (ϕact,⊥, τ) by means of the checkDup
function as exemplified in line 4 of Algorithm 9.5c and 9.5d. We chose
to present the modified algorithms for "Eventually" and "Globally" oper-
ators since they are directly used in the parametric decomposition. The
other algorithms have been modified in the same way, but we omit them for
brevity. The function checkDup (implemented in Algorithm 9.5b) simply
checks two adjacent tuples, if one of them has ϕact as a key, and both have
the same timestamp the (ϕact,⊥, τ) tuple is discarded.

Examples of application of the algorithm. Let us use our algorithm
to evaluate the formula Φ from Section 9.1 on the same trace using MTLP

semantics. In the read phase the algorithm parses the trace in parallel and
creates the input tuples for the map phase. From the first element ({p}, 1)
the Input Reader creates only the tuple (p, (>, 1)) since Φ refers only to
atom p. Tuples (p, (>, 1)), (p, (>, 2)), (p, (⊥, 4)), (p, (>, 6)), (p, (>, 8)),
(p, (⊥, 9)), (p, (⊥, 10)) are thus received by the map phase. The Mapper
associates the formulae from the input tuples with their superformulae. In
the case of tuple (p, (>, 1)) it generates only tuple (F[3,7](p), (p,>, 1)) since
F[3,7](p) is the only superformula of p. The Reduce phase, therefore, re-
ceives tuples (F[3,7](p), (p, (⊥, 10))), (F[3,7](p), (p, (⊥, 9))), (F[3,7](p), (p, (>, 8))),
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l
Atoms: {p} {p} {q} {p, q} {p, q} {q} {q}
Time-stamps: 1 2 4 6 8 9 10

Time instants: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

p > > ⊥ > > ⊥ ⊥
F[3,4](p) > > > > ⊥ ⊥ ⊥ ⊥
F[0,3](p) > > > > > > ⊥ ⊥

2
ϕact ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
F[4,4](F[0,3](p)) > > > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

3 L4(l2p(Φ)) >>> >>> >>> > ⊥⊥⊥ ⊥⊥⊥ ⊥⊥⊥ ⊥⊥⊥ ⊥ ⊥ ⊥

Figure 9.6: Evaluation of the L4(l2p(Φ)) = F[3,4](p) ∨ F[4,4](F[0,3](p)) formula over
MTLL semantics.

(F[3,7](p), (p, (>, 6))), (F[3,7](p), (p, (⊥, 4))), (F[3,7](p), (p, (>, 2))), (F[3,7](p), (p, (>, 1))),
all shuffled and sorted in descending order of their time-stamps. Since all
the tuples have the same key, only one reducer is needed. The reducer ap-
plies the algorithm shown in Figure 9.5c and outputs the truth values of
F[3,7](p) for every position in the trace:
(F[3,7](p), (⊥, 10)), (F[3,7](p), (⊥, 9)), (F[3,7](p), (⊥, 8)), (F[3,7](p), (⊥, 6)),
(F[3,7](p), (>, 4)), (F[3,7](p), (>, 2)), (F[3,7](p), (>, 1)). Notice that the boolean
values in the tuples correspond to the values in Figure 9.1 (row #4).

Assuming again that the memory requirement of keeping 8 positions is
too demanding for our infrastructure we can now use parametric decompo-
sition and lazy semantics to limit the upper bound of the interval in Φ to
K = 4. We obtain formula L4(l2p(Φ)) = F[3,4](p) ∨ F[4,4](F[0,3](p)).

