
Metric First-order Temporal Logic with Complex Data Types

Jeniffer Lima Graf, Srđan Krstić , and Joshua Schneider

Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland
{srdan.krstic,joshua.schneider}@inf.ethz.ch

Abstract. Temporal logics are widely used in runtime verification as they enable
the creation of declarative and compositional specifications. However, their ability
to model complex data is limited. Onemust resort to complicated encoding schemes
to express properties involving basic structures such as lists or trees. To avoid this
drawback, we extend metric first-order temporal logic with a minimalistic, yet
expressive, functional programming language. The extension features an expressive
collection of types including function, record, variant, and inductive types, as well
as support for type inference and monitoring.
Our monitor implementation directly parses traces in the JSON format, based
on the user’s type specification, which avoids a separate pre-processing step. We
compare our approach to existing shallow embeddings of temporal properties
in general-purpose host languages and to encodings into simple temporal logics.
Specifically, our language benefits from a precise semantics and a good support
for monitoring-specific static analysis.

Keywords: Monitoring · Temporal logic · Data types.

1 Introduction

Runtime verification (or monitoring) verifies running systems in their operational
environment. Implemented by processes, called monitors, it systematically validates a
specification by searching for counterexamples in a trace of events recorded during system
execution. The specification describes the intended system behavior and, if explicitly
input to the monitor, it is written in a specification language. Logical specification
languages (e.g., LTL) are widely used due to their declarative and compositional nature.
First-order language extensions, like metric first-order temporal logic (MFOTL)

can express dependencies between the data values stored in events. Yet most monitors
support only atomic data values making it difficult to write and maintain many practical
specifications. Events may contain structured data (e.g., JSON or XML objects), which
require either a non-trivial pre-processing step for the trace, or an elaborate encoding
scheme for the specification, or even both. Understanding and maintaining both such
specifications and pre-processing logic quickly becomes unfeasible, especially as they
need to be kept in sync. For example, small changes in the pre-processing logic, like
extracting event values in a different order, must be reflected in the first-order specification,
e.g., by swapping the appropriate variables in the predicates. Ideally, trace pre-processing
should not be done both to avoid the processing overhead and the need to have it in-
sync with the specification. If this cannot be achieved, then pre-processing should be
domain-independent—it should not rely on the meaning of the trace events.
For example, consider aweb server execution tracewith successful accesses by clients:

https://orcid.org/0000-0001-8314-2589
https://orcid.org/0000-0001-8253-4513

2 J. Lima Graf et al.

@100 {"url":"/login", "client":"123"}
@113 {"url":"/login", "client":"123", "session":{"id":7, "token":"..."}}
@115 {"url":"/secure", "client":"123", "session":{"id":7, "token":"..."}}
@200 {"url":"/secure", "client":"666"}
@800 {"url":"/secure", "client":"123", "session":{"id":7, "token":"..."}}

where each line contains a JSON object prefixed with a @ddd time-stamp in seconds.
Suppose that every client accessing the /secure URL must have a valid session, not

older than 600 seconds, established previously by visiting /login. A way to monitor this
specification is to translate JSON objects to tuples containing values of atomic data types:

@100 Access("/login", "123", False, -1, "")
@113 Access("/login", "123", True, 7, "...") etc.

The Boolean flag in each tuple indicates if there is a session, otherwise id and token
fields have dummy values. The corresponding MFOTL formula formalizing the specifica-
tion is Access(/secure, 𝑐, 𝑠, 𝑖𝑑, 𝑡) → 𝑠 = True ∧ ♦[0,600) Access(/login, 𝑐, True, 𝑖𝑑, 𝑡).
Such a flat structure makes writing specifications tedious as many variables must be

used consistently and in a correct position. Moreover, changing the pre-processing (e.g.,
avoiding the Boolean flag by using separate Access and Session events) necessitates a
non-trivial change in the specification.
In this paper we propose an extension of MFOTL, called CMFOTL, which supports

complex data types. The extension is accompanied by a corresponding extension of
MonPoly [7], an online monitor for MFOTL specifications.
Our presentation of CMFOTL diverges from MFOTL’s standard single-sorted first-

order logic definition [3,5,6,34].We start by enumeratingmultiple primitive types (already
supported by MonPoly) and then define a type language that allows for their combination
via function, record, variant, and inductive type constructors. To use the newly added types,
CMFOTL embeds a minimalistic, yet expressive, functional programming language. We
develop a type system and a type inference algorithm for CMFOTL. We then present
semantics for well-typed CMFOTL formulas. Finally, we describe a CMFOTL fragment
monitorable using finite relations, which is implemented as a syntactic check in MonPoly
and supported by the CMFOTLmonitoring algorithm.While we rely on standard concepts
from programming language theory, our particular design choices (§2) were heavily
motivated by efficient monitoring. In particular, we make the following contributions:

– We extend MFOTL with complex data types (§3) to obtain CMFOTL (§4).
– We develop a type system for CMFOTL used by its type inference algorithm (§5).
– We define the semantics for well-typed CMFOTL formulas (§6).
– We bridge the gap between the loosely-typed JSON traces and our strongly-typed
language by converting a user-facing signature for JSON events to a first-order
signature with complex types (§7.1). Our monitoring algorithm for monitorable
CMFOTL formulas directly processes JSON events (§7.2).

– We exemplify CMFOTL’s expressiveness with multiple specifications and evaluate
the performance of the extended MonPoly monitor (§8).
To the best of our knowledge this is the first logic-based specification language for

monitoring that supports complex data types and has precisely defined semantics. Other
approaches (§9) either rely on trace pre-processing [7,21] or on domain-specific languages
(DSLs) [17, 20], which often import unspecified host programming language semantics.
Our implementation and evaluation is publicly available [25].

Metric First-order Temporal Logic with Complex Data Types 3

2 Design Choices

The language extension we present in this paper is inspired by our work on applying
runtime verification to large and complex distributed systems. In particular, we used the
MonPoly monitor [7] in a previous case study to check properties of the Internet Computer
(IC) [4]. The IC’s execution traces were recorded in a detailed JSON format, which
required us to engineer a non-trivial mapping from the source data into more abstract
events with appropriate parameters. The parameters had to be atomic data (e.g., integers
or strings) for compatibility with MonPoly. Writing the specifications representing IC’s
properties in MFOTL was an iterative process. In addition to clarifying and fixing
imprecise versions of the specification, we also had to account for changes in the format
and semantics of the JSON events, which would additionally prompt modifications of
the event pre-processing. Synchronizing it with the actual MFOTL specifications was a
manual and error-prone process, which had to be tested regularly.
To avoid pre-processing while also supporting realistic event sources, our new lan-

guage provides record types with labeled fields, which correspond to JSON objects.
Named record types can be defined in the language’s user-facing signature, whereas un-
named record types can be defined directly within formulas. As JSON objects may not al-
ways conform to a rigid structure (e.g., some fields may be optional as in the JSON trace
in §1), we also decided to introduce variant types and the optional type as a special case.
JSON arrays motivate the need for list types and more broadly inductive types. We

chose to use an iso-recursive [16] over an equi-recursive formalism [27] for our type
system due to its simpler type inference algorithm. As an example specification, consider
the following execution trace of a webshop application containing information about
parcels sent to customers.

@100 {"customer":"Alice", "parcel":{"content":[{"content":[]}]}}
@200 {"customer":"Bob", "parcel":{"content":[{"content":[{},{}]}]}}

One could interpret the objects in the parcel fields as arbitrarily nested boxes that
make up the parcel. A possible specification for this trace could be that only parcels
that consist of up to ten boxes (including all nested boxes) are allowed. In this example,
inductive types are necessary to represent both the box objects and the array associated
with the content field. The user must define the inductive type for the boxes in the user-
facing signature. This has the benefit that it allows us to use type-specific recursors,
which guarantee termination of the monitor’s computations [19]. As a result, only total
functions can be expressed and our language is not Turing-complete.
We realize the above extensions with a minimal number of syntactic constructs in the

core language. We also provide syntactic sugar for writing specifications in a convenient
way. Our new language CMFOTL is a many-sorted strongly-typed logic, unlike the single-
sorted logic MFOTL. In practice, the type system prevents additional sources of errors
when formulating specifications. We believe that the strong type discipline is not a major
burden on the user, as we also provide a type inference algorithm for the new language.
CMFOTL’s syntax and semantics (almost) only extend MFOTL’s terms. Compared

to an alternative design based on higher-order logic, this allows for efficient monitoring
as it requires only simple bottom-up term evaluation. Furthermore, by retaining the well-
known MFOTL formula semantics, CMFOTL’s monitoring algorithm can readily reuse
existing optimizations, e.g., for temporal operators.

4 J. Lima Graf et al.

3 Complex Data Types

MFOTL is typically presented as a single-sorted logic [6, 11], i.e., there is one domain
that variables range over. In principle, it would suffice to extend the domain and the built-
in operations (function symbols) in order to add support for complex data. However, the
benefits of static typing are well-known [29]. We therefore define a type language that
combines standard features that are widely used in functional programming languages,
specifically record (product) types, variant (sum) types, inductive types, and type classes.
We assume an infinite supply of type variables 𝑋 and labels 𝑙. The latter are used for

record field and variant constructor names. The syntax of types is given by the following
grammar, where 𝐴, . . . , 𝐴 indicates zero or more repetitions of 𝐴.

