A Formally Verified Monitor for Metric First-Order Temporal Logic

Joshua Schneider, David Basin, Srđan Krstić, and Dmitriy Traytel

Department of Computer Science
EHHzürich

Goals of Runtime Verification

to study whether runtime application of formal methods is a viable complement to the traditional methods proving programs correct [...]
to study whether formality improves traditional ad-hoc monitoring techniques [...]

Source: www.runtime-verification.org (28/08/19, emphasis added)

RV Tools

RV Tools

Verifying RV Tools

How can we prove that our tools are trustworthy? Who guards the guardians?

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Criticality

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Criticality

Small size

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Criticality

Small size

Clear specification

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Criticality

Small size

Clear specification

All RV tools and should be verified formally.
Gain understanding of assumptions and guarantees!

Related Work

	Language	Verified with	User effort
Blech et al. (2012)	Regex	Coq	manual proof
Völlinger \& Akili (2017)	-	Coq	manual proof

Related Work

	Language	Verified with	User effort
Blech et al. (2012)	Regex	Coq	manual proof
Völlinger \& Akili (2017)	-	Coq	manual proof
Laurent et al. (2015)	Copilot	SMT	semi-autom.

Related Work

	Language	Verified with	User effort	
Blech et al. (2012)	Regex	Coq	manual proof	
Völlinger \& Akili (2017)	-	Coq	manual proof	
Laurent et al. (2015)	Copilot	SMT	semi-autom.	
Rizaldi et al. (2017)	LTL	Isabelle/HOL	none	
Bohrer et al. (2018)	dL	KeYmaera X	none	
	Isabelle/HOL			
	HOL4			

Related Work

	Language	Verified with	User effort	
Blech et al. (2012)	Regex	Coq	manual proof	
Völlinger \& Akili (2017)	-	Coq	manual proof	
Laurent et al. (2015)	Copilot	SMT	semi-autom.	
Rizaldi et al. (2017)	LTL	Isabelle/HOL	none	
Bohrer et al. (2018)	d \mathcal{L}	KeYmaera X	none	
	Isabelle/HOL			
this work	HOL4			

Our Contribution

Verimon: verified MonPoly (w/o optimizations)
■ Formally verified monitor for metric first-order temporal logic (MFOTL)
■ Expressive language with intervals and data quantification

- Proved correct for all instances of the monitor

■ Explain and clarify MonPoly's algorithm

Our Contribution

Verimon: verified MonPoly (w/o optimizations)
■ Formally verified monitor for metric first-order temporal logic (MFOTL)
■ Expressive language with intervals and data quantification
■ Proved correct for all instances of the monitor

- Explain and clarify MonPoly's algorithm

Basis for exploration:

- Monitor state manipulation [ATVA'19]
- Foundation for future extensions and optimizations

Our Contribution

Verimon: verified MonPoly (w/o optimizations)

- Formally verified monitor for metric first-order temporal logic (MFOTL)

- Expressive language with intervals and data quantification
- Proved correct for all instances of the monitor
- Explain and clarify MonPoly's algorithm

Basis for exploration:

- Monitor state manipulation [ATVA'19]
- Foundation for future extensions and optimizations

Differential testing case study:
■ Used Verimon as oracle to test unverified implementations

■ Tested MonPoly and DejaVu
■ Found bugs!

Background: Isabelle/HOL

Background: Isabelle/HOL

Background: Isabelle/HOL

Formalization Overview

MFOTL

Infinite
traces

Formalization Overview

Formalization Overview

Formalization Overview

Formalization Overview

Background: MFOTL

TL

Temporal Logic: linear time $\bullet \diamond \diamond \varpi \square$ S U

$\square($ access $\rightarrow(\neg$ release S acquire $))$

Background: MFOTL

FO
First-Order: data and quantification
$\square \forall x \cdot \operatorname{access}(x) \rightarrow(\neg$ release $(x) S$ acquire $(x))$
TL
Temporal Logic: linear time $\bullet \diamond \diamond$ ■ S
$\square($ access $\rightarrow(\neg$ release S acquire $))$