Let us evaluate formula L4(l2p(Φ)) on the same trace from Section 9.1
over MTLL semantics. Table 9.6 shows the truth values of the emitted tuples
for every evaluated subformulae of L4(l2p(Φ)). Since h(L4(l2p(Φ))) = 4
the algorithm performs three iterations (whose index is indicated in the left-
most column l). The truth values of the subformulae from the different iter-
ations are separated by the horizontal dashed lines. In the first iteration the
trace is parsed to obtain the truth values of atom p. After that, two reducers
in parallel calculate the truth values of the F[0,3](p) and F[3,4](p) subformu-
lae. In the second iteration the Mapper emits the additional ϕact tuples
since the superformula is of the form F=4. The reducer evaluating formula
F[4,4](F[0,3](p)) receives the tuples with the evaluation of F[0,3](p) and ϕact.
The ϕact tuples with the crossed truth values are discarded because of the
already existing F[0,3](p) tuples shown in the row above. Finally, in the third
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iteration we can see that the truth values L4(l2p(Φ)) (circled in Figure 9.6)
are the same (at all time instants in common) as the truth values of Φ shown
in Figure 9.1.
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CHAPTER10
Evaluation & Application

10.1 Overview

In this section we report on the evaluation of our tool, in terms of scalability
and time/memory tradeoffs and compare it to other available trace checking
tools. More specifically, we evaluate our new trace checking algorithm by
answering the following research questions:
RQ1: How does the proposed algorithm scale with respect to the size of the

trace and the height of the formula? (Section 10.2)
RQ2: How does the proposed algorithm scale with respect to the size of the

time interval used in the formula to be checked? (Section 10.2)
RQ3: How does our the trace checking tool perform compared to state-of-

the-art tools? (Section 10.3)
RQ4: What are the time/memory tradeoffs of the proposed algorithm with

respect to the decomposition parameter K?(Section 10.4)
RQ5: How do the different values of the decomposition parameterK affect

the size and the height of the decomposed formula? (Section 10.5)
To evaluate our approach, we used six t2.micro instances from the Ama-

zon EC2 cloud-based infrastructure with a single CPU core and 1 GB of
memory each. We used the standard configuration for the HDFS distributed
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file system and the YARN data operating system. HDFS block size was set
to 64 MB and block replication was set to 3. YARN was configured to allo-
cate containers with memory between 512 MB and 1 GB with 1 core. We
have used a cluster provisioning tool [71] that enables consistent deploy-
ment of any number of nodes on the Amazon EC2 cloud-based infrastruc-
ture and can be easily used to replicate the results. For Hadoop service
provisioning we have used Apache Ambari [3] and Hue [1] to interact with
Hadoop services easily. For each experiment we have set a time limit to be
5 minutes and memory limit to 1 GB per machine. Each point shown in the
plots, represents an average value of 10 trace check runs on traces of the
same length.

Measuring the actual memory usage of user-defined code in Spark-based
applications requires to distinguish between the memory usage of the Spark
framework itself and the one of user-defined code. This step is necessary
since the framework may use the available memory to cache intermediate
data to speedup computation. Hence, to measure the memory usage of
the auxiliary data structures used by our algorithm (e.g., the win queue),
we instrumented the code. This instrumentation, which has a negligible
overhead, monitors the memory usage of the algorithm’s data structures
and reports the maximum usage for each run.

For the evaluation described in the next two subsections, we used syn-
thesized traces. By using synthesized traces, we are able to control in a
systematic way the factors, such as the trace length and the frequency of
events, that impact on the time and memory required for checking a spe-
cific type of formula. In particular, we evaluated our approach by triggering
the worst-case scenario, in terms of memory scalability, for our trace check-
ing algorithm. Such scenario is characterized by having the auxiliary data
structures used by the algorithm always at their maximum capacity. To
synthesize the traces, we implemented a trace generator program that takes
as parameters the desired trace length n and the number m ≥ 3 of events
(i.e., atoms) per trace element. The program generates a trace with n trace
elements, such that the i-th element (with 0 ≤ i ≤ n − 1) has τi > 0 as
time-stamp value and τi < τi+1 for all 0 ≤ i ≤ n − 2. Each trace element
has between 3 and m events denoted as {e1, . . . , em}, where e1 = p1 is
present at every trace element; events e2 = p2 and e3 = p3 are generated to
alternate starting with p2 and the other m− 3 events are randomly selected
from the set {p4, . . . , pm} using a uniform distribution. Events p2 and p3

are useful for evaluating performance of the D modality since its semantics
assumes alternating events.
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10.2 Scalability