𝜏 F Int | Float | Str | (𝜏, . . . , 𝜏) ⇒ 𝜏 | {𝑙 : 𝜏, . . . , 𝑙 : 𝜏} | ⟨𝑙 : 𝜏, . . . , 𝑙 : 𝜏⟩ | 𝜇𝑋. 𝜏 | 𝑋

The symbols Int, Float, and Str represent primitive types for integers, floating-point
numbers, and strings, respectively. The function type (𝜏1, . . . , 𝜏𝑛) ⇒ 𝜌 describes total
functions that map tuples over types 𝜏1, . . . , 𝜏𝑛 into values of type 𝜌.
Record types are denoted by {𝑙1 : 𝜏1, 𝑙2 : 𝜏2, . . . , 𝑙𝑛 : 𝜏𝑛}, where 𝑙1, 𝑙2, . . . , 𝑙𝑛 is a

possibly empty list of field labels, and 𝜏1, 𝜏2, . . . , 𝜏𝑛 are the corresponding types. The
order of labels is irrelevant: {𝑙 : Int, 𝑚 : Str} and {𝑚 : Str, 𝑙 : Int} denote the same type.
Intuitively, the values of a record type are tuples that assign a value to each label. They can
be used to describe compound objects. The empty record type {} serves as the unit type,
which has a single value. It is sometimes convenient to use records with unnamed fields
that are instead distinguished by their order of appearance. We write (𝜏1, . . . , 𝜏𝑛) for such
a tuple type, which can be de-sugared into an equivalent record type with canonical labels.
Variant types ⟨𝑙1 : 𝜏1, 𝑙2 : 𝜏2, . . . , 𝑙𝑛 : 𝜏𝑛⟩ are dual to records. They represent the

choice of one of multiple alternatives, whose order is again irrelevant. Their values can be
thought of as pairs (𝑙𝑖 , 𝑥), where 𝑙𝑖 is one of the constructors and the value 𝑥 has type 𝜏𝑖 . The
empty variant ⟨⟩ represents the empty type, which does not contain any values. A simple
example combining variants and the unit type is the encoding of Booleans by the ⟨true :
{}, false : {}⟩ type. This type plays a special role and hence we give it the name Bool.
The expression 𝜇𝑋. 𝜏 denotes an inductive type. The type variable 𝑋 must occur

strictly positively in 𝜏, i.e., 𝑋 must not occur as a free type variable in an argument type 𝜏𝑖
of any function type (𝜏1, . . . , 𝜏𝑛) ⇒ 𝜌 within 𝜏 [15]. Intuitively, an inductive type 𝜇𝑋. 𝜏
is the least fixpoint of the type equation 𝑋 = 𝜏. The variable 𝑋 is bound by 𝜇𝑋. 𝜏 in 𝜏 and
is thus subject to 𝛼-conversion. As an example, 𝜇𝑋. ⟨Nil : {},Cons : {hd : Int, tl : 𝑋}⟩
represents finite lists of integers. A type without free type variables is ground.

4 Specification Language

We now present CMFOTL, our specification language that supports complex data types
from §3. It is based on MFOTL, which has two main syntactic categories: terms and
formulas. Terms evaluate to values from the domain, whereas formulas assign a truth
value to every time-point in a given trace. We primarily extend the term syntax with new
constructs. Specifically, we add a lambda calculus and operations to work with the new
data types. We remove equality and ordering relations from the formula syntax because

Metric First-order Temporal Logic with Complex Data Types 5

they can now be expressed as terms. Such terms can be used within a new, more general
type of atomic formula, assertions, which assert the truth of an arbitrary Boolean-valued
term. To keep the presentation self-contained, we also recap the unmodified parts of
MFOTL. New elements are indicated with a gray background .
The syntax of terms is given by the following grammar, where 𝑐, 𝑥, 𝑙 range over

constants, variables, and labels, respectively.

𝑡 F 𝑐 | 𝑥 | 𝑡 : 𝜏 | 𝜆(𝑥, . . . , 𝑥). 𝑡 | 𝑡 (𝑡, . . . , 𝑡) | {𝑙 : 𝑡, . . . , 𝑙 : 𝑡} | 𝑡.𝑙 | mk 𝑙 (𝑡)

| case(𝑡; 𝑙 (𝑥)→𝑡, . . . , 𝑙 (𝑥)→𝑡) | rec𝑋.𝜏 (𝑡) | unrec𝑋.𝜏 (𝑡) | fold𝑋.𝜏 (𝑡; 𝑥→𝑡)

We provide an intuitive explanation here; the formal semantics is postponed to §6 as it
depends on the type system. Constants represent operations that are built into the monitor.
We fix the set of available constants in §6. The term 𝑡 : 𝜏 denotes a type ascription, which
enforces and documents that 𝑡 has the type 𝜏. Lambda abstractions 𝜆(𝑥1, . . . , 𝑥𝑛). 𝑡 and
function applications 𝑡 𝑓 (𝑡1, . . . , 𝑡𝑛) support multiple arguments.
The term {𝑙1 : 𝑡1, . . . , 𝑙𝑛 : 𝑡𝑛} constructs a value of a record type, and 𝑡.𝑙𝑖 is its

projection to label 𝑙𝑖 . Dually, the term mk 𝑙𝑖 (𝑡) constructs a value of a variant type, and
case(𝑡; 𝑙1 (𝑥1)→𝑡1, . . . , 𝑙𝑛 (𝑥𝑛)→𝑡𝑛) performs a case distinction on 𝑡. If a constructor 𝑙𝑖
has argument type {}, we typically omit the term in mk 𝑙𝑖 and the variable in a case
branch 𝑙𝑖→𝑡𝑖 . Recursive types 𝜇𝑋.𝜏 are constructed and deconstructed via the terms
rec𝑋.𝜏 (𝑡) and unrec𝑋.𝜏 (𝑡). Recursive computations must be expressed as a fold (i.e.,
a catamorphism) fold𝑋.𝜏 (𝑡1; 𝑥→𝑡2), where 𝑡1 is a value of type 𝜇𝑋.𝜏 to fold and 𝑡2
performs one step of the computation using the partial result bound to 𝑥. The last three
constructs are annotated by the inductive type to facilitate type inference.
Our modified formula syntax is mostly the same as that of MFOTL. For space reasons

we exclude aggregation operators [5] and (non-recursive) let bindings [34], which our
implementation also supports. The complete version of CMFOTL is shown in the extended
version of this paper [24]. In the grammar below, 𝑃 ranges over predicate symbols, and 𝐼
ranges over non-empty and possibly unbounded intervals over the natural numbers.

𝜑 F ↓𝑡 | 𝑃(𝑡, . . . , 𝑡) | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ∃𝑥. 𝜑 | 𝐼 𝜑 | #𝐼 𝜑 | 𝜑 S𝐼 𝜑 | 𝜑 U𝐼 𝜑.

The noteworthy change over previous versions of MFOTL is the introduction of
assertions ↓𝑡, which replace and generalize equality (𝑡1 = 𝑡2) and inequality (𝑡1 < 𝑡2,
𝑡1 ≤ 𝑡2) formulas. Atomic predicates 𝑃(𝑡1, . . . , 𝑡𝑛), Boolean operators, and existential
quantification are as in first-order logic. The past and future temporal operators 𝐼 , #𝐼 ,
S𝐼 , and U𝐼 are as in discrete-time MTL [1]. The interval subscripts impose bounds on
the elapsed time. A missing interval defaults to the maximal interval [0,∞].
Parentheses can be omitted based on operator precedence. Our convention is that the

scope of binders (lambdas, branches of case, and quantifiers) extends maximally to the
right. Negation has the highest precedence, followed by conjunction and disjunction, in
this order. We always parenthesize temporal operators for clarity. Additional operators
are defined as syntactic sugar, for example ♦𝐼 𝜑 ≡ (↓true S𝐼 𝜑) and ♢𝐼 𝜑 ≡ (↓true U𝐼 𝜑).
Free variables fv(𝑡) and fv(𝜑) are defined as usual. Arrows→ and quantifiers indicate

variable bindings, e.g., 𝑙 (𝑥)→𝑡 and ∃𝑥. 𝜑 bind 𝑥 in 𝑡 and 𝜑, respectively.

