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Abstract. Runtime enforcement ensures that a running system com-
plies with a property by observing and modifying the system’s actions.
In practice, the property is often defined in terms of high-level, abstract
events, while the system’s behavior consists of low-level, concrete ac-
tions. The relationship between actions and events is established in the
instrumentation process, where developers must ensure that (i) system
actions report the right events, and (ii) the necessary modifications to
the system’s behavior are correctly enforced. However, the abstraction
gap between a high-level property and low-level actions makes this pro-
cess error-prone.
In this paper, we refine an existing formal model of runtime enforce-
ment, which leaves instrumentation implicit, into a more precise model
that explicitly accounts for instrumentation. We propose a correctness
criterion for instrumentation and present a novel library, called Instr-
Lib, that instruments Python applications for runtime enforcement.
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1 Introduction

In 2022, personal data of roughly one third of Australia’s population was stolen
from the telecommunication provider Optus [25]. The attack was unsophisti-
cated, involving the attacker exploiting a coding error in the instrumentation of
an internet-facing, legacy API. Due to this error, the access control (AC) mech-
anism, while in place, was not invoked to protect the legacy API, allowing for
the easy retrieval of millions of user records.

This data breach highlights a recurring theme: even when appropriate secu-
rity mechanisms are in place, incorrect instrumentation can allow attackers to
bypass the mechanisms entirely. A rigorous approach to instrumentation is es-
pecially crucial in applications where the property is a set of desired sequences
of abstract events, with each event reflecting many possible concrete system ac-
tions. The prominent example of this is when enforcing requirements derived
from privacy law [14,16]: if a regulation requires that “no user data is used with-
out prior consent,” then being able to ensure that “data usage” is blocked when-
ever “consent” has not been previously registered is insufficient to certify that an
application complies with the law. The developers must also ensure that “data
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Fig. 1: The classical (top) and extended (bottom) enforcement models

usage” is correctly identified by existing system instrumentation whenever low-
level actions such as database reads and writes occur; furthermore, they must
check that “consent” is only registered when users actually give consent in the UI.

Runtime enforcement generalizes AC by using execution monitors that ob-
serve the actions of a running system and modify these actions to ensure that
only compliant behaviors are allowed. While, in recent years, increasingly pow-
erful enforcement approaches and tools have been developed, much less atten-
tion has been devoted to the questions of how to properly instrument systems
or how to audit existing instrumented systems to ensure correct enforcement.

Figure 1 (top) shows the idealized system model used in most previous work,
which we call the classical model of runtime enforcement. In this model, the
System under Enforcement (SuE) is a labeled transition system (LTS) with each
transition labeled by some event e. When attempting to take a transition labeled
by e (Step 1 ), the SuE sends the event e to a policy decision point (PDP)
in charge of ensuring the SuE’s compliance with a property P (Step 2 ). The
PDP edits [20] the event e to a sequence of events e′ compliant with P (Step
3 ). The modification can involve removing, replacing, or inserting events. The

events e′ are then returned as a command to the SuE (Step 4 ), which takes the
appropriate transitions (Step 5 ). As it assumes that all events are correctly sent
to the PDP and that the SuE always follows the PDP’s commands, the classical
model cannot capture non-compliance due to incorrect instrumentation.

We propose an extended model, shown in Figure 1 (bottom), where the SuE
is modeled as an LTS with transitions labeled by actions distinct from the events
sent to the PDP. In addition to the SuE and PDP, our model introduces an ex-
plicit policy enforcement point (PEP) [9] that instruments the actions performed
by the SuE, producing events processed by the PDP. Concretely, the PEP in-
tercepts every action a attempted by the system (Step 2 ) and maps it to a
sequence of events e (Step 3 ). This sequence is sent to the PDP (Step 4 ),
which edits e to some e′ (Step 5 ) and returns e′ (Step 6 ). The PEP maps
e′ back to a sequence of actions a′ (Step 7 ) that the PEP enforces in the SuE
(Steps 8 and 9 ).



Instrumenting Runtime Enforcement 3

In our extended model, the SuE’s specification consists of two elements: the
property P and a mediator I providing the desired interpretation of system ac-
tions in terms of PDP events. In the Optus data breach, the property P may
have been “whenever a user u performs an API access (APIAccess(u) event),
then u is authenticated,” while the mediator I mapped both system actions
legacyAPIAccess(u) and modernAPIAccess(u) to the event APIAccess(u). How-
ever, the PEP failed to map legacyAPIAccess(u) to APIAccess(u). As a result,
although the PDP correctly enforces P , the composition of the SuE, PEP, and
PDP does not provide the desired security guarantees.

Contributions. After reviewing the classical enforcement model (Section 2), we
make the following contributions:
– We formally introduce our extended enforcement model and define the no-

tions of PEP correctness that provide necessary and sufficient conditions for
correct instrumentation, independent of any specific PDP (Section 3).

– We show how these conditions can be relaxed for properties where the oc-
currence of certain events can be soundly overapproximated (Section 4).

– We further specialize our theory to support state-of-the-art PDPs that pro-
cess events in finite sets (‘batches’). We provide a correct PEP algorithm for
this setup and give auditing check-lists for ensuring compliance (Section 5).

– We implement our PEP algorithm in InstrLib, an open-source library for
enforcing properties of Python applications using the state-of-the-art Enf-
Guard [17] tool as the PDP. We illustrate our framework in a case study,
enforcing privacy requirements in a micro-blogging application using Instr-
Lib and then auditing our instrumentation’s correctness (Section 6).

Related Work. Models of runtime enforcement mechanisms include security au-
tomata [11,26], edit automata [20], mandatory results automata (MRA) [21],
and timed automata [3,23]. More recently, several frameworks for enforcing ex-
pressive first-order properties at runtime have also been developed [13,18,17].
Runtime enforcement can be performed both on high-level events and low-level
system actions, e.g., through inlining [10]. Most models only consider the PDP’s
logic, without any guarantees of correct instrumentation. MRAs distinguish be-
tween system actions and enforced results and may fulfill the role of both a PDP
and PEP, but do not provide for a clear separation between instrumentation and
property enforcement. In contrast, several works from the security community
discuss the composition of a PDP and PEP in the context of runtime enforce-
ment without formally or precisely describing this composition [4,24,14,15]. Our
account of the ‘classical model’ builds on work by Aceto et al. [1] and Falcone
et al. [7,12], where an SuE modeled as an LTS and the PDP run in lockstep.

2 Preliminaries

After introducing notation, we review labeled transition systems and edit au-
tomata (Section 2.1). We then introduce the ‘classical’ enforcement model and
its associated notions of PDP soundness and transparency (Section 2.2).
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Notation. Given a set A, the set of all finite sequences of elements of A is denoted
by A∗. We use Greek letters (e.g., α, σ, ρ, ...) or bold Latin letters (e.g., a, e,
ℓ, ...) to denote sequences; bold Greek letters denote sequences of sequences.
We denote the empty sequence as ε and finite sequences as ⟨a1, a2, . . . , an⟩. The
sequence σ \ a stands for σ with all occurrences of a removed, σ..i for the prefix
of σ of length i, and pre(σ) for the set of all prefixes of σ. Given σ, σ′ ∈ A∗, the
sequence σ·σ′ is the concatenation of σ and σ′. Given a sequence of sequences σ =
⟨σ1, . . . , σn⟩ ∈ (A∗)∗, we denote by ◦σ ≜ σ1·σ2·. . .·σn the concatenation of the σi.

For any set of labels L, the set of traces over L is TL ≜ L∗. A property PL
over L is a set of traces, i.e., a subset PL ⊆ TL. To support internal (or ‘silent’)
system actions, we use a distinguished label τ ̸∈ L and denote Lτ ≜ L ∪ {τ}.

2.1 Labeled Transition Systems and Edit Automata

As in previous work [1,6,2], we model systems as labeled transition systems:

Definition 1 (LTS). A labeled transition system (LTS) over L is a quadruple
S = (S,L, s0, ·−→) such that S is a set of states, L is a set of labels, s0 ∈ S is an
initial state, and ·−→⊆ S× Lτ × S is a transition relation labeled by Lτ .

We write s
ℓ−→ s′ for (s, ℓ, s′) ∈ ·−→. An LTS execution is of the form s0

ℓ1−→ s1
ℓ2−→

. . .
ℓn−→ sn and the trace of such an execution is σ = ⟨ℓ1, ℓ2, . . .⟩ \ τ , removing all

internal τ actions. In this case, we also write s0
σ−→ sn.