To address RQ1: How does the proposed algorithm scale with respect to the
size of the trace and the height of the formula?, we considered 4 formulae,
with different heights:

P1: C50000000
<10 (p1),

P2: D50000000
<10 (p2, p3),

P3: (a4 ∧ (p5 ∧ p6))U(50,1000000)((p5 ∧ p6) ∨ p5)

P4: ∃j ∈ [0, 9] ∀i ∈ [0, 8] : G(50,50000000)(p4+z → X(50,1000000)(p5+z))

where z = (i+j)(i+j+1)
2

+ i. In P3 and P4, the ∀ and ∃ quantifiers are used
just as a shorthand notation to predicate on finite number of atoms: for
example, ∀i ∈ {1, 2, 3} : ai is equivalent to a1 ∧ a2 ∧ a3. The expres-
sion z is utilized to enumerate all the pairs i and j, so that we can avoid
having two subscripts for the atoms. To check the scalability of the algo-
rithm with respect to the size of the trace, we used our trace generation tool
described above to synthesize traces of lengths varying from 1 million to
50 million with an increment of 2 million. We chose m = 100 distinct
events for each time instant. Hence, we evaluated our algorithm on traces
with up to 5 billion events. The average time span of the trace is 347.2
days, if timestamps are incremented by one at each instant and time gran-
ularity is one second. Figure 10.1 shows the time and the total memory
utilized across all the nodes used by the algorithm to check the four formu-
lae on the synthesized traces. The time and memory utilization is broken
down by iterations. Formulae C50000

<10 (p1) and D50000
<10 (p2, p3) need one iter-

ation to be evaluated (shown in Figure 10.1a and Figure 10.1b). In both
cases, the time taken to check the formula increases linearly with respect
to the trace length; time increases because reducers need to process more
tuples. As for the linear increase in memory usage, for modalities C and
D reducers have to keep track of all the tuples in the window of length
K time units larger than the trace itself, so the more time instants there
are in the trace, more tuples must be buffered by the win queue, with a
consequent increase in memory usage. Checking the other two formulae
(shown in Figure 10.1c and Figure 10.1d), requires more iterations because
of their larger height. Also in this case, the time taken by each iteration
tends to increase as the length of the trace increases, especially in the itera-
tions where the metric temporal operators G and X are considered. Notice
the increase of the overall time and memory usage from Figure 10.1c to
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+ i

Figure 10.1: Time (left) and memory (right) scalability of the algorithm
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Figure 10.1d: this is due to the expansion of the quantifiers in formula
∃j ∈ [0, 9] ∀i ∈ [0, 8] : G(50,50000000)(p4+z → X(50,1000000)(p5+z)) that cre-
ates many formulae that can be checked in parallel.

To address RQ2: How does the proposed algorithm scale with respect to
the size of the time interval used in the formula to be checked?, we evaluate
the memory usage of the algorithm for different sizes of the time interval
used in the MTL formula to be checked. As discussed in Section 9.4, the
largest time interval manageable in a cluster depends on the memory con-
figuration of the node in the cluster with the least amount of memory avail-
able. Hence, we evaluate the memory usage on a single node by using for-
mulae of height 1; nevertheless, the map phase is still executed in parallel.
We consider the two metric formulae F[0,N ]p1 and G[0,N ]p0, parametrized
by the value N of the bound of their time interval. Formula F[0,N ]p1 refers
to atom p1; notice that our trace generator guarantees that p1 is present in
every trace element. Formula G[0,N ]p0 refers to atom p0; we configured our
trace generator so that event p0 is absent in all trace elements. These two
formulae exercise the trace checking algorithm in its worst-case. Indeed,
according to line 4 in Figure 9.5c, the reducer for FI buffers all the ele-
ments where atom p1 is true; hence, when checking formula F[0,N ]p1, at any
point in time the queue win will be at its maximum capacity. Dually, when
checking formula G[0,N ]p0, the absence of the event p0 from the trace will
force the algorithm to maintain the queue win at its maximal capacity (line
4 in Figure 9.5d). Notice that a particular heuristic for formulae F[0,N ]p1

and G[0,N ]p0 would simply limit their evaluation to the first N positions.
However, here we consider the most general case, in which formulae can
be arbitrarily nested. This case requires to evaluate every subformula in
every position of the trace.