6 J. Lima Graf et al.

5 Type System

Not all terms and formulas are meaningful. For instance, it is unclear how to interpret a
projection applied to a lambda term. Therefore, we introduce a type system for CMFOTL.
It is based on a inductively defined typing judgement relation. Only terms and formulas
that are well-typed, i.e., that can be assigned a type by this relation, have a semantics.
Our monitor implementation first checks well-typedness of a CMFOTL formula before
proceeding to monitor it. Specifically, it performs type inference, which finds the most
general type (up to the names of type variables) for every (sub-)term of the formula. Like
any static type system, ours serves as an additional layer of protection against runtime
errors. In monitoring, such errors may be due to a malformed specification. To define the
typing judgement relation we need to define type classes and type class constraints.
A type class [33] is a set of types that share a specific common property, e.g., the

property that addition is defined. Types can be members of multiple type classes, and
type classes are partially ordered by their subset relationship. Type classes allow for
overloading of operations in terms. For example, it should be possible to use the addition
operator + both with integers and floating-point numbers.
We use the following type classes. The class Eq consists of all types that are built

without function types. We restrict the equality operator to Eq type because function
equality is undecidable in general. The class Ord ⊃ {Int, Float,Str} consists of all types
on which a total ordering ≤ is defined. In addition to the three primitive types, our
implementation considers record and variant types whose fields or constructor arguments
are recursively members of Ord to be instances of Ord (using a lexicographic ordering).
The class Num = {Int, Float} consists of all numeric types that support the four basic
arithmetic operations and modulo. The classes Proj(𝑙 : 𝜏) consists of all record types
that contain a field 𝑙 : 𝜏, and the classes Ctor(𝑙 : 𝜏) consist similarly of all variant types
that have a constructor 𝑙 : 𝜏. With these classes our type inference (§5.2) can incorporate
Ohori’s approach [28] for inferring polymorphic record and variant types. The classes
Proj(𝑙 : 𝜏) and Ctor(𝑙 : 𝜏) are parametric in 𝜏 [10] and we do not require unique field
or constructor names across types. Note that the field and constructor argument types 𝜏
are uniquely determined given an instance of the respective type class. This ensures that
type inference yields the expected most general type without additional type annotations.
A type class constraint𝐶 is a (finite, possibly empty) set of type classes. It is a symbolic

representation of the intersection of those classes. We say that the types in the intersection
satisfy the constraint. The empty constraint is satisfied by all types. We attach type class
constraints to type variables to restrict the types that they can be instantiated with. For
bound type variables, we denote the constraint as part of the binder (e.g., 𝜇𝑋 : {Num}. 𝜏).

5.1 Typing Rules

The typing judgement relation Γ ⊢ 𝑡 :: 𝜏 for terms is a ternary relation between variable
contexts Γ, terms 𝑡, and types 𝜏. A variable context is a finite mapping from variables to
types. The typing judgement is defined as the least relation closed under the rules shown
in Fig. 1a. Each rule consist of a possibly empty sequence of hypotheses above the line
and a conclusion below the line. There is an implicit condition for all rules: any free type
variables must be free in the conclusion’s context or type, i.e., hidden polymorphism is

Metric First-order Temporal Logic with Complex Data Types 7

𝜏 is an instance of 𝑐’s type scheme
Γ ⊢ 𝑐 :: 𝜏

Cst
Γ, 𝑥 : 𝜏 ⊢ 𝑥 :: 𝜏

Var
Γ ⊢ 𝑡 :: 𝜏

Γ ⊢ (𝑡 :𝜏) :: 𝜏
Asc

Γ, 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑡 :: 𝜌
Γ ⊢ 𝜆(𝑥1, . . . , 𝑥𝑛). 𝑡 :: (𝜏1, . . . , 𝜏𝑛) ⇒ 𝜌

Lam

Γ ⊢ 𝑡 𝑓 :: (𝜏1, . . . , 𝜏𝑛) ⇒ 𝜌 Γ ⊢ 𝑡1 :: 𝜏1 · · · Γ ⊢ 𝑡𝑛 :: 𝜏𝑛
Γ ⊢ 𝑡 𝑓 (𝑡1, . . . , 𝑡𝑛) :: 𝜌

App

Γ ⊢ 𝑡1 :: 𝜏1 · · · Γ ⊢ 𝑡𝑛 :: 𝜏𝑛
Γ ⊢ {𝑙1 : 𝑡1, . . . , 𝑙𝑛 : 𝑡𝑛} :: {𝑙1 :𝜏1, . . . , 𝑙𝑛 :𝜏𝑛}

Prod
Γ ⊢ 𝑡 :: 𝜋 𝜋 ∈ Proj(𝑙 : 𝜏)

Γ ⊢ 𝑡.𝑙 :: 𝜏
Proj

Γ ⊢ 𝑡 :: 𝜏 𝜎 ∈ Ctor(𝑙 : 𝜏)
Γ ⊢ 𝑙 (𝑡) :: 𝜎

Ctor

Γ ⊢ 𝑡 :: ⟨𝑙1 : 𝜏1, . . . , 𝑙𝑛 : 𝜏𝑛⟩ Γ, 𝑥1 : 𝜏1 ⊢ 𝑡1 :: 𝜌 · · · Γ, 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑡𝑛 :: 𝜌
Γ ⊢ case(𝑡; 𝑙1 (𝑥1)→𝑡1, . . . , 𝑙𝑛 (𝑥𝑛)→𝑡𝑛) :: 𝜌

Case

Γ ⊢ 𝑡 :: 𝜏[𝜇𝑋. 𝜏/𝑋]
Γ ⊢ rec𝑋.𝜏 (𝑡) :: 𝜇𝑋. 𝜏

Rec
Γ ⊢ 𝑡 :: 𝜇𝑋. 𝜏

Γ ⊢ unrec𝑋.𝜏 (𝑡) :: 𝜏[𝜇𝑋. 𝜏/𝑋]
UnRec

Γ ⊢ 𝑡1 :: 𝜇𝑋. 𝜏 Γ, 𝑥 : 𝜏[𝜌/𝑋] ⊢ 𝑡2 :: 𝜌
Γ ⊢ fold𝑋.𝜏 (𝑡1; 𝑥→𝑡2) :: 𝜌

Fold

(a) Typing rules for terms

Γ ⊢ 𝑡1 :: 𝜏1 · · · Γ ⊢ 𝑡𝑛 :: 𝜏𝑛
Δ, 𝑅 : (𝜏1, . . . , 𝜏𝑛); Γ ⊢ 𝑅(𝑡1, . . . , 𝑡𝑛)

Pred
Γ ⊢ 𝑡 :: Bool

Δ; Γ ⊢ ↓𝑡
Assert

Δ; Γ ⊢ 𝜑

Δ; Γ ⊢ ★𝜑
UnForm ★ ∈ {¬, 𝐼 ,#𝐼 }

Δ; Γ ⊢ 𝜑 Δ; Γ ⊢ 𝜓
Δ; Γ ⊢ 𝜑 ★𝜓

BinForm ★ ∈ {∧,∨,S𝐼 ,U𝐼 }
Δ; Γ, 𝑥 : 𝜏 ⊢ 𝜑

Δ; Γ ⊢ ∃𝑥. 𝜑
Exists

(b) Typing rules for formulas

Fig. 1: Typing rules for CMFOTL

8 J. Lima Graf et al.

Γ ⊢ 𝑥 :: list
Var

Γ′ ⊢ 𝑦 :: ⟨Nil : {},Cons : 𝜏⟩
Var

(1) (2)
Γ′ ⊢ case(𝑦;Nil→0,Cons(𝑧)→plus(1, 𝑧.tl)) :: Int

Case

Γ ⊢ foldlist (𝑥; 𝑦→case(𝑦;Nil→0,Cons(𝑧)→plus(1, 𝑧.tl))) :: Int
Fold

(1) : Γ′ ⊢ 0 :: Int
Cst

Γ′′ ⊢ plus :: (Int, Int) ⇒ Int
Cst

Γ′′ ⊢ 1 :: Int
Cst

Γ′′ ⊢ 𝑧 :: 𝜏
Var

Γ′′ ⊢ 𝑧.tl :: Int
Proj

(2) : Γ′′ ⊢ plus(1, 𝑧.tl) :: Int
App

Γ′ ≡ Γ, 𝑦 : ⟨Nil : {},Cons : 𝜏⟩ Γ′′ ≡ Γ′, 𝑧 : 𝜏 𝜏 ≡ {hd : Int, tl : Int}

Fig. 2: Example type derivation

not allowed. For terms with a varying number of sub-terms, such as lambda terms, there
is a corresponding sequence of assumptions or variable bindings, which we abbreviate
using an ellipsis (· · ·). The sequence should be extended to the concrete number of
elements in the obvious way when applying the rule. When we write Γ, 𝑥 : 𝑡 it means
that the variable context contains the binding 𝑥 : 𝑡, together with zero or more bindings
for other variables as described by Γ. An assumption such as 𝜋 ∈ Proj(𝑙 : 𝜏) means that
the type 𝜋 must be a member of the type class Proj(𝑙 : 𝜏). Finally, 𝜏[𝜎/𝑋] denotes the
capture-avoiding substitution of 𝜎 for all free occurrences of the type variable 𝑋 in 𝜏.
Constants may be polymorphic. Therefore, every constant has an associated type

scheme, i.e., a type that may have free type variables. When applying the Cst rule, these
free type variables are substituted for arbitrary types subject to any type class constraints.
The Fold rule is best explained with an example. Recall that the inductive type

list ≡ 𝜇𝑋. ⟨Nil : {},Cons : {hd : Int, tl : 𝑋}⟩ represents lists of integers. The term

foldlist (𝑥; 𝑦→case(𝑦;Nil→0,Cons(𝑧)→plus(1, 𝑧.tl)))

computes the length of the list 𝑥. Here, the constant plus is a function that takes two
numeric arguments and computes their sum. The derivation shown in Fig. 2 holds under
the assumption that 𝑥 has type list in Γ. It proves that the above term has type Int. Note
that the type of 𝑦 is equal to part of the list under the binder 𝜇𝑋 , except that 𝑋 has been
substituted by Int, which is the result type of the recursive computation.
The typing judgement for formulas depends on a first-order signature in addition to

the variable context. In MFOTL, the first-order signature defines a finite set of predicate
symbols and their arities, i.e., the number of arguments. To account for CMFOTL’s type
system, a first-order signature Δ additionally associates a sequence of types 𝜏1, . . . , 𝜏𝑛
with each predicate symbol of arity 𝑛. Similarly to variable contexts, we write Δ, 𝑅 :
(𝜏1, . . . , 𝜏𝑛) for the first-order signature that assigns the given types to the symbol 𝑅.
Given a first-order signature Δ, a variable context Γ, and a CMFOTL formula 𝜑, the

judgement Δ; Γ ⊢ 𝜑 states that 𝜑 is well-typed formula. Note that formulas do not have a
value (they can only be satisfied or not) and hence we do not assign a type to them. The
rules for formulas are shown in Fig. 1b.