Example 1. Figure 2 represents a social network application as an LTS over two
different sets of labels, E (‘events’, left) and A (‘actions’, right) capturing the sys-
tem’s behavior at two levels of abstraction. For simplicity, we model the system
for a single user. At a high level (events), the system can be described in terms
of user interaction (give Consent for data usage, Revoke consent, Request data
deletion), backend operations (Use/Delete user data), and clock ticks (Tick). At
a lower level (actions), one can observe UI interactions (click_yes, click_no in
a consent banner, clicks on a request button), database (read, write, delete)
or authentication (login, logout) operations, and clock ticks (tick).

Edit automata (EA) [20] are a general model for PDPs, providing an abstract
model for a large class of practical enforcement mechanisms. Edit automata are
a special kind of LTS which, in each step, read a label ℓ1 from some set of
labels L1 and edit it deterministically into a possibly empty sequence of labels
ℓ2 from another set L2. If no ℓ2 exists for a given ℓ1, the execution of the LTS
is terminated, similar to execution cutting in security automata [26].

Definition 2 (Edit Automaton). An edit automaton (EA) over (L1,L2) is
an LTS δ = (Sδ,L1×L2

τ
∗
, s0δ ,

·▷·−→δ) with a transition relation labeled with pairs of
labels (ℓ1, ℓ2) ∈ L1 ×L2

τ
∗, also denoted as ℓ1 ▷ ℓ2, such that, for any sδ ∈ Sδ and

ℓ1 ∈ L1, there exists at most one pair (s′δ, ℓ2) ∈ Sδ ×L2
τ
∗ such that sδ

ℓ1▷ℓ2−−−→ s′δ.
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Fig. 2: Systems under Enforcement (SuE) in the Classical and Extended Model

An edit automaton is input-enabled [22] iff for any ℓ1, the automaton can
always edit ℓ1 to some ℓ2. Written more formally:

Definition 3. An edit automaton δ over (L1,L2) is input-enabled iff for any
sδ ∈ Sδ and ℓ1 ∈ L1, there exists s′δ ∈ Sδ and ℓ2 ∈ L2

τ
∗ such that sδ

ℓ1▷ℓ2−−−→ s′δ.

Note that there are two interpretations of an EA: the EA accepts a language
of traces over pairs containing a label (from L1) and a sequence of labels (from
L2
τ
∗). Alternatively, it is a transducer, translating a sequence of labels from L1

into a sequence of labels from L2 by concatenating the ℓ2. For n ∈ N, ξ =
(xi)1≤i<n, and υ = (yi)1≤i<n, we denote by ξ ▷ υ the zipped sequence (xi ▷
yi)1≤i<n. For any EA δ, we abuse notation and write δ as a partial function

such that δ(σ) = ◦σ′ ⇐⇒ ∃s′δ. s0δ
σ▷σ′

−−−→ s′δ, reflecting the view of δ as a trace
transducer.

2.2 The Classical Model of Runtime Enforcement

In the classical enforcement model [20,1,6], an SuE (LTS) and a PDP (edit
automaton) over the same set of labels are composed, progressing in lock-step.
This can be formalized as follows in terms of LTS composition:

Definition 4. An LTS S over L and an edit automaton δ over (L,L) serving
as a PDP can be composed into an LTS ⟨S|δ⟩ = (S⟨S|δ⟩,L, s0⟨S|δ⟩,

·−→⟨S|δ⟩) by

S⟨S|δ⟩ ≜ SS × Sδ × L∗ s0⟨S|δ⟩ ≜ (s0S , s
0
δ, ε)

sS
τ−→ s′S stepτ

(sS , sδ, b)
τ−→⟨S|δ⟩ (s

′
S , sδ, b)

sS
ℓ′ ̸=τ−−−→ s′′S sδ

ℓ′▷ε−−→δ s′δ step0

(sS , sδ, ε)
τ−→⟨S|δ⟩ (sS , s

′
δ, ε)

sS
ℓ′ ̸=τ−−−→ s′′S sδ

ℓ′▷(⟨ℓ⟩·ℓ)−−−−−−→δ s′δ sS
ℓ−→ s′S step+

(sS , sδ, ε)
ℓ−→⟨S|δ⟩ (s

′
S , s

′
δ, ℓ)

sS
ℓ−→ s′S buf

(sS , sδ, ⟨ℓ⟩ · ℓ)
ℓ−→⟨S|δ⟩ (s

′
S , sδ, ℓ)
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Fig. 3: Policy Decision Points (PDPs) and Policy Enforcement Point (PEP)

The states of the enforced LTS ⟨S|δ⟩ have three components: the state of
S, the state of δ, and a buffer in L∗ used to temporarily store the sequences of
labels returned by the PDP δ until corresponding transitions are taken by the
system. The enforced LTS has four kinds of transitions:
– stepτ transitions mirror internal transitions in ⟨S|δ⟩ without δ’s intervention;
– step0 transitions are triggered by the EA erasing the original label ℓ′ of

a transition of S, i.e., editing it to ε. In this case, the substate of ⟨S|δ⟩
corresponding to the state of S does not change;

– step+ transitions are triggered by the EA editing the original label ℓ′ of a
transition of S to a non-empty sequence of labels ⟨ℓ⟩ · ℓ. In this case, a first
transition labeled by ℓ is performed immediately in S, while ℓ is buffered;

– buf transitions are performed while the buffer of the enforced LTS is not
empty (step0 and step+ are disallowed in this case), performing one transition
labeled with the first label in the buffer and removing it from the buffer.

This model allows PDPs to interrupt system execution: when the system can take
a step sS

ℓ′−→ s′S but there is no ℓ such that sδ
ℓ′▷ℓ−−→ s′δ, the execution is blocked.

Example 2. We compose the SuE over E in Figure 2 with the PDPs PConsent

and PDeletion in Figure 3. Consider our LTS on E in state Timeline (i.e., user is
logged in) running together the PDP PConsent in state RVK (i.e., user consent
was revoked or never given). If the SuE attempts Use, the PDP receives Use in
RVK and suppresses it by taking the step RVK

Use▷ε−−−→ RVK ; by rule step0, the
state of the enforced LTS is left unchanged. Now, compose our LTS on E in the
state Timeline with the PDP PDelete. Assume that the LTS just executed Request,
which put the PDP in state Wait . If the SuE attempts Tick, the PDP takes a step
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Wait
Tick▷⟨Delete,Tick⟩−−−−−−−−−−−→δ Base, inserting Delete; the SuE executes Timeline

Delete−−−→
Timeline and buffers ⟨Tick⟩ by rule step+; finally, since the buffer is not empty,

the SuE takes a transition Timeline
Tick−−→ Timeline by rule buf .

A PDP’s correctness is expressed in terms of two well-known notions [20]:
soundness and transparency. Soundness with respect to some property P states
that any trace edited by the PDP is in P ; transparency states that traces that
already adhere to P are not modified by the PDP.

Definition 5 (Soundness). An edit automaton δ over (L,L) is sound with
respect to a property P ⊆ TL iff for any σ ∈ TL, δ(σ) ⊆ P .

Definition 6 (Transparency). An edit automaton δ over (L,L) is transpar-
ent with respect to a property P ⊆ TL iff for any σ ∈ P , δ(σ) = σ.

Next, we define the following variant of soundness: we say a PDP is prefix-
sound if all prefixes of a trace edited by that PDP are in P . Prefix-soundness is
stronger than standard soundness.

Definition 7 (Prefix-Soundness). An edit automaton δ over (L,L) is prefix-
sound with respect to P ⊆ TL iff for any σ ∈ TL, pre(δ(σ)) ⊆ P .

Runtime enforcement aims to ensure the compliance of the enforced LTS with
some P . Another common requirement is that, if an execution of the original
LTS already fulfills P , then this execution is not altered by the enforcement
mechanism. The corresponding properties of the enforced system are as follows:

Definition 8 (Compliance). An LTS S = (S,L, s0, ·−→) complies with the
property P iff for any execution s0

σ−→ s, we have σ ∈ PL.

Definition 9 (Preservation). An LTS S = (S,L, s0, ·−→) preserves the prop-
erty PL with respect to an LTS S⋆ = (S⋆,L, s0⋆,

·−→⋆) iff for any execution s0⋆
σ−→⋆

s⋆ of S⋆ such that σ ∈ PL, we have an execution s0
σ−→ s of S.