We used our trace generation tool to synthesize ten traces, with length
set to n = 50 000 000 and number of event set to m = 20 events; the av-
erage size of each trace, before saving it in the distributed file system, is
3.2 GB. We make sure that the trace generator creates a trace element for
every time instant in the trace, i.e., τi = i in order to stress the memory
capacity of the algorithms’ data structures. These traces and the other arti-
facts used for the evaluation are available on the tool web site [84]. Plots
in Figures 10.2a and 10.2b show the execution time and the memory usage
required to check, respectively, formula F[0,N ]p1 and G[0,N ]p0, instantiated
with different values of parameter N . Each data point is obtained by run-
ning the algorithm over the ten synthesized traces and averaging the results.
The plots colored in blue show the average time and memory usage of our
previous algorithm [33], which applies MTLP semantics. The plots colored
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Table 10.1: Average processing time per tuple for the four properties.

Property 1 Property 2 Property 3 Property 4
SOLOIST LTL SOLOIST LTL SOLOIST LTL SOLOIST LTL

Number of tuples 16,121 55,009 24,000 119,871 215,958 599,425 1,747,360 4,987,124
Time per event (µs) 1.172 19 1.894 21 3.707 14 7.200 30
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Figure 10.2: Comparison between our two proposed trace checking algorithms.

in red represent the runs of our new algorithm that applies MTLL semantics
and decomposes all the formulae with time interval N strictly greater than
30 000 000. The decomposition parameter K = 30 000 000 is the maximal
value that our infrastructure can support.

We answer RQ2 by observing the trend in the red plots of Figures 10.2a
and 10.2b: the proposed algorithm can check, on very large traces, formulae
that use very large time intervals (up to 50 000 000), using at most 1GB of
memory and taking a reasonable time (at most 200s).

10.3 Comparison

To address RQ3: How does our the trace checking tool perform compared
to state-of-the-art tools?, we need a baseline for comparison. Among the
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non-distributed, non-parallel trace checking tools for MTL, we selected
the MONPOLY [16] tool, which was the best performing tool supporting
MTL in the “offline monitoring” track of the first international Competition
on Software for Runtime Verification [14] (CSRV 2014). MonPoly, when
executed on the traces described above, produced a stack overflow error1;
hence we could not use it for comparison. Among distributed and paral-
lel approaches there are tools supporting LTL [12, 21] and MTL [15, 33]
specification languages. The only publicly available tool supporting LTL
is DecentMon [21], however when invoked with a trace of length 1 million
as input, it produces a segmentation fault, therefore we could not use it for
the comparison. Among the tools supporting MTL only our tool [33, 84]
is publicly available therefore we compare and discuss the two algorithms
developed for point-based and lazy semantics respectively. We also try to
replicate the experimental setting from [12] that inspired our algorithm, in
order to provide an idea how our implementation compares to one in [12].

To answer RQ3, the plots show that the proposed algorithm is more scal-
able in terms of memory usage than the algorithm from [33]. Indeed, for the
evaluation of both formulae, the latter exhausts the memory bound of 1GB
when the time interval N is higher than 30 000 000. Nevertheless, the pro-
posed algorithm is on average 1.35x slower that the previous algorithm [33]
when the time interval N is higher than 30 000 000. This additional time is
needed to process the new formula obtained through theLK decomposition.