Metric First-order Temporal Logic with Complex Data Types 9

5.2 Type Inference

We implemented a type inference algorithm based on the Damas–Hindley–Milner
framework [13]. Our handling of type classes is similar to the approach described by
Chen, Hudak, and Odersky [10]. Neither work considers a logical layer like CMFOTL’s
formula language, but the extension to formulas is straightforward.
The algorithm proceeds bottom-up in a syntax-directed fashion while propagating

the current knowledge about the variable context and first-order signature. The signature
is initially obtained from the user (see §7.1). For compound expressions, the sub-
expressions (i.e., terms and/or formulas) are visited first to obtain their most general
types. As is typical for type systems, there is a unique rule that applies to every syntax
construct. We determine the most general instance of that rule which agrees with the
sub-expressions’ types through unification. A type error is reported whenever unification
fails. The unification procedure must take the type class constraints of type variables into
account. Additional care is required for variable binders such as lambda functions as
bound variables can shadow variables of the same name in the surrounding context.
Let us revisit the list sum example from the previous subsection. Suppose that the

constant ‘0’ is the first sub-expression to be visited. It is not polymorphic and hence the
type Int is returned immediately. Next, we consider plus(1, 𝑧.tl). This term is in the scope
of the variables 𝑥, 𝑦, and 𝑧. Whenever the algorithm enters a scope of a binder, it adds the
variable with a fresh, unrestricted type variable to the context. Let us call these 𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧
for variables 𝑥, 𝑦, and 𝑧. The type scheme of plus is declared as (𝛼, 𝛼) ⇒ 𝛼 where
𝛼 : {Num}. Whenever such a polymorphic constant is encountered, the algorithm replaces
its type variables with fresh ones, say, 𝜏+ : {Num} in this case. As the type of 1 :: Intmust
agree with the first argument of plus, unification results in the substitution 𝜏+ ↦→ Int. This
substitution is possible because Int satisfies the constraint {Num}. Inferring the type of 𝑧.tl
results in a refinement of 𝜏𝑧’s constraint in the variable context: it is now {Proj(tl : Int)}.
Unification with the Case rule triggers the substitution 𝜏𝑦 ↦→ ⟨Nil : 𝜈,Cons : 𝜏𝑧⟩. At

this point, there is no information about Nil’s argument type. The case term itself has
type Int. The most interesting step happens for the fold: To obtain a proper instance of its
type rule, we unify 𝑦’s type with

⟨Nil : {},Cons : {hd : Int, tl : 𝑋}⟩[Int/𝑋] ≡ ⟨Nil : {},Cons : {hd : Int, tl : Int}⟩.

This results in the substitutions 𝜈 ↦→ {} and 𝜏𝑧 ↦→ {hd : Int, tl : Int}, where the latter
satisfies constraint {Proj(tl : Int)} from above. Since fold’s most generic type is that of its
last sub-term (after applying applicable substitutions), we obtain Int as the overall result.

6 Semantics

We define CMFOTL’s semantics with respect to infinite temporal structures (i.e., traces),
which associate a first-order structure with every time-point. The introduction of complex
data types requires a specific domain that provides the values of all possible types.
Moreover, it makes sense to provide a rigid interpretation of CMFOTL’s constants so that
they can be relied upon in specifications and implemented directly in the monitor. We call
this fixed part of the temporal structures including the domain the base model.We construct

10 J. Lima Graf et al.

Table 1: The constants of the base model (abridged)

Constant Type scheme

true , false Bool
eq (𝜏, 𝜏) ⇒ Bool, 𝜏 ∈ Eq
less (𝜏, 𝜏) ⇒ Bool, 𝜏 ∈ Ord
leq (𝜏, 𝜏) ⇒ Bool, 𝜏 ∈ Ord
not (Bool) ⇒ Bool
and (Bool,Bool) ⇒ Bool
or (Bool,Bool) ⇒ Bool

Constant Type scheme

neg (𝜏) ⇒ 𝜏, 𝜏 ∈ Num
plus (𝜏, 𝜏) ⇒ 𝜏, 𝜏 ∈ Num
minus (𝜏, 𝜏) ⇒ 𝜏, 𝜏 ∈ Num
times (𝜏, 𝜏) ⇒ 𝜏, 𝜏 ∈ Num
div (𝜏, 𝜏) ⇒ 𝜏, 𝜏 ∈ Num
mod (Int, Int) ⇒ Int

the base model from a suitable subset of terms that intuitively represent values which
cannot be simplified further by computation. As a consequence, all function values in the
base model are definable and equality over functions is intensional, i.e., it depends on the
functions’ definitions. This is sufficient in practice because in our monitor implementation,
variables of function type are instantiated only with those functions that occur in the
formula or with constants of the base model; functions in the trace are not supported.
Moreover, functions cannot be compared for equality as they are not part of the Eq class.
All sub-terms and variables (including bound ones) have known types after the

successful completion of type inference. In this section, we use the type ascription
syntax 𝑡 : 𝜏 both for sub-terms and variable binders to access those types. Moreover, we
assume that all types are ground to simplify the formal semantics. This is without loss of
generality because all primitive values contained in our base model are monomorphic.
The base model’s domain D𝜏 for type 𝜏 consists of a subset of terms (i.e., values)

with type 𝜏. Specifically, values are ground terms built inductively from constants, record,
variant, and rec constructors, as well as lambda abstractionswith an arbitrary term (i.e., not
necessarily a value) for the body. Below, we useD when the type is clear from the context.
Table 1 shows a subset of the constants included in the basemodel. For the polymorphic

constants, the base model specifically contains all ground instances separately (e.g.,
eqBool, eqInt, and so forth). In addition, any integer, floating-point, or string literal can
be used as a constant of the corresponding types. We also omit some string operations
and conversions for lack of space. Note that the boolean operators not, and, or do not
supersede the corresponding operators in CMFOTL formulas: a term is always evaluated
under a concrete assignment to all of its free variables, whereas formulas can generate
sets of assignments. We assume that for every ground instance of a function-valued
constant 𝑐 :: (𝜏1, . . . , 𝜏𝑛) ⇒ 𝜌, there is a mapping 𝑐 from D𝜏1 × · · · × D𝜏𝑛 to D𝜌

which interprets the constant.
Next, we define a small-step operational semantics for well-typed terms, using call-

by-value evaluation as implemented in our monitor. The single-step reduction relation⇝
is the least relation closed under the rules shown in Fig. 3. Similarly as for types, we write
𝑡 [𝑡 ′/𝑥] for the capture-avoiding substitution of 𝑡 ′ for variable 𝑥 in the term 𝑡. Variables
that occur only on the right-hand side of⇝ are assumed to be fresh. The new terms of
the form mapf𝑋.𝜏;𝜏′ (𝑡; 𝑥→𝑡 ′) are only used for the evaluation of folds. Intuitively, they
apply the operation fold𝑋.𝜏′ (𝑢; 𝑥→𝑡 ′) to those subterms of the value 𝑡 (which has type
𝜏) that correspond to an occurrence of the type variable 𝑋 . For example, we have for

Metric First-order Temporal Logic with Complex Data Types 11

∀𝑖. 𝑡𝑖 ∈ D
𝑐(𝑡1, . . .) ⇝ 𝑐 (𝑡1, . . .)