The following theorems provide sufficient conditions for compliance and preser-
vation. The first theorem shows that if a PDP δ is prefix-sound with respect to
P , then any enforced system ⟨S|δ⟩ complies with P . The second theorem shows
that if a PDP δ is transparent with respect to pre(P ), then any enforced system
⟨S|δ⟩ preserves P with respect to S. These theorems confirm that PDP sound-
ness and transparency are useful properties as they guarantee that any system
composed with a PDP complies to its specification. The first condition is neces-
sary and sufficient. The second condition is sufficient, but not necessary.

Theorem 1. The edit automaton δ is prefix-sound with respect to property P
iff for any LTS S, the LTS ⟨S|δ⟩ complies with P .
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Proof. =⇒ Assume that δ is prefix-sound with respect to P . Since δ is prefix-
sound, pre(δ(T(S))) ⊆ P , hence T(⟨S|δ⟩) ⊆ pre(δ(T(S))) ⊆ P and ⟨S|δ⟩ complies
with P .

⇐= Let σ such that pre(δ(σ)) ̸⊆ P . Let σ′ ∈ pre(δ(σ)) \ P . Let S = UL
be the non-deterministic ‘universal’ system with state space {⊥} that can take
any transition in L. If S attempts σ, then there is a partial execution of the
composition ⟨S|δ⟩ that generates σ′, showing that ⟨S|δ⟩ does not comply with P .

Let ⊑ denote prefix inclusion on traces, i.e., σ ⊑ σ′ ≜ σ ∈ pre(σ′).

Theorem 2. Let P ⊆ TL. If an automaton δ is transparent with respect to
pre(P ), then for any LTS S, the LTS ⟨S|δ⟩ preserves P with respect to S.

Proof. Assume that δ is transparent with respect to pre(P ), i.e., for any σ ∈
pre(P ), σ = δ(σ). Let s0

σ−→ s⋆ be an execution of S such that σ ∈ P . A
straightforward induction on the prefixes σ′ ⊑ σ, which all satisfy σ′ = δ(σ′)

by our assumption on δ, shows the existence of an execution s0⟨S|δ⟩
σ−→ s⟨S|δ⟩ for

some s⟨S|δ⟩ ∈ S⟨S|δ⟩.

As a corollary of Theorem 1, there exist sound (but not prefix-sound) edit
automata that fail to ensure compliance when composed with certain systems.
Such failures occur when an automaton inserts labels to restore compliance with
P , but in doing so, creates intermediate trace prefixes that are not in P .

For example, let L = {a, b} and P = {⟨a, b⟩}. Consider an edit automaton δ
that (1) replaces the first symbol of any trace with ⟨a, b⟩, and then (2) blocks
further execution. This automaton is sound with respect to P . When composed
with a system, δ forces the system to execute a followed by b. However, after
the first step, the system produces the intermediate trace ⟨a⟩, which is not in P .
Thus, the enforced LTS does not comply with P .

Similarly, there exist edit automata that are transparent with respect to P
(but not with respect to pre(P )) and fail to ensure preservation. Using the same
L and P , consider an edit automaton δ such that δ(⟨a⟩) = ε, δ(⟨b⟩) = ε, and
δ(⟨a, b⟩) = ⟨a, b⟩. This automaton is transparent with respect to P . However,
when composed with a system that has only two transitions s0

a−→ s1
b−→ s2,

this edit automaton prevents the generation of ⟨a, b⟩ by the enforced LTS, as it
suppresses any initial a and thus prevents the LTS from reaching s1.

To see why Theorem 2 is not an equivalence, consider the property P =
{ε, ⟨a⟩, ⟨a, a⟩, ⟨a, a, a⟩, . . .} and a PDP δ with a single state s0δ and transitions

s0δ
ℓ▷⟨a,a⟩−−−−→ s0δ for all ℓ. Since δ only ever inserts more a’s, any trace σ =

⟨a, a, . . .⟩ ∈ P of a system S is also a trace of ⟨S|δ⟩. However, δ is not transpar-
ent since, for example, δ(⟨a⟩) = ⟨a, a⟩ ≠ ⟨a⟩.

We conclude this discussion by noting that for prefix-closed properties, i.e.,
properties P such that pre(P ) = P , Theorems 1 and 2 can be expressed in terms
of standard soundness and transparency with respect to P .
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3 The Extended Enforcement Model

We now extend the classical model just presented to a model that explicitly dis-
tinguishes between low-level system actions and high-level PDP events. To this
end, we first define a formal notion of a PEP that mediates between these two lev-
els and introduce new notions of PEP soundness and transparency (Section 3.1);
then, we describe the three-way composition of an SuE, PEP, and PDP and pro-
vide analogues of Theorems 1 and 2 in this extended setting (Section 3.2).

3.1 Formal Model of the Policy Enforcement Point (PEP)

Let A be a set of actions and E a set of events. A PEP η is a pair of edit automata,
the instrumentor ηi and the enforcer ηe, that perform Steps 3 and 7 in
Figure 1 (bottom). The instrumentor ηi maps actions to sequences of events,
while the enforcer ηe maps events back to sequences of actions. For the PEP
to serve as a transducer between traces of actions and traces of events as they
occur in the system, (i) the PEP’s state after Step 6 may depend on the edited
events it received in Step 5 , but not on the attempted actions it had mapped
in Step 1 . Moreover, (ii) if the sequence of edited actions at the end of Step 6
is empty, the PEP’s state must remain the same as before Step 1 . Formally:

Definition 10. A PEP over (A, E) is a pair η = (ηi, ηe), where ηi = (Sη,A ×
E∗
τ , s

0
η,

·▷·−→η,i) is an edit automaton over (A, E) and ηe = (Sη, E × A∗
τ , s

0
η,

·▷·−→η,e)
is an edit automaton over (E ,A), with the same state space, such that for any

s1η
a′
1▷e

′
1−−−−→η,i s

2,1
η

e1▷α1−−−−→η,e s
3,1
η s1η

a′
2▷e

′
2−−−−→η,i s

2,2
η

e2▷α2−−−−→η,e s
3,2
η ,

with ◦α1 = ◦α2, then (i) s3,1η = s3,2η , and (ii) if ◦α1 = ε, then s3,1η = s1η.

Definition 11. A PEP η is input-enabled iff both ηi and ηe are input-enabled.

For each sequence of alternating ηi and ηe transitions s0η
a′
1▷e

′
1−−−→η,i s

1
η

σ1▷ρ1−−−−→η,e

s′
1
η

a′
2▷e

′
2−−−→η,i s

2
η

σ2▷ρ2−−−−→η,e . . . −→ s′
n
η , we denote by s0η

σ▷ρ1·...·ρn−−−−−−−→η snη the sequence
of transitions generating the action trace ◦(ρ1 · . . . · ρn) and the event trace ◦σ.

Example 3. The PEP in Figure 3 mediates between A and E , mapping the inter-
cepted SuE actions into sequences of PDP events and the events edited by the
PDP back into SuE actions. Note that (1) the PEP maps login and logout,
which are irrelevant for enforcement, to ε; (2) the instrumentor non-injectively
maps read and write to Use, going into state Read or Write, which allows the en-
forcer to transparently generate the original action if the PDP does not modify it.

3.2 A More Realistic Enforcement Model

Having formalized the PEP, we now compose it with an LTS and PDP:
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Definition 12. An LTS S over A, a PEP η over (A, E), and a PDP δ over E
can be composed into an LTS ⟨S|η|δ⟩ = (S⟨S|η|δ⟩,L, s0⟨S|η|δ⟩,

·−→⟨S|η|δ⟩) by

S⟨S|η|δ⟩ ≜ SS × Sη × Sδ × L∗ s0⟨S|η|δ⟩ ≜ (s0S , s
0
η, s

0
δ, ε)

sS
τ−→ s′S stepτ

(sS , sη, sδ, b)
τ−→⟨S|η|δ⟩ (s

′
S , sη, sδ, b)

sS
a′ ̸=τ−−−→ s′′S sη

a′▷e′
−−−→η,i s

′′
η

sδ
e′\τ▷e−−−−→δ s′δ

s′′η
e\τ▷ε−−−−→η,e s

′
η e′ \ τ ̸= ε

step0

(sS , sη, sδ, ε)
τ−→⟨S|η|δ⟩ (sS , s

′
η, s

′
δ, ε)

sS
a′ ̸=τ−−−→ s′′S sη

a′▷e′
−−−→η,i s

′′
η

sδ
e′\τ▷e−−−−→δ s′δ s′′η

e\τ▷(⟨a⟩·a)−−−−−−−→η,e s
′
η

sS
a−→ s′S e′ \ τ ̸= ε

step+

(sS , sη, sδ, ε)
a−→⟨S|η|δ⟩ (s

′
S , s

′
η, s

′
δ,a)

sS
a′ ̸=τ−−−→ s′S

sη
a′▷e′
−−−→η,i s

′
η e′ \ τ = ε

stepε

(sS , sη, sδ, ε)
τ−→⟨S|η|δ⟩ (s

′
S , sη, sδ, ε)

sS
a−→ s′S buf

(sS , sη, sδ, ⟨a⟩ · a)
a−→⟨S|η|δ⟩ (s

′
S , sη, sδ,a)

The states of the enforced LTS ⟨S|η|δ⟩ have four components, and now also
include the state of the PEP η. Rules stepτ and buf are similar to before, while
step0 and step+ incorporate the mediation through ηi and ηe. We add a fifth rule
stepε that covers the case where the instrumentor generates an empty sequence
of events in response to an action, leading the enforced system to take the at-
tempted transition without any intervention from δ.