Background: MFOTL

M
Metric: time intervals
$\square \forall x . \operatorname{access}(x) \rightarrow\left(\neg \operatorname{release}(x) S_{[0,1 \mathrm{~s}]} \operatorname{acquire}(x)\right)$
FO
First-Order: data and quantification
$\square \forall x \cdot \operatorname{access}(x) \rightarrow(\neg$ release $(x) S$ acquire $(x))$
TL
Temporal Logic: linear time $\bullet \diamond \diamond$ ■ S U
$\square($ access $\rightarrow(\neg$ release S acquire $))$

Background: MFOTL

Metric: time intervals

Monitorable fragment:
$■$ Safety properties ($\square \varphi$ with bounded future) NOT: \square (open $\rightarrow \diamond$ close)
■ Finitely evaluable violations
NOT: $\square \forall x . \mathrm{P}(x)$
$\square($ access \rightarrow (\neg release S acquire))

Monitor Output

Checking the specification $\square \forall \bar{x} \cdot \varphi(\bar{x})$: output whether $\vDash \sigma \square \forall \bar{x} . \varphi(\bar{x})$

Monitor Output

Checking the specification $\square \forall \bar{x} \cdot \varphi(\bar{x})$: output whether $\vDash \sigma \square \forall \bar{x} . \varphi(\bar{x})$

Reporting violating points of $\forall \bar{x} \cdot \varphi(\bar{x})$:
output all i s.t. $i \not \ell_{\sigma} \forall \bar{x} . \varphi(\bar{x})$

Monitor Output

Checking the specification $\square \forall \bar{x} \cdot \varphi(\bar{x})$: output whether $\vDash \sigma \square \forall \bar{x} . \varphi(\bar{x})$

Reporting violating points of $\forall \bar{x} . \varphi(\bar{x})$:

$$
\text { output all } i \text { s.t. } i \not \vDash_{\sigma} \forall \bar{x} . \varphi(\bar{x})
$$

\Longleftrightarrow Reporting satisfying points of the negation $\exists \bar{x}, \neg \varphi(\bar{x})$: output all i s.t. $i \neq \sigma \exists \bar{x} . \neg \varphi(\bar{x})$

Monitor Output

Checking the specification $\square \forall \bar{x} \cdot \varphi(\bar{x})$: output whether $\vDash \sigma \square \forall \bar{x} . \varphi(\bar{x})$

Reporting violating points of $\forall \bar{x} \cdot \varphi(\bar{x})$:
output all i s.t. $i \not \models_{\sigma} \forall \bar{x} . \varphi(\bar{x})$
\Longleftrightarrow Reporting satisfying points of the negation $\exists \bar{x}, \neg \varphi(\bar{x})$: output all i s.t. $i \neq \sigma \exists \bar{x} . \neg \varphi(\bar{x})$

Reporting satisfying points and assignments of $\neg \varphi(\bar{x})$:

$$
\text { output all }(i, \bar{x}) \text { s.t. } i, \bar{x} \mid=\sigma \neg \varphi(\bar{x})
$$

Monitor Interface

Monitor Interface

Monitor Interface

type event $=$ string \times domain list
type database = event set
type $t s=n a t$
type prefix $=\{p::($ database $\times t s)$ list. sorted $(\operatorname{map} \operatorname{snd} p)\}$

Monitor Interface

Event stream or prefix

type output $=($ nat \times tuple $)$ set
all pairs (i, \bar{x}) such that $i, \bar{x}=_{\sigma} \neg \varphi(\bar{x})$
type event $=$ string \times domain list
type database $=$ event set
type $t s=n a t$
type prefix $=\{p::($ database $\times t s)$ list. sorted $(\operatorname{map} \operatorname{snd} p)\}$

Specification

Define the expected output of the monitor algorithm:
definition spec $::$ formula \Rightarrow prefix \Rightarrow output where
$\operatorname{spec} \varphi \pi=\{(i, t)$. wf_tuple $\varphi t \wedge$
($\forall \sigma$. prefix_of $\pi \sigma \rightarrow i<$ progress $\sigma \varphi(\operatorname{len} \pi) \wedge$ sat $\sigma t i \varphi)\}$