𝑡 ⇝ 𝑡 ′

𝑡 : 𝜏 ⇝ 𝑡 ′ : 𝜏
𝑡 ∈ D

𝑡 : 𝜏 ⇝ 𝑡

𝑡 ⇝ 𝑡 ′

𝑡 (𝑡1, . . .) ⇝ 𝑡 ′(𝑡1, . . .)
𝑡𝑖 ⇝ 𝑡 ′𝑖

𝑡 (𝑡1, . . .) ⇝ 𝑡 (𝑡1, . . . , 𝑡 ′𝑖 , . . .)
∀𝑖. 𝑡𝑖 ∈ D

(𝜆(𝑥1, . . .). 𝑡) (𝑡1, . . .) ⇝ 𝑡 [𝑡1/𝑥1, . . .]
𝑡𝑖 ⇝ 𝑡 ′𝑖

{𝑙1 : 𝑡1, . . . } ⇝ {𝑙1, . . . , 𝑙𝑖 : 𝑡 ′𝑖 , . . . }
𝑡 ⇝ 𝑡 ′

𝑡.𝑙 ⇝ 𝑡 ′.𝑙

∀𝑖. 𝑡𝑖 ∈ D
{𝑙1 : 𝑡1, . . . }.𝑙𝑖 ⇝ 𝑡𝑖

𝑡 ⇝ 𝑡 ′

mk 𝑙 (𝑡) ⇝ mk 𝑙 (𝑡 ′)
𝑡 ⇝ 𝑡 ′

case(𝑡; 𝑙1 (𝑥1)→𝑡1, . . .) ⇝ case(𝑡 ′; 𝑙1 (𝑥1)→𝑡1, . . .)
𝑡 ∈ D

case(mk 𝑙𝑖 (𝑡); 𝑙1 (𝑥1)→𝑡1, . . .) ⇝ 𝑡𝑖 [𝑡/𝑥𝑖]
𝑡 ⇝ 𝑡 ′

rec𝑋.𝜏 (𝑡) ⇝ rec𝑋.𝜏 (𝑡 ′)
𝑡 ⇝ 𝑡 ′

unrec𝑋.𝜏 (𝑡) ⇝ unrec𝑋.𝜏 (𝑡 ′)
𝑡 ∈ D

unrec𝑋.𝜏 (rec𝑋.𝜏 (𝑡)) ⇝ 𝑡

𝑡 ⇝ 𝑡 ′

fold𝑋.𝜏 (𝑡; 𝑥→𝑡 ′′) ⇝ fold𝑋.𝜏 (𝑡 ′; 𝑥→𝑡 ′′)
𝑡 ⇝ 𝑡 ′

mapf𝑋.𝜏;𝜏′ (𝑡; 𝑥→𝑡 ′′) ⇝ mapf𝑋.𝜏;𝜏′ (𝑡 ′; 𝑥→𝑡 ′′)
𝑡 ∈ D

fold𝑋.𝜏 (rec𝑋.𝜏 (𝑡); 𝑥→𝑡 ′) ⇝ (𝜆(𝑥). 𝑡 ′) (mapf𝑋.𝜏;𝜏 (𝑡; 𝑥→𝑡 ′)) mapf𝑋.𝜏′;𝜏 (𝑐; 𝑥→𝑡 ′) ⇝ 𝑐

mapf𝑋.𝑋;𝜏 (𝑡; 𝑥→𝑡 ′) ⇝ fold𝑋.𝜏 (𝑡; 𝑥→𝑡 ′)

mapf𝑋.(𝜏1 ,...)⇒𝜌;𝜏 (𝜆(𝑥1, . . .). 𝑡; 𝑥→𝑡 ′) ⇝ 𝜆(𝑥1, . . .).mapf𝑋.𝜌;𝜏 (𝑡; 𝑥→𝑡 ′)

mapf𝑋.{𝑙1:𝜏1 ,... };𝜏 ({𝑙1 : 𝑡1, . . . }; 𝑥→𝑡 ′) ⇝ {𝑙1 : mapf𝑋.𝜏1;𝜏 (𝑡1; 𝑥→𝑡 ′), . . . }

mapf𝑋. ⟨𝑙1:𝜏1 ,... ⟩;𝜏 (mk 𝑙𝑖 (𝑡); 𝑥→𝑡 ′) ⇝ mk 𝑙𝑖 (mapf𝑋.𝜏𝑖 ;𝜏 (𝑡; 𝑥→𝑡 ′))
⊢ mapf𝑋.𝜇𝑌.𝜏′;𝜏 (𝑡; 𝑥→𝑡 ′) :: (𝜇𝑌 .𝜏′) [𝜌/𝑋] 𝑋 ≠ 𝑌

mapf𝑋.𝜇𝑌.𝜏′;𝜏 (rec𝑌.𝜏′ [𝜇𝑋.𝜏/𝑋] (𝑡); 𝑥→𝑡 ′) ⇝ rec𝑌.𝜏′ [𝜌/𝑋] (mapf𝑋.𝜏′ [𝜇𝑌.𝜏′/𝑌];𝜏 (𝑡; 𝑥→𝑡 ′))

Fig. 3: Small-step semantics for term evaluation

𝜏 ≡ ⟨None : {},Some : 𝑋⟩

fold𝑋.𝜏 (mk Some(rec𝜇𝑋.𝜏 (mk None({}))); 𝑥→0)
⇝ (𝜆(𝑥). 0)

(
mapf𝑋.𝜏;𝜏 (mk Some(rec𝜇𝑋.𝜏 (mk None({}))); 𝑥→0)

)
⇝ (𝜆(𝑥). 0)

(
mk Some(mapf𝑋.𝑋;𝜏 (rec𝜇𝑋.𝜏 (mk None({})); 𝑥→0))

)
⇝ (𝜆(𝑥). 0)

(
mk Some(fold𝑋.𝑋 (rec𝜇𝑋.𝜏 (mk None({})); 𝑥→0))

)
⇝ (𝜆(𝑥). 0)

(
mk Some((𝜆(𝑥). 0) (mapf𝑋.𝜏;𝜏 (mk None({}); 𝑥→0)))

)
⇝ (𝜆(𝑥). 0)

(
mk Some((𝜆(𝑥). 0) (mk None(mapf𝑋.{};𝜏 ({}; 𝑥→0))))

)
⇝ (𝜆(𝑥). 0)

(
mk Some((𝜆(𝑥). 0) (mk None({})))

)
⇝ (𝜆(𝑥). 0)

(
mk Some(0)

)
⇝ 0.

The multi-step reduction relation⇝∗ is the reflexive and transitive closure of⇝.
Our type system and term semantics have two important properties: type sound-

ness [26] and termination. These properties guarantee that our monitor does not encounter
run-time errors due to the policy using undefined operations (the standard example being

12 J. Lima Graf et al.

𝑣, 𝑖 |= ↓𝑡 iff J𝑡K(𝑣) = true 𝑣, 𝑖 |= 𝑅(𝑡1, . . . , 𝑡𝑛) iff (J𝑡1K(𝑣), . . . , J𝑡𝑛K(𝑣)) ∈ 𝐷𝑖

𝑣, 𝑖 |= ¬𝜑 iff 𝑣, 𝑖 ̸ |= 𝜑 𝑣, 𝑖 |= ∃𝑥 :𝜏. 𝜑 iff 𝑣 [𝑧/𝑥], 𝑖 |= 𝜑 for some 𝑧 ∈ D𝜏

𝑣, 𝑖 |= 𝜑 ∧ 𝜓 iff 𝑣, 𝑖 |= 𝜑 and 𝑣, 𝑖 |= 𝜓 𝑣, 𝑖 |= 𝜑 ∨ 𝜓 iff 𝑣, 𝑖 |= 𝜑 or 𝑣, 𝑖 |= 𝜓

𝑣, 𝑖 |= 𝐼 𝜑 iff 𝑖 > 0, 𝑇𝑖 − 𝑇𝑖−1 ∈ 𝐼, and 𝑣, 𝑖 − 1 |= 𝜑

𝑣, 𝑖 |= #𝐼 𝜑 iff 𝑇𝑖+1 − 𝑇𝑖 ∈ 𝐼 and 𝑣, 𝑖 + 1 |= 𝜑

𝑣, 𝑖 |= 𝜑 S𝐼 𝜓 iff 𝑣, 𝑗 |= 𝜓 for some 𝑗 ≤ 𝑖, 𝑇𝑖 − 𝑇 𝑗 ∈ 𝐼, and 𝑣, 𝑘 |= 𝜑 for all 𝑘 with 𝑗 < 𝑘 ≤ 𝑖

𝑣, 𝑖 |= 𝜑 U𝐼 𝜓 iff 𝑣, 𝑗 |= 𝜓 for some 𝑗 ≥ 𝑖, 𝑇 𝑗 − 𝑇𝑖 ∈ 𝐼, and 𝑣, 𝑘 |= 𝜑 for all 𝑘 with 𝑖 ≤ 𝑘 < 𝑗

Fig. 4: CMFOTL’s formula semantics

trying to add numbers and strings) and that it always terminates on finite traces. CM-
FOTL’s term language is an extension of the simply typed lambda calculus and hence the
standard technique of logical relations [29, 32] can be used to establish strong normaliza-
tion into values, which implies termination and, together with type preservation, sound-
ness. However, the fold operator and the recursion through functions in inductive types
require some care. We give proofs of the following theorems in the extended version [24].

Theorem 1. ⇝∗ preserves ground types, i.e., ⊢ 𝑡 :: 𝜏 and 𝑡 ⇝∗ 𝑡 ′ imply ⊢ 𝑡 ′ :: 𝜏.

Theorem 2. ⇝∗ is strongly normalizing: For every ground term 𝑡 such that ⊢ 𝑡 :: 𝜏, there
exists a unique normal form J𝑡K ∈ D𝜏 such that 𝑡 ⇝∗ J𝑡K and there is no 𝑢 with J𝑡K⇝ 𝑢.