To compare our approach to the one presented in [12], which focuses
on trace checking of LTL properties using MapReduce we consider formu-
lae from the LTL fragment included in SOLOIST. Although the focus of
our work was on implementing the semantics of SOLOIST temporal and
aggregate operators, we also introduced some improvements in the LTL
layer of SOLOIST with respect to the algorithm from [12]. First, we ex-
ploited composite keys and secondary sorting as provided by the MapRe-
duce framework to reduce the memory used by reducers. We also extended
the binary ∧ and ∨ operators to support any positive arity and therefore
reducing the height of large conjunctions and disjunctions.

We compared the two approaches by checking the following formulae:

P1: G(¬p4);

P2: G(p4 → X(p5));

P3: ∀i ∈ {0 . . . 8} : G(p4+i → X(p5+i)); and

P4: ∃j ∈ {0 . . . 9} ∀i ∈ {0 . . . 8} : G(p4+z → X(p5+z)).
1To replicate the error refer to the Replication package section at [84]
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The height of these formulae are 3, 4, 5 and 6, respectively. This admittedly
gives our approach a significant advantage since in [12] the restriction for
the ∧ and ∨ operators to have an arity fixed to 2 results in a larger height
for formulae 3 and 4. For the comparison, we have synthesized traces with
length, ranging from 1000 to 100000 time instants, with up to 100 events
per time instant. With this configuration, a trace can contain potentially up
to 10 million events. We chose to have up to 100 events per time instant
to match the configuration proposed in [12], where there are 10 parame-
ters per formula that can take 10 possible values. We generated 500 traces.
The time needed by our algorithm to check each of the four formulae, av-
eraged over the different traces, was 6.28, 8.89, 16.14 and 42.53 seconds,
respectively. We do not report the time taken by the approach proposed
in [12] since the article does not report any statistics from the run of an
actual implementation, but only metrics determined by a simulation. Ta-
ble 10.1 shows the average number of tuples generated by the algorithm
for each formulae. The number of tuples is calculated as the sum of all
input tuples for mappers at each iterations in a single trace checking run.
The table also shows the average time needed to process a single event in
the trace. This time is computed as the total processing time divided by the
number of time instants in the trace, averaged over the different trace check-
ing runs. The SOLOIST column refers to the data obtained by running our
algorithm, while the LTL column refers to data reported in [12], obtained
with a simulation. Our algorithm performs better in terms of processing
time.

10.4 Tradeoff

To address RQ4: What are the time/memory tradeoffs of the proposed al-
gorithm with respect to the decomposition parameter K?, we evaluate the
execution time and the memory usage of the algorithm for different val-
ues of parameter K. As suggested in Section 10.3, the parametric decom-
position used with lazy semantics leads to a reduced memory usage, but
increases the execution time. In this section we dig into and generalize
this result by investigating the time/memory tradeoffs of our algorithm,
with respect to the decomposition parameter K (RQ4). We consider for-
mulae G[0,50 000 000]q and F[0,50 000 000]p and perform trace checking using
different decomposition parameter K. These formulae are processed us-
ing the LK decomposition, with values of K that are taken from the set
V = {5·107

i
| i = 2, 3, 4, . . .}. As the set V is potentially infinite, we set a

threshold of one hour on the execution time.
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Figure 10.3: Time/memory tradeoffs for the proposed trace checking algorithm.

The plots in Figure 10.3 show the execution time and the memory us-
age to check the two formulae. Each data point is obtained by running the
algorithm over the ten synthesized traces and averaging the results. The
value of K is represented in both plots on the x-axis using the logarithmic
scale. The smallest value of K that satisfies the execution time threshold
is 1 666 666 (obtained from set V with i = 30); for this value of K the
algorithm used 54.14MB of memory and took 43 minutes to complete. The
plots show that using a lower value for K decreases the memory footprint
of the algorithm. However, a lower value for K also yields a longer exe-
cution time for the algorithm. This longer execution time is due to the fact
that a lower value for K increases the size (and the height) of the formula
obtained after applying the LK decomposition. The increased height of
the decomposed formula triggers more iterations of the algorithm, yielding
longer execution times. We answer RQ 4 by stating that there is a tradeoff
between time and memory, determined by the value of parameter K. A
good balance between these two factors can be achieved when K is set to
the largest possible value supported by the infrastructure: in this way, it is
possible to reduce the size of the decomposed formula without incurring
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Figure 10.4: Size and height of G50,000,000p0 decomposed with different parameter K.