Example 4. We compose our LTS on A with the PDP PDelete and the PEP in
Figure 3. Assume that the SuE is in state Timeline and just executed a transition
labeled by request, putting the PDP in state Wait . The PEP is in state Base. If

the SuE attempts tick, the PEP takes a step Base
tick▷⟨Tick⟩−−−−−−−→η,i Base; the PDP

takes a step Wait
Tick▷⟨Delete,Tick⟩−−−−−−−−−−−→δ Base, inserting Delete; the PEP takes steps

Base
Delete▷delete−−−−−−−−→η,e Base

Tick▷tick−−−−−−→η,e Base; the SuE executes Timeline
delete−−−−→

Timeline and buffers ⟨tick⟩ by rule step+; since the buffer is non-empty, the
SuE takes a transition Timeline

tick−−−→ Timeline by rule buf .
Now, we compose our LTS with the PDP PConsent and the PEP as above, with

the PDP in state RVK . If, in state Timeline, the SuE attempts write, then the
PEP maps Base

write▷Use−−−−−−→ Write; the PDP receives Use without prior consent
and suppresses it, taking a step RVK

Use▷ε−−−→ RVK ; consequently, according to
the rule step0, the SuE does not take any transition.

The PEP mediates between traces of system actions and traces of PDP
events. Hence, its correctness can only be assessed with regard to a mapping be-
tween these two sets of traces, which is part of the system’s specification. We
call such a mapping a trace mediator. We require trace mediators to be mono-
tonic with respect to the prefix relation σ′ ∈ pre(σ).
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Definition 13. A trace mediator is a function I : A∗ → E∗ such that ∀ρ, ρ′ ∈
A∗. ρ ∈ pre(ρ′) =⇒ I(ρ) ∈ pre(I(ρ′)).

In practice, this is usually desirable, since otherwise I could arbitrarily map
extensions of a given action trace to shorter or incomparable event traces.

We adopt the following definition of soundness. We later show that this def-
inition ensures compliance of the three-way composition:

Definition 14. A PEP η over (A, E) is sound with respect to a trace mediator
I : A∗ → E∗ iff whenever s0η

σ▷ρ−−→ s′η, then I(◦ρ) ∈ pre(◦σ).

Note that the above definition only requires the action trace I(◦ρ) to be a
prefix of the event trace ◦σ, rather than equal to it. Intuitively, we observe that,
if the mapped action trace I(ρ) is always a prefix of the event trace σ, then the
fact that pre(σ) ⊆ P guarantees I(ρ) ∈ P .

Similarly, for transparency, we require that the instrumentor maps the action
trace to a prefix of its image by I and that, whenever the edit automaton serving
as a PDP does not modify the sequence of events in Step 4 , the enforcer returns
the same action that was originally passed to the instrumentor.

Definition 15. A PEP η is transparent with respect to a trace mediator I iff it
is input-enabled and, whenever s0η

σ▷ρ−−→ s′η
a′▷e′

−−−→η,i s
′′
η

e▷α−−→η,e s
′′′
η , then ◦σ · e′ ∈

pre(I(◦ρ · a′)) and e′ = e =⇒ ◦α = ⟨a′⟩.

The following theorems provide analogues for the correctness results in The-
orems 1–2 for our three-way composition. They show that an edit automaton
δ is prefix-sound with respect to P if and only if its composition with a sound
PEP η with respect to a trace mediator I and an arbitrary LTS complies with
I−1(P ), and, similarly, that an edit automaton δ that is transparent with re-
spect to pre(P ) guarantees that such an enforced system preserves I−1(P ).

Theorem 3. An edit automaton δ over E is prefix-sound with respect to P iff
for any PEP η over (A, E) that is sound with respect to I and LTS S over A,
the LTS ⟨S|η|δ⟩ complies with I−1(P ) ≜ {ρ ∈ A∗ | I(ρ) ∈ P}.

Proof. =⇒ Assume that δ is prefix-sound with respect to P , η is sound, and let
ρ be a trace of ⟨S|η|δ⟩, i.e. (s0S , s

0
η, s

0
δ , ∅)

ρ−→ (snS , s
n
η , s

n
δ , b). By Definition 12, there

exist σ and σ′ such that s0δ
σ′▷σ−−−→ snδ and s0η

σ▷ρ−−→η snη , where σ = ◦σ and ρ = ◦ρ.
Expanding the definition of δ’s soundness, we get pre(σ) ⊆ P . By Definition 17,
since η is sound, we get that, for any i ≤ |ρ|, I(◦ρ..i) ⊑ ◦σ..i. In particular,
I(ρ) ∈ pre(σ) ⊆ P . We conclude that ρ ∈ I−1(P ).

⇐= Assume that δ is not sound with respect to P , i.e., there exists an
execution s0δ

σ′▷σ−−−→ sδ of δ such that pre(σ) ̸⊆ P . Let i ≤ |σ| such that σ..i /∈ P .
Fix E = A. Consider the identity PEP idA which (soundly) maps every action to
itself with respect to I = id and let S = UA. Then, by Definition 12, there exists
an execution s0⟨S|idA|δ⟩

σ..i−−→ s. Since σ..i /∈ P , then ⟨S|idA|δ⟩ does not comply
with P = I−1(P ).
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Theorem 4. For any edit automaton δ over E that is transparent with respect
to pre(P ), for any PEP η over (A, E) that is transparent with respect to I, and
for any LTS S over A, the LTS ⟨S|η|δ⟩ preserves I−1(P ) with respect to S.

Proof. Assume that δ is transparent with respect to P , η is transparent, and
let ρ = (ai)i∈N ∈ I−1(P ) such that s0

ρ−→ s. By Definition 13, all prefixes of
ρ are projected into pre(P ) by I. Hence, they are not edited by δ, which is
transparent with respect to pre(P ). Using Definition 15, we build an execution
s0⟨S|η|δ⟩

ρ−→ s⟨S|η|δ⟩.

Note that Theorems 3–4 do not show that our definition of PEP soundness is
‘minimal.’ Under Theorem 3, there could in theory exist weaker notions of PEP
soundness that would still ensure that any three-way composition is sound with
respect to the PDP’s property and PEP’s trace mediator. Similarly, there could
exist weaker notions of PEP transparency that still guarantee preservation. The
following theorems show that such weaker definitions cannot exist:

Theorem 5. Assume that |E| ≥ 2. A PEP η over (A, E) is sound with respect
to I iff for any property P , for any edit automaton δ over E prefix-sound with
respect to P , and for any LTS S over A, the LTS ⟨S|η|δ⟩ complies with I−1(P ).

Proof. =⇒ Identical to (=⇒) in the proof of Theorem 3.
⇐= Assume that η is not sound. Let (σ,ρ) of minimal length such that

s0η
σ▷ρ−−→ s′η, s′η

a′▷e′

−−−→η,i s
′′
η , s′′η

e▷α−−→η,e s
′′′
η , and σ† ≜ I(◦ρ · ◦α) ̸⊑ ◦σ · e.