A valuation 𝑣 for a term 𝑡 is a finite mapping from the term’s free variables 𝑥𝑖 : 𝜏𝑖
to values in the corresponding domains D𝜏𝑖 . Strong normalization allows us to lift the
term semantics to an evaluation function J𝑡K(𝑣) = J𝑡 [𝑣(𝑥1)/𝑥1, . . . , 𝑣(𝑥𝑛)/𝑥𝑛]K returning
values. Observe that for ground terms, evaluation results directly in the normal form,
which justifies this mild abuse of notation.
The relation 𝑣, 𝑖 |= 𝜑 (Fig. 4) defines the satisfaction of the formula 𝜑 for a given

temporal structure, valuation 𝑣, and time-point 𝑖 ∈ N. A temporal structure is an
infinite sequence (𝑇𝑖 , 𝐷𝑖)𝑖∈N of finite first-order structures 𝐷𝑖 over the signature Δ with
associated time-stamps 𝑇𝑖 . This means that each 𝐷𝑖 assigns to every relation symbol
𝑅 : (𝜏1, . . . , 𝜏𝑛) ∈ Δ a finite subset of D𝜏1 × · · · × D𝜏𝑛 . Time-stamps are natural
numbers 𝑇𝑖 ∈ N. They need not be unique, but we require that time-stamps are monotone
(∀𝑖. 𝑇𝑖 ≤ 𝑇𝑖+1) and unbounded (∀𝑇. ∃𝑖. 𝑇 < 𝑇𝑖). Overall, the semantics is the same as
MFOTL’s, except for the addition of assertions.

7 Implementation

Our monitor for CMFOTL is an extension of the MonPoly tool [7], which is written
in OCaml. In particular, we modified MonPoly’s signature and formula parser, type
inference code, and internal representation of domain values. Instead of MonPoly’s
first-order signature, our extension takes as input a user-facing signature. It allows the
specification of nested and recursive structures, which are used to parse a stream of time-
stamped JSON events. The events are subsequently mapped to instances of CMFOTL
types based on our signature translation.

Metric First-order Temporal Logic with Complex Data Types 13

7.1 Signature Translation

We introduce the user-facing signature format and develop a translation to a first-order
signature (§5.1). The user-facing signature serves two purposes: it defines the CMFOTL
types used for type inference and it guides the parsing of JSON events. The syntax is
geared towards usability. It consists of JSON values representing types that may refer to
each other by name. Therefore, the translation to first-order signature is non-trivial in the
presence of circular name references.
The user-facing signature is a sequence of record type definitions. Each definition

consists of a type name followed by a symbolic record type. The definition may be
prefixed by the keyword event, which marks the type as an event type. Only event types
may occur as top-level objects in the JSON event stream. The field types 𝛾𝑖 of a symbolic
record type must conform to the grammar

𝛾 F 𝛿 | 𝛿? | [𝛿] | [𝛿?]
𝛿 F name | {𝑙 : 𝛾, . . . , 𝑙 : 𝛾} | Null | Int | Float | String | Bool

where name refers to any type defined in the user-facing signature, including the current
one. A question mark indicates an optional field and square brackets are used for arrays.
Each named type defined in the user-facing signature as name {𝑙1 : 𝛾1, . . . , 𝑙𝑛 : 𝛾𝑛}

is translated to a CMFOTL type 𝜏name = J{𝑙1 : 𝛾1, . . . , 𝑙𝑛 : 𝛾𝑛}K according to the rules

J𝛿?K = ⟨None : {},Some : J𝛿K⟩ J[𝛿]K = 𝜇𝐿. ⟨Nil : {},Cons : {hd : J𝛿K, tl : 𝐿}⟩
JnameK = 𝜏name J{𝑙1 : 𝛾1, . . . , 𝑙𝑛 : 𝛾𝑛}K = {𝑙1 : J𝛾1K, . . . , 𝑙𝑛 : J𝛾𝑛K} JNullK = {}

JIntK = Int JFloatK = Float JStringK = Str JBoolK = Bool

However, this translation fails if there is a circular dependency (direct or indirect) between
named types, as this would result in an infinite type expression. A named type 𝜏1 depends
directly on a named type 𝜏2 iff the latter occurs in 𝜏1’s definition. We use the following
algorithm to translate circular dependencies into inductive types.

1. All direct type dependencies are represented as a directed graph. We compute the
graphs’s strongly connected components. The edges between the strongly connected
components form a tree which is processed from the leaves to the root.

2. Every component consisting of a single named type that does not refer to itself can
be translated immediately as above.

3. If a component contains multiple nodes or a single component has an edge pointing to
itself, it indicates the presence of one or more inductive types. We choose one node in
the component based on a heuristic. The choice does not matter for correctness, but it
influences the syntactic structure of the obtained types. If only one node is referenced
from other components, it is selected. Otherwise, the node with the highest number
of incoming edges from other components, or the single event type if it exists, is
selected. If there is a tie, the type declared first in the signature takes precedence.

4. After selecting the node 𝜏, all incoming edges to that node are removed from the
component, and the algorithm is recursively applied to the component’s subgraph.
Any reference to the named type 𝜏 is translated as the type variable 𝑋𝜏 .

5. Finally, 𝜏 is translated to 𝜇𝑋𝜏 .J{𝑙 : 𝛾, . . . }K, where {𝑙 : 𝛾, . . . } is the definition of 𝜏.

14 J. Lima Graf et al.

The resulting first-order signature consists of one unary predicate for each event
record type. The predicate ranges over the corresponding translated type. To continue the
example from §2, the user may specify the signature

event Send {parcel: Box, customer: string?}
Box {content: [Box]}

It is translated to the types 𝜏Send = {parcel : 𝜏Box, customer : ⟨None : {},Some : Str⟩}
and 𝜏Box = 𝜇𝑋Box. {content : 𝜇𝐿. ⟨Nil : {},Cons : {hd : 𝑋Box, tl : 𝐿}⟩}. The user
may refer to the predicate Send(𝜏Send) in their specifications. For instance, the formula
Send(𝑠) ∧ ↓(𝑠.customer = mk None) detects all Send events without a customer.
The above algorithm ensures that the translations of mutually dependent types can

be used directly within each other. To illustrate why this is not immediate, consider
the type specifications A {x: B?} and B {y: A?}. An intuitive translation might be
𝜏𝐴 = 𝜇𝑋𝐴. {𝑥 : {𝑦 : 𝑋𝐴?}?} and 𝜏𝐵 = 𝜇𝑋𝐵. {𝑦 : {𝑥 : 𝑋𝐵?}?} (abbreviating the variant
types for optional fields by a question mark). However, a value 𝑏 of type 𝜏𝐵 cannot be used
in the field 𝑥 when constructing a value of type 𝜏𝐴 because the types do not match. One has
to fold 𝑏 first to adjust its type. Our approach yields 𝜏𝐴 = 𝜇𝑋𝐴. {𝑥 : 𝜇𝑋𝐵. {𝑦 : 𝑋𝐴?}?}
and 𝜏𝐵 = 𝜇𝑋𝐵. {𝑦 : 𝜏𝐴?}, which are more complex expressions but do not require such
conversions. The main disadvantage of our approach is that the size of the translated
types has the fairly tight upper bound 𝑛2𝑛/3+1, where 𝑛 is the size of the user-facing
signature (see the extended version of this paper [24] for details). This severely limits its
use for complex recursive signatures. In future work, we plan to extend the type system
and inference algorithm to directly support mutually recursive types.

7.2 Monitoring Algorithm

Our implementation inheritsMonPoly’s approach tomonitoring first-order properties. The
fundamental principle is to decompose the formula into sub-formulas that evaluate to finite
relations at every time-point of the event stream. The relations are then combined from the
bottom up along the formula’s tree structure using a fixed set of operators, each of which
corresponds to one or fewMFOTL operators. Not all formulas can be decomposed readily
in this way. Therefore, the monitor supports only a fragment, called the monitorable frag-
ment, of the specification language. MonPoly’s monitoring algorithm has been described
in detail elsewhere [6] and so we focus on the necessary adjustments for CMFOTL.
Assertions ↓𝑡 are considered monitorable on their own only if 𝑡 simplifies to a ground

term, which must be true or false. Otherwise, assertions must be used as part of a
conjunction 𝜑∧↓𝑡 such that fv(𝑡) ⊆ fv(𝜑) and 𝜑 is monitorable. In this case, 𝜑 is evaluated
first to obtain a finite relation 𝑅. Each of 𝑅’s tuple gives rise to a valuation compatible
with 𝑡, such that 𝑡 can be evaluated under this valuation. The tuples for which 𝑡 is true form
the relation computed for 𝜑 ∧↓𝑡. When monitoring MFOTL using MonPoly, the formula
𝜑∧(𝑥 = 𝑡) is monitorable even if 𝑥 is not free in 𝜑. This is a useful pattern as it can be used
to assign computed values to new variables. Therefore, our monitor supports it as a special
case by evaluating only the term 𝑡 under each of 𝜑’s valuations and assigning the result to 𝑥.
We see that it suffices to generalize the evaluation of terms. In MonPoly, domain

values are represented by a single OCaml data type cst, which is a variant type combining
integers, floats, and strings. We maintain this design and add three constructors to cst:

Metric First-order Temporal Logic with Complex Data Types 15

one for records (represented by an association lists from field labels to cst), one for
variant constructors (represented by a pair of the constructor name and a cst), and
one for OCaml function closures of type cst list -> cst. We build a straightforward
interpreter computing a cst value from a term and a valuation according to term semantics
(Fig. 3). Note that cst does not mark the boundaries of inductive types. Hence, rec and
unrec are ignored during monitoring.
The monitor’s input is a stream of JSON values, each prefixed by a time-stamp. We

parse the JSON value using the Yojson library, which returns a tree-like representation
that we match recursively against the record types declared as event in the user-facing
signature. (We currently only support records as top-level events.) Once a matching
record type 𝜏 has been found, we transform the event to a cst value that is consistent with
the type translation from the user-facing signature. We then create a first-order structure
where the relation for 𝜏 is a singleton set containing the transformed value; all other
relations are empty. This structure is processed by the main monitoring loop.