a longer execution time for the algorithm. Nevertheless, our algorithm is
completely parametric in K, allowing engineers to tune the algorithm to be
either more time- or more memory-intensive, depending on their needs.

10.5 Size of the decomposed formula

Regarding RQ 5: How do the different values of the decomposition pa-
rameter K affect the size and the height of the decomposed formula?, Fig-
ure 10.4 shows how the size (blue plot) and height (red plot) of formula
Φ = G50,000,000p0 changes when decomposed with different values of K.
The values of K range from 100, 000 to 50, 000, 000 with an increment of
100, 000. The plot shows that both the size and the height of the decom-
posed formula increase when K decreases. This means that the choice of
K should be the largest possible value supported by the infrastructure, in
order to reduce the size of the decomposed formula and in turn the running
time of the algorithm.
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CHAPTER11
State of the Art

The approach presented in this thesis is strictly related to work done in the
areas of distributed and parallel trace checking/run-time verification and of
alternative semantics for metric temporal logics.

Trace checking/run-time verification

Several approaches for trace checking and run-time verification and moni-
toring of temporal logic specifications have been proposed in the last decade.
The majority of them (see, for example, [17, 63, 78, 108, 114]) are cen-
tralized and use sequential algorithms to process the trace (or, in online
algorithms, the stream of events). As mentioned in Section 10.3, the cen-
tralized, sequential nature of these algorithms does not allow them either to
process large traces or properties containing very large time bounds. In the
last years there have been approaches for trace checking [15] and runtime
verification [21,92,108] that rely on some sort of parallelization. These ap-
proaches mostly focus on splitting the traces based on the data they contain,
rather than on the structure of the formula. They adopt first-order relations
with finite domains or infinite domains with finite representations as the
events in the trace. The trace can then be split into several unrelated par-
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Chapter 11. State of the Art

titions based on the terms occurring in the relations. This work considers
these approaches as orthogonal to the one presented in this thesis that fo-
cuses on the scalability with respect to the temporal dimension, rather than
the data dimension.

As stated in Chapter 8, the algorithms for the MTL temporal operators
are inspired by ones proposed in [20]. The main differences are that in the
case of our algorithms no recursive call to evaluate subformulae is needed,
since arbitrary nesting of the formulae is handled by the MapReduce iter-
ative procedure. The additional support for future-time temporal operators
is possible since we propose an offline procedure.

As for the specific application of MapReduce for trace checking, an it-
erative algorithm for LTL is proposed in [12]. Similarly to the algorithm
presented in this thesis the algorithm in [12] performs iterations of MapRe-
duce jobs depending on the height of the formula to check. However, it
does not address the issue of memory consumption of the reducers. More-
over, the whole trace is kept in memory during the reduce phase, making
the approach unfeasibile for very large traces.

Distributed computing infrastructures and/or programming models have
also been used for other verification problems. Reference [89] proposes a
distributed algorithm for performing model checking of LTL safety proper-
ties on a network of interconnected workstations. By restricting the verifi-
cation to safety properties, authors can easily parallelize a bread-first search
algorithm. Reference [23] proposes a parallel version of the well-known
fixed-point algorithm for CTL model checking. Given a set of states where
a certain formula holds and a transition relation of a Kripke structure, the
algorithm computes the set of states where the superformula of a given for-
mula holds though a series of MapReduce iterations, parallelized over the
different predecessors of the states in the set. The set is computed when a
fixed-point of a predicate transformer is reached as defined by the semantics
of each specific CTL modality.