Let P ≜ {σ′ ∈ E∗ | ◦σ · e ⊑ σ′ ∨ σ′ ⊑ ◦σ · e} and S = UA. Clearly, the
property P is not empty. Consider an edit automaton δ that enforces P by first
editing the sequence of events to be exactly ◦σ; then, when passed e′, rewriting
it to e; and later not modifying the trace anymore. By Definition 12, there exists
an execution s0⟨S|η|δ⟩

◦ρ−→ (∅, s′δ, s′η, ε) for some s′δ. There are two cases:
– If ◦σ · e is not a (proper) prefix of σ†, consider an execution of ⟨S|η|δ⟩ that

performs one step from (∅, s′δ, s′η, ε), generating σ′ = ◦ρ·◦α. Then I(σ′) /∈ P .
– If ◦σ · e is a proper prefix of σ†, let f1 ∈ E and f2 ∈ E∗ such that σ† =

◦σ·e·⟨f1⟩·f2. Let f ≜ ⟨f1⟩·f2 and f3 ∈ E−{f1}. Modify P to P ′ ≜ P−{σ′ ∈
TE | σ · f ⊑ σ′}. Consider an edit automaton δ′ that soundly enforces P ′ by
first editing the sequence of events to be exactly ◦σ; then, when passed e′,
rewriting it to e; and later preventing reaching any suffix of ◦σ ·f by editing
f to e · ⟨f3⟩ · f2 if necessary. Again, consider an execution of ⟨S|η|δ⟩ that
performs one step from (∅, s′δ, s′η, ε), generating σ′ = ◦ρ·◦α. Then σ′ /∈ I(P ′).

In both cases, we exhibited a system S and sound edit automaton δ for some
property P such that ⟨S|η|δ⟩ does not comply with I−1(P ).

Theorem 6. Assume that |A| ≥ 2. A PEP η over (A, E) is transparent with
respect to I iff for any property P , for any edit automaton δ transparent with
respect to pre(P ), and for any LTS S, the LTS ⟨S|η|δ⟩ preserves I−1(P ) with
respect to S.



Instrumenting Runtime Enforcement 13

Proof. =⇒ Identical to (=⇒) in the proof of Theorem 4.
⇐= For ρ ∈ A∗, denote Sρ ≜ (pre({ρ}), ε, ·−→) the system with transitions

ρ′
ℓ−→ ρ′ · ℓ for all ρ′ · ℓ ⊑ ρ. Let δE∗ be a trivial edit automaton with transitions

s0δ
ℓ▷⟨ℓ⟩−−−→ s0δ that is transparent with respect to E∗. If the PEP η is not input-

enabled, then any execution when η blocks on a execution of some Sρ under the
trivial policy E∗ and PDP δE∗ falsifies the preservation of I−1(P ).

Now, assume that there exist s0η
σ▷ρ−−→ s′η, s′η

a′▷e−−−→η,i s
′′
η , and s′′η

e▷a−−→η,e s′′′η ,
such that ◦σ · e ⊑ I(◦ρ · a′), but a ̸= ⟨a′⟩. Let ρ = ◦ρ and consider the LTS
Sρ·a′ . Consider an execution of ⟨Sρ·a′ |η|δEω ⟩ that continues from (ρ · a, ∅, s′′′η , ε).
There are three cases:

– If none of a and ⟨a′⟩ is a prefix of the other, then the system is blocked after
s′′′η , preventing it to ever produce ρ · a′.

– If a is a proper prefix of ⟨a′⟩, i.e., a = ε, then s′′′η = s′η and the system loops,
yielding the same conclusion.

– If ⟨a′⟩ is a proper prefix of a, i.e., a = ⟨a′⟩·⟨b1⟩·b2 for some b1 ∈ A, b2 ∈ A∗,
then consider c ∈ A − {b1}. Let ρ′ ≜ ρ · ⟨a′, c⟩ and consider ⟨Sρ·a′·c|η|δE∗⟩.
The enforced LTS cannot generate ρ · ⟨a′, c⟩, since after generating ρ · ⟨a′⟩,
it is forced by the PEP to execute ρ · a.

Alternatively, assume that there exist s0η
σ▷ρ−−→ s′η, s′η

a′▷e′

−−−→η,i s
′′
η , and s′′η

e▷a−−→η,e

s′′′η , ◦σ · e′ ̸⊑ I(ρ · a′). Let P ≜ I(pre({ρ · a′})). Consider the LTS Sρ·a′ and a
transparent EA δP that accepts all traces in pre(P ), blocking otherwise.

First, we show that ◦σ · e′ /∈ pre(I(pre({ρ · a′}))). Towards a contradiction,
assume that ◦σ ·e′ ∈ pre(I(pre({ρ ·a′}))). This means that there exists ρ′ ⊑ ρ ·a′
such that ◦σ · e′ ⊑ I(ρ′). But then ◦σ · e′ ⊑ I(ρ′) ⊑ I(ρ · a′) since I is a trace
mediator, contradicting ◦σ · e′ ̸⊑ I(ρ · a′). Hence, ◦σ · e′ /∈ pre(I(pre({ρ · a′}))).

Since ◦σ · e′ /∈ P , then the execution of ⟨Sρ·a′ |η|δP ⟩ generates at most the
trace ρ before being blocked by δP , thus failing to generate ρ · a′. Since ρ · a′ ∈
I−1(P ), this concludes the proof.

4 Enforcement of Downward-Closed Properties

In the previous section, we have described how using a PEP that is sound with
respect to a trace mediator I and a prefix-sound PDP for P ensures system com-
pliance with I−1(P ). In practice, however, PEPs that are not generally sound
can still ensure compliance with more restricted classes of properties. For exam-
ple, for property PConsent above, a PEP preventing too many read actions can
still guarantee compliance. In this case, what allows compliant behavior despite
an unsound PEP is that PConsent is downward-closed with respect to the relation
⪯Use− such that σ ⪯Use− σ′ iff σ is obtained from σ′ by removing Use events.

An “overapproximating” PEP such as the above has at several potential ad-
vantages: it may induce less runtime overhead because it produces fewer events;
its implementation might be easier to audit for soundness as some checks (e.g.,
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checking that the PEP does not prevent too many read actions) may become un-
necessary. Next, we study this overapproximation by considering all properties
P ⊆ E∗ that are downward-closed with respect to some fixed relation ⪯ on E∗:

Definition 16 (Downward Closure). Let ⪯ ⊆ E∗ × E∗. A property P ⊆ E∗

is downward-closed under ⪯ iff ∀σ, σ′. σ′ ∈ P ∧ σ ⪯ σ′ =⇒ σ ∈ P .

The following theorem follows straightforwardly from this definition:

Theorem 7. Let I and I ′ be two trace mediators such that ∀ρ. I ′(ρ) ⪯ I(ρ). If
a system S complies with I(ρ), it complies with I ′(ρ). If S preserves I ′(ρ) with
respect to some S⋆, it preserves I(ρ) with respect to S⋆.

In the above example, one consequence of this theorem is that if we have a
PEP η that is sound with respect to some I ′ such that I ′ produces fewer Consent
events than I, then any ⟨S|η|δConsent⟩ satisfies I−1(PConsent). This is because the
property PConsent is downward-closed with respect to the relation ⪯Consent+ such
that σ ⪯Consent+ σ′ iff σ is obtained from σ′ by adding Consent events.

Next, we consider the following notion of ⪯-soundness for PEPs:

Definition 17. A PEP η is ⪯-sound with respect to I iff whenever s0η
σ▷ρ−−→ s′η,

then ◦σ is a prefix of some σ′ with σ′ ⪯ I(◦ρ).

The next theorem formalizes the overapproximation discussed above in the
case of read: if a PEP η generates sequences of actions that are smaller (under ⪯)
than the sequences of events edited by the PDP, then compliance is guaranteed.

Theorem 8. Let η be a PEP over (A, E) and δ an edit automaton over E sound
with respect to P . If η is ⪯-sound with respect to I and P is downward-closed
under ⪯, then ⟨S|η|δ⟩ complies with I−1(P ).

Proof. Analogously to Theorem 3 (=⇒), we prove that ⟨S|η|δ⟩ complies with
I−1(P ) using our downward-closure assumption. Let ρ be a trace of ⟨S|η|δ⟩. Since
⟨S|η|δ⟩ complies with I−1(P ), then ρ ∈ I−1(P ), i.e., σ ≜ I(ρ) ∈ P . By our first
assumption, I⋆(ρ) ⪯ I(ρ). By our second assumption applied to σ and σ′ ≜ I(ρ),
we get I⋆(ρ) ∈ P , i.e., ρ ∈ I⋆−1(P ). Hence, ⟨S|η|δ⟩ complies with I⋆−1(P ).

Theorem 9. Let η be a PEP over (A, E) and δ an edit automaton over E.
Assume that ⟨S|η|δ⟩ preserves I−1(P ) with respect to S. If ∀ρ. I(ρ) ⪯ I⋆(ρ) and
P is downward-closed under ⪯, then ⟨S|η|δ⟩ preserves I⋆−1(P ) with respect to S.