Specification

Define the expected outnut of the monitor aloorithm: t is assignment to free variables definition spec
$\operatorname{spec} \varphi \pi=\{(i, t)$. wf_tuple $\varphi t \wedge$
($\forall \sigma$. prefix_of $\pi \sigma \rightarrow i<$ progress $\sigma \varphi(\operatorname{len} \pi) \wedge$ sat $\sigma t i \varphi)\}$

Specification

Define the expected outnut of the monitor aloorithm: definition spec t is assignment to free variables
$\operatorname{spec} \varphi \pi=\{(i, t)$. wf_tuple $\varphi t \wedge$
($\forall \sigma$. prefix_of $\pi \sigma \rightarrow i<$ progress $\sigma \varphi(\operatorname{len} \pi) \wedge$ sat $\sigma t i \varphi)\}$
all infinite extensions σ of π

Specification

Define the expected outnut of the monitor aloorithm: definition spec t is assignment to free variables
definition spec
$\operatorname{spec} \varphi \pi=\{(i, t)$. wf_tuple $\varphi t \wedge$
($\forall \sigma$. prefix_of $\pi \sigma \rightarrow i<$ progress $\sigma \varphi(\operatorname{len} \pi) \wedge$ sat $\sigma t i \varphi)\}$
all infinite extensions σ of π

Specification

Define the expected outnut of the monitor aloorithm: definition spec t is assignment to free variables
$\operatorname{spec} \varphi \pi=\{(i, t)$. wf_tuple $\varphi t \wedge$ ($\forall \sigma$. prefix_of $\pi \sigma \rightarrow i<$ progress $\sigma \varphi(\operatorname{len} \pi) \wedge$ sat $\sigma t i \varphi)\}$
all infinite extensions σ of π
delay verdicts for formulas with future modalities

Specification

Define the expected outnut of the monitor aloorithm: definition spec t is assignment to free variables
$\operatorname{spec} \varphi \pi=\{(i, t)$. wf_tuple $\varphi t \wedge$ ($\forall \sigma$. prefix_of $\pi \sigma \rightarrow i<$ progress $\sigma \varphi(\operatorname{len} \pi) \wedge$ sat $\sigma t i \varphi)\}$
all infinite extensions σ of π

delay verdicts for formulas with future modalities

$$
\varphi \equiv P \wedge \diamond_{[0,10 \mathrm{~s}]} Q
$$

Specification

Define the expected outnut of the monitor aloorithm: definition spec t is assignment to free variables
$\operatorname{spec} \varphi \pi=\{(i, t)$. wf_tuple $\varphi t \wedge$ ($\forall \sigma$. prefix_of $\pi \sigma \rightarrow i<$ progress $\sigma \varphi(\operatorname{len} \pi) \wedge$ sat $\sigma t i \varphi)\}$

all infinite extensions σ of π

delay verdicts for formulas with future modalities

$$
\varphi \equiv P \wedge \diamond_{[0,10 \mathrm{~s}]} Q
$$

Specification

Define the expected outnut of the monitor aloorithm: definition spec t is assignment to free variables
$\operatorname{spec} \varphi \pi=\{(i, t)$. wf_tuple $\varphi t \wedge$ ($\forall \sigma$. prefix_of $\pi \sigma \rightarrow i<$ progress $\sigma \varphi(\operatorname{len} \pi) \wedge$ sat $\sigma t i \varphi)\}$

all infinite extensions σ of π

delay verdicts for formulas with future modalities

$$
\varphi \equiv P \wedge \diamond_{[0,10 \mathrm{~s}]} Q
$$

Specification

Define the expected outnut of the monitor aloorithm: definition spec t is assignment to free variables
$\operatorname{spec} \varphi \pi=\{(i, t)$. wf_tuple $\varphi t \wedge$
($\forall \sigma$. prefix_of $\pi \sigma \rightarrow i<$ progress $\sigma \varphi(\operatorname{len} \pi) \wedge$ sat $\sigma t i \varphi)\}$
all infinite extensions σ of π