Alternative semantics for metric temporal logics

The work closest to our lazy semantics is the one in [57], which proposes
an alternative MTL semantics, used to prove that signal-based semantics is
more expressive than point-based semantics over finite words. Despite the
similarity between the two semantics, the definition of the Until operator
over our lazy semantics is more practical for the purpose of trace check-
ing, since it requires the left subformula of an Until operator to hold in
a finite number of positions. Reference [48] revised the model paramet-
ric semantics (MPS) of the TRIO temporal logic [96], in order to overcome
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counterintuitive behaviors of bounded temporal operators on a finite tempo-
ral domain. The proposal shares the same intuition behind our definition of
lazy semantics, but overall the two semantics are quite different (in partic-
ular, in the interpretation of bounded and unbounded temporal operators).
MPS defines a delayed evaluation, similar to our lazy semantics, used to
evaluate temporal operators outside a finite temporal domain.
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CHAPTER12
Summary and Conclusions

Most traditional software engineering techniques have dealt with systems
that were assumed to live in a closed and controlled environment. However,
software engineering has shifted towards a type of software that is charac-
terized by a different set of assumptions that take into account the dynamic
nature of the environment in which the software executes; therefore, we say
that this new kind of software is embedded in an open world and we call
it open-world software. The new assumptions are the following: software
requirements are subject to change; software development and provisioning
are decentralized and involve multiple stakeholders belonging to different
organizations; systems are thus assembled out of components that provide a
specific functionality; bindings among components are established dynam-
ically (at run-time) and may vary to accommodate changes that support
the evolution of the software as well as the environment with which the
system interacts. Finally, the physical deployment of the system is typi-
cally performed on a cloud-based infrastructure that provides virtualized
and distributed computing resources shared among many users. Thus the
infrastructure on which the software runs is also subject to uncontrollable
change.

The dynamic behavior of open-world software asks for verification tech-
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niques that complement the design-time approaches, because the behavior
that one wants to verify emerges only at run time. This puts forward tech-
niques like trace checking as a viable complementary choice for verifying
open-world software.

We focus on the verification of quantitative properties that can be seen
as constraints on quantifiable values from a system execution. Currently,
there is no consolidated research into verification of quantitative properties
of open-world software. This thesis addresses the issue of verification of
open-world software in the context of quantitative properties, stated more
precisely with the following research goal:

"To study quantitative properties of systems occurring in
practice and provide a practical and scalable approach to
verification, driven by the selected specification language
suitable to express such properties."

The rest of this chapter summarizes the contributions of the thesis in
Section 12.1 and points out limitations of the approach and possible future
research directions in Section 12.2.

12.1 Contributions

We chose SOLOIST as the baseline specification language used to express
a wide range of quantitative properties. SOLOIST is an extension of met-
ric temporal logic (MTL) therefore it is able to specify both functional and
non-functional properties of systems. Additionally, its extension allows
specification of aggregating behavior of systems. Since the original lan-
guage is undecidable due to the first-order quantification, we restricted our
analysis to its propositional fragment.

Contribution 1 - Decision procedure for SOLOIST

We have implemented two efficient decision procedures for SOLOIST that
make use of state-of-the-art SMT solver. The implementation is a transla-
tion that reduces the problem of SOLOIST satisfiability to satisfiability of a
particular logic supported by the SMT solver theories. The main difference
between the two implemented procedures is the target logic of the transla-
tion: CLTLB(D) and QF-EUFIDL respectively. An efficient decision pro-
cedure provides a general framework for building a SOLOIST verification
suite that supports many verification use cases. We exploit the implemented
decision procedures for SOLOIST to perform trace checking and showcase
how the two decision procedures can be used complementarily.
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Contribution 2 - Scalable trace checking of SOLOIST

The main requirements of algorithms for trace checking logics based on
MTL is that they need to scale with respect to two crucial dimensions: the
length of the trace and the size of the time interval of the formula to be
checked. To address the former issue, we propose a distributed and parallel
trace checking algorithm that can take advantage of modern cloud comput-
ing and programming frameworks like MapReduce and Spark. We address
the latter issue by proposing an alternative semantics for MTL, called lazy
semantics. Lazy semantics possesses certain properties that allow us to de-
compose any MTL formula into an equivalent MTL formula with all time
intervals of its temporal operators limited by some constant. This decom-
position plays a major role in the context of (distributed) trace checking of
formulae with large time intervals.