Proof. Let I⋆−1(P ) be a trace of ⟨S|η|δ⟩. By our first assumption, I(ρ) ⪯ I⋆(ρ).
By our second assumption, I(ρ) ∈ P , i.e., ρ ∈ I−1(P ). Since ⟨S|η|δ⟩ preserves
I−1(P ) with respect to S, then ρ is the trace of an execution of S. Hence, ⟨S|η|δ⟩
preserves I⋆−1(P ) with respect to S.
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5 Practical Enforcement with Batches and Capabilities

The general model that we have described in Sections 3–4 must be instantiated
for specific classes of events, PDPs, and downward-closed relations to be used
with real-world tools. In this section, we specialize our theory to enforcement
mechanisms that work with sets of simultaneous events (‘batches’, sometimes
also called timepoints [5] in the literature) and distinguish between events that
the PDP can cause or suppress [13]. This will allow us to implement our frame-
work with EnfGuard [17] as PDP in Section 6. We first define batch edit au-
tomata, batch PEPs, and their properties, and introduce a relation ⪯mono whose
downward closure contains properties that cannot be violated by generating
‘more’ or ‘fewer’ of certain events (Section 5.1). Then, we give a concrete batch
PEP algorithm and prove sufficient (⪯-)soundness conditions (Section 5.2).

5.1 Batch Edit Automata and Batch PEPs

In this section, we consider the case where each a ∈ A and e ∈ E is a finite set,
i.e., A ≜ P(A)f and E ≜ P(E)f , where P(·)f denotes the set of all finite subsets.
In contrast to the previous sections, we now refer to elements of A and E as
action batches and event batches, and reserve the words actions and events for
elements of A and E, respectively. As in previous work [17], we assume that the
edit automaton serving as a PDP cannot insert or delete event batches, but only
edit the content of the sets, and that which events can be caused or suppressed
is known in advance: there is a set C ⊆ E of causable events and a set S ⊆ E
of suppressable events. We call such automata batch automata; the pair (C, S)
is called the automaton’s capabilities.

We first specialize our definitions of edit automata and PEPs:

Definition 18. A batch edit automaton (BEA) with capabilities (C, S) is an EA

with transitions sδ
ℓ▷⟨ℓ′⟩−−−→ s′δ or sδ

ℓ▷τ−−→ s′δ only, where ℓ′ − ℓ ⊆ C and ℓ− ℓ′ ⊆ S.

Definition 19. A batch PEP (BPEP) with capabilities (C, S) is an input-enabled

PEP with transitions sη
a▷⟨e⟩−−−→η,i s

′
η and s′η

e▷⟨a⟩−−−→η,i s
′′
η where, whenever s0η

σ▷ρ−−→

sη
a′▷⟨e′⟩−−−−→η,i s

′
η

e▷⟨a⟩−−−→η,e s
′′
η , there exists e′′ ∈ E and s′′′η such that sη

a▷⟨e′′⟩−−−−→ s′′′η ,
e′′ − e′ ⊆ C, and e′ − e′′ ⊆ S.

Next, we define classes of properties that are common in practice, namely
those where adding or removing a given event e to any batch of a compliant trace
can never yield a non-compliant trace. When a property P can never be violated
by just adding e events to an already compliant trace, we call it e-monotonic;
when it can never be violated by just removing e events from such a trace, we
call it e-antimonotonic.

Definition 20. A property P ⊆ E∗ is monotonic with respect to e ∈ E iff for
all σ, σ′ ∈ E∗ such that for all i ∈ N, σ′

i ∈ {σi, σi ∪ {e}}, σ ∈ P =⇒ σ′ ∈ P .
Similarly, a property P ⊆ E∗ is antimonotonic with respect to e ∈ E iff for

all σ, σ′ ∈ E∗ such that for all i ∈ N, σ′
i ∈ {σi, σi − {e}}, σ ∈ P =⇒ σ′ ∈ P .
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For the rest of this section, we fix two sets M+,M− ⊆ E of events and
consider the following relation ⪯mono:

σ ⪯mono σ
′ ⇐⇒ |σ| = |σ′| ∧ ∀i ∈ {1, . . . , |σ|}. σ′

i − σi ⊆ M+ ∧ σi − σ′
i ⊆ M−.

The following proposition directly follows from Definition 20:

Theorem 10. A property P is downward-closed with respect to ⪯mono iff it is
monotonic in every e ∈ M+ and antimonotonic in every e ∈ M−.

5.2 A Batch PEP Algorithm

In this subsection, we present a concrete batch PEP algorithm and give sufficient
conditions for it to be (i) sound and transparent or at least (ii) ⪯mono-sound.

The algorithm. Our algorithm is defined via two functions iη : A∗ × A → E

and eη : A∗ × A × E → A such that s0η
σ▷ρ−−→ sη

a′▷⟨e′⟩−−−−→η,i s
′
η iff e′ = iη(◦ρ, a′)

and s0η
σ▷ρ−−→ sη

a′▷⟨e′⟩−−−−→η,i s
′
η

e▷⟨a⟩−−−→η,e s
′′
η iff a = eη(◦ρ, a′, e). We call the result-

ing PEP B(iη, eη). The function iη, called the instrumentation mapping, can be
freely chosen. It maps an action to a sequence of events, which may depend on
the history of past actions. The function eη, called the enforcement mapping, is
defined in terms of the instrumentation mapping as well as three handlers: the
causation handler hC , the preservation handler hK (‘K’ stands for ‘keep’), and
the suppression handler hS . Each handler is a partial map describing how the
enforcer should handle the PDP’s edits: when the original set of actions is a′ and
the PDP causes some set of events e, the handler generates the set of actions
hC(e, a

′); when the PDP does not modify some events e, the handler generates
the actions hK(e, a′); and when it suppresses some events e, the handler gen-
erates the actions hS(e, a

′). Since the first argument of each handler is a set of
events, there may be several ways to use the same handler to cause, preserve, or
suppress the same events. For instance, to cause {e1, e2, e3}, one can either call
hC({e1}, a′), hC({e2}, a′), and hC({e3}, a′) consecutively and collect the gener-
ated actions, call hC({e1, e2}, a′) and hC({e2, e3}, a′), call only hC({e1, e2, e3}),
etc. For the PEP to be input-enabled, the domain of hC (respectively, hK , hS)
must generate C (respectively, E, S):

Definition 21. Let Ω be an element set. A set X ∈ P(P(Ω)) is a generator of
another set Y ∈ P(P(Ω)) iff for any y ∈ Y , there exists a finite subset X ′ ⊆ X
such that y =

⋃
x∈X′ x.

In the case where several decompositions of the set of events into a union of
elements of the domain exists, we can use any function chooseY ;X : Y → P(X)f
such that

⋃
chooseX;Y (y) = y to select a valid decomposition. Given such a

choice function, the handlers provide a convenient way for developers to define
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Algorithm 1 Batch PEP Algorithm

eη(ρ, a
′, e) = let e′ = iη(ρ, a

′) in(
if e′ = e then a′ else let c1, . . . , cnC = choosedom(hC);C(e− e′);

k1, . . . , knK = choosedom(hK);K(e ∩ e′);

s1, . . . , snS = choosedom(hS);S(e
′ − e)

in
nC∪
i=1

hC(ci, a
′) ∪

nK∪
i=1

hK(ki, a
′) ∪

nS∪
i=1

hS(si, a
′) )

(sound) PEP reactions to arbitrary PDP edits, without having to explicitly
define the PEP’s reaction to every combination of edits.

Algorithm 1 gives the pseudocode of eη. First, the enforcer computes the
events e′ corresponding to the original actions and compares them to the edited
events e returned by the PDP. If the PDP did not modify the events, the enforcer
returns the original actions a′. Otherwise, it decomposes the sets of caused ac-
tions e′−e, preserved actions e∩e′, and suppressed actions e−e′ over dom(hC),
dom(hK), and dom(hS) respectively, and calls the corresponding handlers, re-
turning the union of all generated actions.