8 Examples and Evaluation

We illustrate CMFOTL with several examples. Some of them can also be expressed
in MFOTL using a pre-processed log, as mentioned in the introduction. We compare
the two languages with an earlier encoding approach by Zumsteg [35]. The encoding
approach corresponds essentially to a fragment of CMFOTL without variant, inductive,
and function types. The implementation is different, however: JSON objects are translated
to graphs that can be represented by ordinary first-order structures. Our qualitative
comparison is complemented by benchmark results using synthetic logs.
The first example session formalizes the property from the introduction (every client

accessing the /secure URL must have a valid session, not older than 600 seconds,
established previously by visiting /login), where we have already shown the pre-
processed MFOTL version. A suitable user-facing signature for the JSON events is

event Access {url: string, client: string, session: Session?}
Session {id: int, token: string}

The session field is optional and hence it will be mapped to an option type.Wemust negate
and rewrite the CMFOTL formula to make it conform to the monitorable fragment:

Access({url : /secure, client : _, session : mk None}) ∨
∃𝑐, 𝑠. Access({url : /secure, client : 𝑐, session : 𝑠}) ∧

¬
(
♦[0,600) Access({url : /login, client : 𝑐, session : 𝑠})

)
Here we pattern-match on the Access predicate’s arguments, which helps with monitora-
bility: 𝜑∧¬𝜓 is monitorable in general only if fv(𝜓) ⊆ fv(𝜑) [6]. Specifically, we extract
the client and session fields and assign them to variables. While having well-defined
semantics, the pattern matching itself is currently not supported by the implementation
and must be manually translated to ∃𝑎. Access(𝑎) ∧ ↓(𝑎.url = . . .) ∧
The formula for the encoding approach is similar, except that there is no option type.

We replace it with a Boolean flag in the session record indicatingwhether the session exists.
In the logout example, we check that every login is followed by a logout by the same

client and with the same session within 600 seconds. This property is naturally expressed
using a future operator (again showing the negation):

16 J. Lima Graf et al.

Table 2: Benchmark results (runtime in seconds, arithmetic mean over three repetitions)

session logout boxes reverse
Events cpx enc ohd proc cpx enc ohd proc cpx cpx

1 × 105 0.89 1.06 19% 0.28 0.84 1.19 42% 0.18 1.46 1.48
2 × 105 2.21 2.69 22% 0.55 2.07 2.87 39% 0.35 4.11 3.78
3 × 105 4.02 4.88 21% 0.81 3.73 5.21 40% 0.53 7.41 7.11
4 × 105 6.19 7.64 23% 1.09 5.86 7.90 35% 0.71 11.91 10.90

∃𝑐, 𝑠. Access({url : /login, client : 𝑐, session : 𝑠}) ∧
¬
(
♢[0,600) Access({url : /logout, client : 𝑐, session : 𝑠})

)
This corresponds to the negated MFOTL formula Access(/login, 𝑐, 𝑠, id, 𝑡) ∧ ¬♢[0,600)
Access(/logout, 𝑐, 𝑠, id, 𝑡) for the pre-processed trace.
The last two examples cannot be expressed in MFOTL because they involve arbitrarily

nested records. The boxes formula uses the signature from §7.1. It identifies those
deliveries for which the total number of all boxes in the parcel exceeds ten:

Send(𝑠) ∧ ↓
(
foldBox (𝑠.parcel; 𝑏→foldBox_content (𝑏.content; 𝑙→

case(𝑙;Nil→1, Cons(𝑐)→𝑐.hd + 𝑐.tl))) > 10
)

We use two nested folds because there are two nested inductive types: the Box type and
the list for the content array. Our implementation provides an abbreviation mechanism
for inductive types obtained from the user-facing signature. For example, Box_content
refers to the translated type for the content field.
Finally, we demonstrate an application of lambda functions. Assume that the signature

is event D {lst: [int]}. The following is the CMFOTL version of the standard
functional programming example for reversing a list in linear time:

D(𝑑) ∧ ↓
(
ys = foldD_lst (𝑑.lst; xs→case(xs;Nil→(𝜆(ys). ys), Cons(𝑐)→

(𝜆(ys). 𝑐.tl(recD_lst (mk Cons({hd : 𝑐.hd, tl : ys}))))))
)
(recD_lst (mk Nil))

We use lambdas to pass an additional parameter (the accumulator ys) along with the fold.
The fold essentially computes a function that is applied to the empty list recD_lst (mk Nil).
We performed small-scale benchmarks using randomly generated traces to get a first

impression of the relative performance of CMFOTL. There are at least two sources of a
potential slowdown: JSON parsing and the fact that the formulas using complex data
types involve additional operations to access individual fields.
Table 2 shows the results, which were obtained on a 2.5 GHz CPU (Intel Core i5-

7200U) with turbo-boost disabled. The cpx, enc, and ohd columns display the runtime in
seconds for the CMFOTL, the encoding, and theMFOTLwith pre-processing approaches.
The ohd column displays the relative overhead of enc compared to cpx. We observe that
this overhead is approximately constant relative to the number of events for each of the
session and logout examples. However, monitoring using pre-processed events is faster
by a factor between 3 and 8 in our experiments. We point out that our measurements do
not include the pre-processing itself.

Metric First-order Temporal Logic with Complex Data Types 17

9 Related Work

The type system previously used by MonPoly offers simple types and polymorphism,
with type classes for numeric and ordered types only. This type system and its inference
algorithm have been subsequently formalized and verified [22] within the VeriMon
project [2]. Zumsteg’s BSc thesis [35] added records (i.e., product types with named fields)
to MonPoly’s type system, but translated them back to simple types during the monitoring.
Computations over inductive types can also be encoded as computation on simple types
if the specification language supports a general-purpose recursion combinator [34].
BeepBeep 3 [18] is an event stream processing engine that supports multiple

specification languages including the logic LTL-FO+, a first-order extension of LTL. It
also supports traces consisting of arbitrary XML-based events that can be queried using
XPath expressions. Unlike in CMFOTL, quantifiers in LTL-FO+ range only over the
values present in the current event in the trace. There is also no support for past temporal
operators, nor for metric constraints.
The ParTraP [8,9] tool has been developed to monitor medical devices. ParTraP’s

traces are sequences of JSON objects. Each object must carry its type and time in a
hardcoded format. Our tool does not require type annotations in the trace. ParTraP also
provides only local quantification over values in JSON lists that occur in the trace.
Lola [14] and its temporal extension TeSSLa [23] are specification languages that rely

on stream equations for specifying properties. They are designed to focus on temporal
operations on streams, whereas the streams’ data is left underspecified, possibly assuming
arbitrary data types. HLola [17] is a stream runtime verification tool that uses Lola as its
core language and implements support for arbitrary data types. It supports input streams
provided in JSON or CSV format and relies on code written in Haskell from which it
inherits all available data types to describe the structure of input and output streams.
Haskell’s high-order functions are particularly useful for modularity and abstraction
when writing specifications. However, HLola does not guarantee termination and inherits
Haskell’s complexity when it comes to understanding the semantics of the specifications.
The latter also applies to LogFire [20], Copilot [30] and other DSL-based tools.
E-ACSL [31] and OpenJML [12] can check C and Java functions at runtime for

compliance against their contracts. Both tools support contract languages that have rich
types (in fact, any type supported by their respective programming language), but amount
to assertions without support for temporal operators.

10 Conclusion

We proposed CMFOTL, a first-order specification language for runtime verification
that supports complex data types and has simple, yet precise, semantics. We did so by
extending metric first-order temporal logic with function, record, variant, and inductive
types. We developed a type system and semantics for our new logic as well as a type
inference algorithm, and extended MonPoly’s monitoring algorithm to support our new
language. Future work includes adding pattern matching, polymorphic let-bindings for
terms, and support for custom variant types in the user-facing signature.

18 J. Lima Graf et al.

Acknowledgments Remo Zumsteg contributed to adding product types to CMFOTL via
an encoding approach. François Hublet and Dmitriy Traytel contributed to CMFOTL’s
type system and semantics. We thank the anonymous reviewers for helping us improve
the presentation of this paper.