Contribution 3 - Specifying quantitative properties

In the process of specifying quantitative properties of systems we have en-
countered many complex cases where SOLOIST is not expressive enough.
Therefore we extended SOLOIST with arithmetical constrains (SOLOISTA)
that allow us to express complex quantitative properties of cloud-based
elastic systems, like elasticity or resource thrashing. Another contribu-
tion towards specifying quantitative properties is lazy semantics. Besides
allowing us to optimize our distributed trace checking algorithm, we be-
lieve that lazy semantics makes the process of specifying system properties
using MTL more intuitive.

12.2 Limitations and Future work

The work presented in this thesis has limitations and they represent inter-
esting open issues that can be basis for future research directions.

Regarding the particular choice of the specification language, we note
that this thesis relies on an informal definition of quantitative properties
and the choice of specification language is driven by particular quantitative
properties encountered in practice. The domain of service-based and cloud-
based elastic systems represent typical instances of open-world software.
Although we established that SOLOIST with provided extension could cap-
ture all the properties of interest encountered in practice, one could still
raise a concern if it is appropriate to express any quantitative property. To
answer this question a comprehensive study is needed to identify the com-
plete spectrum of relevant quantitative properties and to precisely state the
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adequacy of SOLOIST to express them.
Regarding the use of the decision procedure of SOLOIST for trace check-

ing, one might raise a concern if this is an efficient approach. Indeed, satis-
fiability is a harder and a more general problem than trace checking and we
show in Sections 3.4 and 4.4 that the complexity of SOLOIST satisfiability
is EXPSPACE-complete. However, this is only an upper bound on the com-
plexity of SOLOIST trace checking. Solvers typically have a much easer
time producing a verdict for a formula that has a trace explicitly encoded
and we show in the evaluation section that in practice this approach is very
efficient given its worst case complexity. Furthermore, the SOLOIST de-
cision procedure provides us with an opportunity for rapid development of
prototype tools that enable other verification use cases. As part of the future
work other verification use cases can be explored such as model checking
or runtime verification. A possible research direction may explore opera-
tional models equivalent to SOLOIST and use them to model open-world
software. In that case the SOLOIST decision procedure can be reused to
perform model checking of quantitative properties expressed in SOLOIST.

Chapter 8 shows a particular strategy for parallel execution of SOLOIST
trace checking — using the formula structure. However, there are different
orthogonal strategies that can be applied to perform trace checking in a
parallel manner. Namely, the trace to be checked can be split into several
partitions based on the data it contains or based on time it spans [15]. In the
former case each partition needs to contain data that is not related to any
data in the other partitions based on the formula to be checked, while in the
latter case partitions contain portions of the trace bounded by overlapping
time intervals. The main idea is to obtain partitions of the trace that can
be checked independently. Applying these techniques would improve the
parallelization of the current approach and this remains to be investigated
in the future.

Regarding the parametric decomposition optimization introduced in Chap-
ter 9, one might state that it does not apply for the full fragment of SOLOIST.
Indeed, parametric decomposition is designed as an optimization for real-
time specifications that can be expressed with MTL. It remans to be inves-
tigated if similar reasoning can be applied to decompose SOLOIST aggre-
gating modalities into ones with smaller time windows.

As stated in Section 9.4 the optimal choice of value of K depends on
the particular configuration of the cluster. In practice we estimate the value
of K offline, before running the algorithm through experimentation on the
cluster. Choosing the optimal value of K online, during the algorithm’s
execution remains a very interesting future research direction.
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