Correctness. The following theorem provides a set of conditions that together
guarantee that B(iη, eη) is a sound and transparent PEP with capabilities (C, S).
We first state the theorem and then give an intuitive interpretation of each of
the conditions in terms of instrumentation auditing:

Theorem 11. Let iη : A∗ ×A → E, hC : P(C)f ⇀ A → A, hS : P(S)f ⇀ A →
A, hK : P(E)f ⇀ A → A be given. Suppose that (1) dom(hC) is a generator of
P(C)f under ∪, (2) dom(hK) is a generator of P(E)f under ∪, (3) dom(hS) is a
generator of P(S)f under ∪, (4) ∀ρ, a, b. iη(ρ, a)∪ iη(ρ, b) = iη(ρ, a∪b), where we
set τ ∪s ≜ s∪τ ≜ s, (5) ∀ρ, c, a. iη(ρ, hC(c, a)) = c, (6) ∀ρ, k, a. iη(ρ, hK(k, a)) =
k, (7) ∀ρ, s, a. iη(ρ, hS(s, a)) = ∅, and (8) ∀ρ, a. iη(ρ, a) = (I(ρ · ⟨a⟩))|ρ|+1. Then
B(iη, eη) is a batch PEP with capabilities (C, S) that is sound and transparent
with respect to I.

Proof. Since (i) dom(hC) is a generator of P(E)f under ∪ and (ii) dom(hS) is
a generator of P(S)f , then the function eη is total. Transparency is straightfor-
ward. For soundness, we compute

iη(aC ∪ aK ∪ aS)

= iη

(
nC⋃
i=1

hC(ci, a
′) ∪

nK⋃
i=1

hK(ki, a
′) ∪

nS⋃
i=1

hS(si, a
′)

)

=

(
nC⋃
i=1

iη(hC(ci, a
′))

)
∪

(
nK⋃
i=1

iη(hK(ki, a
′))

)
∪

(
nS⋃
i=1

iη(hS(si, a
′))

)
by (iii)

=

(
nC⋃
i=1

ci

)
∪

(
nK⋃
i=1

ki

)
∪

(
nS⋃
i=1

∅

)
by (iv)–(v)
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= e− e′ ∪ e ∩ e′ = e. by def. eη

This theorem provides a checklist (1)–(8) that can be used to audit the
correctness of the system’s instrumentation when our PEP algorithm is used
together with a sound PDP. The checks to be performed are as follows:
(1–3) Is the causation handler (respectively, preservation, suppression handler)

defined for all causable events (respectively, for all events, for all suppressable
events)?

(4) Does the instrumentation mapping map single actions to events indepen-
dently, i.e., does a set of n actions map to the same events as the union of
the events that each of the n actions maps to?

(5-6) When the causation (respectively, preservation) handler receives events,
does it generate actions that map exactly (through iη) to the events it re-
ceived?

(7) Does the suppression handler only generate actions that map to ∅?
(8) Does the instrumentation mapping iη implement exactly I?

For all events e ∈ E such that e ∈ iη(ρ, {x}) =⇒ iη(ρ, {x}) = {e} (i.e., events
that are never generated together with another event), note that the part of
the preservation handler related to e can be straightforwardly defined as a′ 7→
hK({e}, a′) = {x ∈ a′ | e ∈ iη(ρ, {x})}, triggering all actions in a′ that map to e.

In practice, auditing these requirements, especially (6) and (8), can be chal-
lenging, as it requires checking correct instrumentation and enforcement for all
possible events: the instrumentation must always provide exactly the right events
whenever necessary ; the enforcer must always generate exactly the right actions.

For ⪯mono soundness, we can significantly weaken conditions (5)–(8):

Theorem 12. Let iη, hC , hS, and hK be given. Suppose that (1)–(4) and (7) are
as in Theorem 11, (5) ∀ c, a. iη(ρ, hC(c, a))− c ⊆ C ∩M+ ∧ c− iη(ρ, hC(c, a)) ⊆
M−, (6) ∀ρ, k, a. iη(ρ, hK(k, a))−k ⊆ C∩M+∧k− iη(ρ, hK(k, a)) ⊆ S∩M−, (8)
∀ρ, a. iη(ρ, a) ⪯ (I(ρ · ⟨a⟩))|ρ|+1. Then B(iη, eη) is ⪯mono-sound with respect to I.

Proof. By Theorems 8 and 11.

The questions to be answered for (5), (6), and (8) are now the following:
(5-6) a. When a handler receives an event that is not both antimonotonic and

suppressable, does it always generate an action that maps to this event?
b. When a handler generates an action that maps to an event that is not
both monotonic and causable, did it always receive this event originally?

(8) a. Does the implementation mapping iη ensure that every event that is not
monotonic is always logged when an action mapping to it occurs?
b. Does the implementation mapping iη ensure that every event that is not
antimonotonic is only ever logged when an action mapping to it occurs?

6 Case Study

InstrLib. We have implemented our batch PEP algorithm (Section 5) in a
Python library called InstrLib [19]. The library consists of 1,500 lines of Python
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Actions Event Sets

Any reading or writing of some of user u’s data for purpose p Use(u, p) S, M−

Any user input from u giving consent for purpose p Consent(u, p) M+

Any user input from u revoking consent for purpose p Revoke(u, p) M−

Any user input from u containing a deletion request Request(u) M−

Any call to a function that deletes all of user u’s data Delete(u) C, M+

Table 1: The trace mediator I in Minitwitter

code with two instrumentation layers: a low-level layer, which allows for instru-
menting arbitrary Python function calls and attributes, and a high-level layer
providing off-the-shelf enforcement hooks for Django web applications. The lat-
ter uses a fixed set of actions (read, write, input, output, execute) to capture
database reads and writes, user inputs and outputs, and calls to class members.
The library allows developers to specify the PEP logic as in Algorithm 1 by pro-
viding an instrumentation mapping and handlers. Its architecture is shown in
the appendix. It has bindings to the state-of-the-art EnfGuard tool [17].

Minitwitter. We now showcase the usage of InstrLib by instrumenting a micro-
blogging app for compliance with two privacy requirements. The target app has
435 lines of Python code and allows users to view their and other users’ timeline,
follow other users, and post short messages. Additionally, the app shows one of
two advertisement messages on the user’s timeline depending on the content of
their posts. It also displays a privacy banner that prompts the user to accept or
reject the use of their data for marketing purposes.

We enforce the two following requirements: (1) whenever data is used for
marketing purposes, the user has given (and not revoked) consent; (2) if the
user requests the deletion of all of their data, their data is deleted within one
minute. Here, the events of interest are Use(u, p), denoting “user u’s data is used
for purpose p;” Consent(u, p) (respectively, Revoke(u, p)), denoting “user u gives
(respecively, revokes) consent to use their data for purpose p;” Request(u), de-
noting “user u requests deletion of their data;” and Delete(u), denoting “user u’s
data is deleted:” The PDP is assumed to be able to cause Delete and suppress
Use. The trace mediator I, which is part of the system specification, is shown in
Table 1. As in most practical instances, this trace mediator is informal.

To instrument Minitwitter, developers proceed in three steps. First, they
provide the property of interest in EnfGuard’s [17] property specification lan-
guage: Metric First-Order Temporal Logic (MFOTL) [8]. Here, the property is

□(∀u. (Use(u, “marketing”) → (¬Revoke(u, “marketing”) S Consent(u, “marketing”)))

∧ (Request(u) → ♢[0,60] Delete(u))).

Second, the developers use the built-in Django bindings for InstrLib to asso-
ciate actions to database reads and writes (actions read and write), user inputs
to views (action input), and function calls (action execute). Functions with a
specific processing can be marked with that purpose (here, “marketing”). At

https://github.com/sonus21/MiniTwitter
https://github.com/sonus21/MiniTwitter
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Baseline (∝ n) Instrumented (∝ n)
View 102 103 104 105 106 102 103 104 105 106

timeline 54 54 58 58 66 56 +2 58 +4 69 +11 70 +12 75 +9
post 64 62 63 62 61 67 +4 68 +6 66 +3 67 +5 67 +6
consent 47 46 47 47 47 53 +6 54 +8 55 +8 54 +7 54 +7
request – – – – – 58 59 59 58 72

Table 2: Runtime latency (ms) over 20 repetitions

runtime, based on the current call stack, InstrLib injects the current purposes
of processing into read and write actions. This step requires about 40 lines of
code in the Python files describing the app’s database models and URLs.

Third, the developers describe the instrumentation mapping and handlers.
This requires about 50 lines of code in a single Python file. The instrumentation
mapping maps database read or writes to Use events, consent banner clicks
(captured by specific input actions) to either Consent or Revoke, clicks on a
special ‘Delete My Data’ button (captured by other input actions) to Request,
and executions of a special function delete_data(u) that erases all of a user’s
data (captured by an execute action) to Delete. Two handlers are implemented:
a suppression handler for Use that returns None instead of the actual content of
object fields and prevents their overwriting; and a causation handler for Delete
that calls delete_data. By default, InstrLib provides a simple preservation
handlers as described in Section 5.2, which are sufficient when iη maps each action
to at most one event. All enforcement-related code is showed in the appendix.