delay verdicts for formulas with future modalities

$$
\varphi \equiv P \wedge \diamond_{[0,10 \mathrm{~s}]} Q
$$

Specification

Define the expected outnut of the monitor aloorithm: definition spec t is assignment to free variables
$\operatorname{spec} \varphi \pi=\{(i, t)$. wf_tuple $\varphi t \wedge$
($\forall \sigma$. prefix_of $\pi \sigma \rightarrow i<$ progress $\sigma \varphi(\operatorname{len} \pi) \wedge$ sat $\sigma t i \varphi)\}$
all infinite extensions σ of π

delay verdicts for formulas with future modalities

$$
\varphi \equiv P \wedge \diamond_{[0,10 \mathrm{~s}]} Q
$$

Correctness (1)

Does the spec function characterize a reasonable monitor?

Correctness (1)

Does the spec function characterize a reasonable monitor?
Fix an event stream σ and a prefix π (i.e., prefix_of $\pi \sigma$ is true). Soundness:
$(i, t) \in \operatorname{spec} \varphi \pi$ implies sat $\sigma t i \varphi$.

Correctness (1)

Does the spec function characterize a reasonable monitor?
Fix an event stream σ and a prefix π (i.e., prefix_of $\pi \sigma$ is true).
Soundness:
$(i, t) \in \operatorname{spec} \varphi \pi$ implies sat $\sigma t i \varphi$.
Eventual completeness:
If $i<$ len π and wf_tuple φt and $\forall \sigma^{\prime}$. prefix_of $\pi \sigma^{\prime} \rightarrow$ sat σ^{\prime} t $i \varphi$, then there exists a prefix π^{\prime} of σ such that $(i, t) \in \operatorname{spec} \varphi \pi^{\prime}$.
$\varphi \equiv P \wedge \diamond_{[0,10 \mathrm{~s}]} Q$

Correctness (1)

Does the spec function characterize a reasonable monitor?
Fix an event stream σ and a prefix π (i.e., prefix_of $\pi \sigma$ is true).
Soundness:
$(i, t) \in \operatorname{spec} \varphi \pi$ implies sat $\sigma t i \varphi$.
Eventual completeness:
If $i<$ len π and wf_tuple φt and $\forall \sigma^{\prime}$. prefix_of $\pi \sigma^{\prime} \rightarrow$ sat σ^{\prime} ti φ, then there exists a prefix π^{\prime} of σ such that $(i, t) \in \operatorname{spec} \varphi \pi^{\prime}$.
$\varphi \equiv P \wedge\rangle_{[0,10 \mathrm{~s}]} Q$

Implementation

Online interface (unbounded stream):
 definition init :: formula \Rightarrow state

Implementation

Online interface (unbounded stream):
definition init :: formula \Rightarrow state definition step :: database \times ts \Rightarrow state \Rightarrow output \times state

Implementation

Online interface (unbounded stream):
definition init :: formula \Rightarrow state definition step :: database \times ts \Rightarrow state \Rightarrow output \times state

Implementation

Online interface (unbounded stream):
definition init :: formula \Rightarrow state definition step :: database \times ts \Rightarrow state \Rightarrow output \times state

Offline interface (finite prefix):
definition monitor :: formula \Rightarrow prefix \Rightarrow output

Correctness (2)

Is the implementation correct?

1. init establishes the invariant wf_state: φ is monitorable implies wf_state $\varphi[]($ init $\varphi)$.

Correctness (2)

Is the implementation correct?

1. init establishes the invariant wf_state:
φ is monitorable implies wf_state φ [] (init φ).
2. step preserves the invariant:

Let step $(d b, \tau) s t=\left(X, s t^{\prime}\right)$. If wf_state $\varphi \pi$ st and last_ts $\pi \leq \tau$, then wf_state $\varphi(\pi @[(d b, \tau)]) s t^{\prime}, \ldots$

Correctness (2)

Is the implementation correct?