References
1. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf. Comput.

104(1), 35–77 (1993). https://doi.org/10.1006/inco.1993.1025
2. Basin, D., Dardinier, T., Hauser, N., Heimes, L., y Munive, J.J.H., Kaletsch, N., Krstić, S.,
Marsicano, E., Raszyk, M., Schneider, J., Tirore, D.L., Traytel, D., Zingg, S.: VeriMon: A
formally verified monitoring tool. In: Seidl, H., Liu, Z., Pasareanu, C.S. (eds.) International
Colloquium on Theoretical Aspects of Computing (ICTAC). LNCS, vol. 13572, pp. 1–6.
Springer (2022). https://doi.org/10.1007/978-3-031-17715-6_1

3. Basin, D., Dardinier, T., Heimes, L., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.: A
formally verified, optimized monitor for metric first-order dynamic logic. In: Peltier, N.,
Sofronie-Stokkermans, V. (eds.) International Joint Conference on Automated Reasoning
(IJCAR). LNCS, vol. 12166, pp. 432–453. Springer (2020). https://doi.org/10.1007/978-3-
030-51074-9_25

4. Basin, D., Dietiker, D.S., Krstić, S., Pignolet, Y., Raszyk, M., Schneider, J., Ter-Gabrielyan, A.:
Monitoring the Internet Computer. In: Chechik, M., Katoen, J., Leucker, M. (eds.) International
Symposium on Formal Methods (FM). LNCS, vol. 14000, pp. 383–402. Springer (2023).
https://doi.org/10.1007/978-3-031-27481-7_22

5. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal Methods Syst. Des. 46(3), 262–285 (2015).
https://doi.org/10.1007/s10703-015-0222-7

6. Basin, D., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/2699444

7. Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger, G., Havelund,
K. (eds.) Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardisation
for Runtime Verification Tools (RV-CuBES). Kalpa, vol. 3, pp. 19–28. EasyChair (2017).
https://doi.org/10.29007/89hs

8. Blein, Y., Ledru, Y., du Bousquet, L., Groz, R.: Extending specification patterns for verifi-
cation of parametric traces. In: Gnesi, S., Plat, N., Spoletini, P., Pelliccione, P. (eds.) Con-
ference on Formal Methods in Software Engineering (FormaliSE). pp. 10–19. ACM (2018).
https://doi.org/10.1145/3193992.3193998

9. Cheikh, A.B., Blein, Y., Chehida, S., Vega, G., Ledru, Y., du Bousquet, L.: An environment
for the ParTraP trace property language (tool demonstration). In: Colombo, C., Leucker, M.
(eds.) International Conference on Runtime Verification (RV). LNCS, vol. 11237, pp. 437–
446. Springer (2018). https://doi.org/10.1007/978-3-030-03769-7_26

10. Chen, K., Hudak, P., Odersky, M.: Parametric type classes. In: White, J.L. (ed.)
Conference on Lisp and Functional Programming (LFP). pp. 170–181. ACM (1992).
https://doi.org/10.1145/141471.141536

11. Chomicki, J.: Efficient checking of temporal integrity constraints using
bounded history encoding. ACM Trans. Database Syst. 20(2), 149–186 (1995).
https://doi.org/10.1145/210197.210200

12. Cok, D.R.: OpenJML: Software verification for Java 7 using JML, OpenJDK, and
Eclipse. In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) Workshop on Formal
Integrated Development Environment (F-IDE). EPTCS, vol. 149, pp. 79–92 (2014).
https://doi.org/10.4204/EPTCS.149.8

https://doi.org/10.1006/inco.1993.1025
https://doi.org/10.1007/978-3-031-17715-6_1
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-031-27481-7_22
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1145/2699444
https://doi.org/10.29007/89hs
https://doi.org/10.1145/3193992.3193998
https://doi.org/10.1007/978-3-030-03769-7_26
https://doi.org/10.1145/141471.141536
https://doi.org/10.1145/210197.210200
https://doi.org/10.4204/EPTCS.149.8

Metric First-order Temporal Logic with Complex Data Types 19

13. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: DeMillo, R.A.
(ed.) ACM Symposium on Principles of Programming Languages (POPL). pp. 207–212. ACM
Press (1982). https://doi.org/10.1145/582153.582176

14. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma,
H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous systems. In:
Symposium on Temporal Representation and Reasoning (TIME). pp. 166–174. IEEE (2005).
https://doi.org/10.1109/TIME.2005.26

15. Dybjer, P.: Representing inductively defined sets by wellorderings in Martin-Löf’s type theory.
Theor. Comp. Sci.176(1-2), 329–335 (1997). https://doi.org/10.1016/S0304-3975(96)00145-4

16. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: a mechanised logic of compu-
tation. Springer (1979)

17. Gorostiaga, F., Sánchez, C.: HLola: a very functional tool for extensible stream runtime
verification. In: Groote, J.F., Larsen, K.G. (eds.) International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 12652, pp.
349–356. Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_18

18. Hallé, S., Khoury, R.: Event stream processing with BeepBeep 3. In: Reger, G., Havelund, K.
(eds.) Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardisation
for Runtime Verification Tools (RV-CuBES). Kalpa, vol. 3, pp. 81–88. EasyChair (2017).
https://doi.org/10.29007/4cth

19. Harper, R.: Practical Foundations for Programming Languages. Cambridge Univ. Press, 2nd
edn. (2016)

20. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Technol. Transf.
17(2), 143–170 (2015). https://doi.org/10.1007/s10009-014-0309-2

21. Havelund, K., Peled, D., Ulus, D.: DejaVu: A monitoring tool for first-order temporal logic.
In: Workshop on Monitoring and Testing of Cyber-Physical Systems (MT@CPSWeek). pp.
12–13. IEEE (2018). https://doi.org/10.1109/MT-CPS.2018.00013

22. Kaletsch, N.: Formalizing Typing Rules for VeriMon. Bachelor thesis, ETH Zürich (2021)
23. Leucker,M., Sánchez, C., Scheffel, T., Schmitz,M., Schramm,A.: TeSSLa: runtime verification
of non-synchronized real-time streams. In: Haddad, H.M., Wainwright, R.L., Chbeir, R.
(eds.) ACM Symposium on Applied Computing (SAC). pp. 1925–1933. ACM (2018).
https://doi.org/10.1145/3167132.3167338

24. Lima Graf, J., Krstić, S., Schneider, J.: Metric First-order Temporal Logic with Complex Data
Types. Tech. rep., ETH Zürich (2023), https://bitbucket.org/jshs/monpoly/src/cmfodl2/paper.
pdf

25. Lima Graf, J., Krstić, S., Schneider, J.: MonPoly extended with complex data types. https:
//bitbucket.org/jshs/monpoly/src/cmfodl2/ (2023)

26. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17(3),
348–375 (1978). https://doi.org/10.1016/0022-0000(78)90014-4

27. Morris Jr, J.H.: Lambda-calculus models of programming languages. Ph.D. thesis, MIT (1969)
28. Ohori, A.: A polymorphic record calculus and its compilation. ACM Trans. Program. Lang.
Syst. 17(6), 844–895 (1995). https://doi.org/10.1145/218570.218572

29. Pierce, B.C.: Types and programming languages. MIT Press (2002)
30. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: A hard real-time runtime monitor. In:

Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.J., Rosu, G., Sokolsky,
O., Tillmann, N. (eds.) International Conference on Runtime Verification (RV). LNCS,
vol. 6418, pp. 345–359. Springer (2010). https://doi.org/10.1007/978-3-642-16612-9_26

31. Signoles, J., Kosmatov, N., Vorobyov, K.: E-ACSL, a runtime verification tool for safety and
security of C programs (tool paper). In: Reger, G., Havelund, K. (eds.) Workshop on Competi-
tions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools
(RV-CuBES). Kalpa, vol. 3, pp. 164–173. EasyChair (2017). https://doi.org/10.29007/fpdh

https://doi.org/10.1145/582153.582176
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.29007/4cth
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1145/3167132.3167338
https://bitbucket.org/jshs/monpoly/src/cmfodl2/paper.pdf
https://bitbucket.org/jshs/monpoly/src/cmfodl2/paper.pdf
https://bitbucket.org/jshs/monpoly/src/cmfodl2/
https://bitbucket.org/jshs/monpoly/src/cmfodl2/
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/218570.218572
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.29007/fpdh

20 J. Lima Graf et al.

32. Statman, R.: Logical relations and the typed 𝜆-calculus. Inf. Control. 65(2/3), 85–97 (1985).
https://doi.org/10.1016/S0019-9958(85)80001-2

33. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: Sympo-
sium on Principles of Programming Languages (POPL). pp. 60–76. ACM Press (1989).
https://doi.org/10.1145/75277.75283

34. Zingg, S., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.: Verified first-order monitoring
with recursive rules. In: Fisman, D., Roşu, G. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). LNCS, vol. 13244, pp. 236–253. Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_13

35. Zumsteg, R.: Monitoring Complex Data Types. Bachelor thesis, ETH Zürich (2022)

https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.1145/75277.75283
https://doi.org/10.1007/978-3-030-99527-0_13

	Metric First-order Temporal Logic with Complex Data Types