In Table 2, we report the latency of four of Minitwitter’s views with and with-
out instrumentation with InstrLib: viewing the timeline, posting a message,
giving consent, and requesting deletion of one’s data, for different values of the
number n of posts in the database. The runtime overhead is <15 ms per request.

Auditing Minitwitter’s implementation. In the property above, Consent and Delete
are monotonic, whereas Request, Revoke, and Use are antimonotonic. We can
now go through the checklist provided by Theorem 12. For (1–3), we check the
existence of a causation handler for Delete, a suppression handler for Use, and
preservation handlers for all events. Regarding preservation handlers, we note
that, as described above, InstrLib’s default implementation provides simple
preservation handlers that are sufficient with our choice of iη—this also allows
us to check (6). Condition (4) is implemented by InstrLib by design. For the
Delete causation handler, we answer (5a) positively by checking that the han-
dler does call the delete_data function, whose behavior matches the informal
description in Table 1. Condition (5b) is vacuous since Delete is monotonic and
causable. Condition (7) is trivially fulfilled since our suppression handlers return
None. For (8a), we must check that Request, Use, and Revoke events are always
emitted when actions occur that map to them according to Table 1. Inspecting
the interface of the application, we control that the buttons for revocation of
consent and deletion requests map to the views whose inputs we have instru-
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mented. Similarly, we check that all fields that contain personal data emit read
and write events and that all functions performing marketing are marked as
such. Finally, for (8b), we must check that Consent and Delete are only logged
when the corresponding system actions as described in Table 1 happen. To this
end, we control that Consent is only generated by the input corresponding to
clicking ‘yes’ in the banner and, similarly, that the Delete event is only gener-
ated by the execute action of function delete_data.

7 Conclusions and Future Work

To the best of our knowledge, we have provided the first formal account of
instrumentation in runtime enforcement. Besides a policy decision point (PDP),
our extended enforcement model features a policy enforcement point (PEP) as an
explicit component. Our model is general, independent of any specific PDP, and
provides necessary and sufficient conditions for the correctness of the composition
of a system, a PDP, and a PEP. We have demonstrated the applicability of our
approach by implementing in the InstrLib instrumentation library and using
it to enforce privacy requirements in a micro-blogging application.

Future work includes extending our auditing methodology to validate the
implementation of runtime enforcement mechanisms in large applications with
complex specifications and further optimizing InstrLib.
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A Enforcement code for Minitwitter

1 ...
2
3 from instrlib.django.orm import InstrumentORM
4
5 from .enforcer import logger
6
7 def info_user(user):
8 try:
9 return str(user)

10 except:
11 return ""
12
13 @InstrumentORM(logger ,
14 {"User.first_name", "User.last_name", "User.is_staff", "User.

email", "User.save", "User.last_login"},
15 info = info_user , events = {’read’, ’write’, ’execute ’})
16 class User(AbstractUser):
17
18 def delete_data(self):
19 self.twit.all().delete ()
20 self.follower.all().delete ()
21 self.following.all().delete ()
22
23 def info_follow(follow):
24 try:
25 return str(object.__getattribute__(follow , ’follower ’))
26 except:
27 return ""
28
29 @InstrumentORM(logger ,
30 {"Follow.follower", "Follow.following", "Follow.date", "Follow

"},
31 info = info_follow , events = {’read’, ’write ’})
32 class Follow(CommonInfo):
33 ...
34
35 def info_twit(twit):
36 try:
37 return str(object.__getattribute__(twit , ’author ’))
38 except:
39 return ""
40
41 @InstrumentORM(logger ,
42 {"Twit.content", "Twit.posted_on", "Twit.updated_on", "Twit.

author", "Twit.save"},
43 info = info_twit , events = {’read’, ’write’})
44 class Twit(CommonInfo):
45 ...

models.py

1 ...
2
3 from instrlib.django.url import InstrumentURL
4 from twitt.enforcer import logger
5
6 urlpatterns = [
7 path(’admin/’, admin.site.urls),
8 path(’’, include(’twitt.urls’)),
9 ]

10
11 to_instrument = {
12 "twitt.views.SetCookieConsentView",
13 "twitt.views.DeleteAllView",
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14 }
15
16 urlpatterns = InstrumentURL(logger , to_instrument , events = {’input’})(

urlpatterns)

urls.py

1 class HomeView(LoginRequiredMixin , TemplateView):
2 template_name = ’index.html’
3
4 @with_purpose(’marketing ’)
5 def generate_advertisement(self):
6 ...

views.py

1 from typing import Any
2
3 from instrlib.event import Event
4 from instrlib.pdp import EnfGuard
5 from instrlib.logger import Logger
6 from instrlib.pep import InstrumentationMapping , PEP
7 from instrlib.schema import Schema
8
9 from Twitter.settings import INSTRLIB_EXE , INSTRLIB_FORMULA , INSTRLIB_LOG ,

INSTRLIB_SIG
10
11 # Handlers
12
13 def none_handler(event_name , event_args , response , *args , ** kwargs):
14 return None
15
16 def delete_handler(events):
17 from twitt.models import User
18
19 for event in events:
20
21 user_name = event[’args’][0]
22 try:
23 user = User.objects.get(username=user_name)
24 except User.DoesNotExist:
25 return
26
27 user.delete_data ()
28
29 # Schema
30
31 schema = Schema ()
32 schema.add(’Use’, [str , str])
33 schema.add(’Consent ’, [str , str])
34 schema.add(’Request ’, [str])
35 schema.add(’Delete ’, [str])
36
37 # PDP
38
39 pdp = EnfGuard(INSTRLIB_EXE , INSTRLIB_SIG , INSTRLIB_FORMULA , log_file =

INSTRLIB_LOG)
40
41 # PEP
42
43 suppression_handlers : dict[str | tuple[str , ...], Any] = {
44 (’Use’) : none_handler ,
45 }
46 causation_handlers : dict[str | tuple[str , ...], Any] = {
47 (’Delete ’) : delete_handler ,
48 }
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49
50 def read_mapping(action):
51 return Event(’Use’, action.args[4], action.args [5])
52
53 def write_mapping(action):
54 return Event(’Use’, action.args[5], action.args [6])
55
56 def input_mapping(action):
57 if action.args [:3] == (’SetCookieConsentView ’, ’accept ’, ’true’):
58 return Event(’Consent ’, action.args[3], ’marketing ’)
59 elif action.args [:3] == (’DeleteAllView ’, ’delete ’, ’true’):
60 return Event(’Request ’, action.args [3])
61 else:
62 return None
63
64 def execute_mapping(action):
65 if action.args [:2] == (’User’, ’delete_data ’):
66 return Event(’Delete ’, action.args [3])
67 else:
68 return None
69
70 instrumentation_mapping = InstrumentationMapping ({
71 ’read’: read_mapping ,
72 ’write’: write_mapping ,
73 ’input’: input_mapping ,
74 ’execute ’: execute_mapping ,
75 })
76
77 pep = PEP(
78 suppression_handlers = suppression_handlers ,
79 causation_handlers = causation_handlers ,
80 instrumentation_mapping = instrumentation_mapping
81 )
82
83 # Logger
84
85 logger = Logger(pep , schema , pdp)

enforcer.py

B Architecture of Instrlib

The architecture of InstrLib, shown in Figure 4, involves six different kinds
of parallel threads: worker threads; writer and reader threads; proactive worker
threads; the PDP; and a timer thread. These threads interact according to two
main flows. The first, reactive [18] flow (in green in Figure 4) starts with an
instrumented function being run by a worker serving a user request; the events
to be logged are computed and placed into a queue (1) that is read by the
writer thread (2). The writer thread passes the events to the PDP (3) and places
the original worker request in another queue (4). The reader thread reads the
outputs of the PDP (5) and realigns them with the content of the second queue
(6) before passing it back to the worker (7). Additionally, the reader thread can
start proactive workers (8) to perform causation. The second, proactive [18] flow
(in red) is initiated by a clock tick. It proceeds as before (2–6) but can only
perform causation (8). This second flow is used when, e.g., an action has to be
performed before a deadline irrespective of the presence of user inputs.
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Fig. 4: Architecture of InstrLib
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