1. init establishes the invariant wf_state:

$$
\varphi \text { is monitorable implies wf_state } \varphi[] \text { (init } \varphi) .
$$

2. step preserves the invariant:

$$
\begin{aligned}
& \text { Let step }(d b, \tau) \text { st }=(X, \text { st' }) \text {. If wf_state } \varphi \pi \text { st and } \\
& \text { last_ts } \pi \leq \tau \text {, then wf_state } \varphi(\pi @[(d b, \tau)]) s t^{\prime}, \ldots
\end{aligned}
$$

3. step's output corresponds to spec:
\ldots and $X=\operatorname{spec} \varphi(\pi @[(d b, \tau)])-\operatorname{spec} \varphi \pi$.

Correctness (2)

Is the implementation correct?

1. init establishes the invariant wf_state:

$$
\varphi \text { is monitorable implies wf_state } \varphi[] \text { (init } \varphi \text {). }
$$

2. step preserves the invariant:

$$
\begin{aligned}
& \text { Let step }(d b, \tau) \text { st }=\left(X, s t^{\prime}\right) \text {. If wf_state } \varphi \pi \text { st and } \\
& \text { last_ts } \pi \leq \tau \text {, then wf_state } \varphi(\pi @[(d b, \tau)]) s t^{\prime}, \ldots
\end{aligned}
$$

3. step's output corresponds to spec:
\ldots and $X=\operatorname{spec} \varphi(\pi @[(d b, \tau)])-\operatorname{spec} \varphi \pi$.
4. monitor $\varphi \pi=\operatorname{spec} \varphi \pi$ (if φ is monitorable)

Executable Monitor

Current approach:
■ Extract OCaml code from formalization using Isabelle/HOL's code generator
■ Reuse MonPoly's parser/data structures and add "glue"

Executable Monitor

Current approach:
■ Extract OCaml code from formalization using Isabelle/HOL's code generator
■ Reuse MonPoly's parser/data structures and add "glue"
Trust assumptions:
■ Isabelle's kernel and code generator

- Parser and glue code

■ OCaml compiler, runtime environment etc.

Executable Monitor

Current approach:
■ Extract OCaml code from formalization using Isabelle/HOL's code generator

- Reuse MonPoly's parser/data structures and add "glue"

Trust assumptions:
■ Isabelle's kernel and code generator

- Parser and glue code

■ OCaml compiler, runtime environment etc.
Satisfactory?

- The algorithm is the challenging part

■ Various techniques for full-stack verification exist, for example CakeML (used in VeriPhy)

Performance

Differential Testing

Idea: Find bugs in unverified implementations by comparing their output on random inputs with Verimon.

Two targets: MonPoly and DejaVu

Differential Testing

Idea: Find bugs in unverified implementations by comparing their output on random inputs with Verimon.

Two targets: MonPoly and DejaVu
■ Random formulas parameterized by size n, free variables FV
■ Generated 1000 formulas each for $2 \leq n \leq 5,|F V| \leq 6$

Differential Testing

Idea: Find bugs in unverified implementations by comparing their output on random inputs with Verimon.

Two targets: MonPoly and DejaVu
■ Random formulas parameterized by size n, free variables FV
■ Generated 1000 formulas each for $2 \leq n \leq 5,|F V| \leq 6$

- Random prefixes with 20, 40, 60, 100 databases

■ Reuse recent event parameters with probability p

Results

Two bugs found in MonPoly:

1. Wrong output for class of formulas, for example $Q(x, y) \wedge \neg(P(x) S Q(y, x))$ on prefix with only $Q(1,2)$

Results

Two bugs found in MonPoly:

1. Wrong output for class of formulas, for example $Q(x, y) \wedge \neg(P(x) S Q(y, x))$ on prefix with only $Q(1,2)$
2. Additional violation output for finite traces
@0. (time point 0): true
@MaxTS (time point 1): true

Results

Two bugs found in MonPoly:

1. Wrong output for class of formulas, for example $Q(x, y) \wedge \neg(P(x) S Q(y, x))$ on prefix with only $Q(1,2)$
2. Additional violation output for finite traces
@0. (time point 0): true
@MaxTS (time point 1): true

Documented differences in DejaVu's semantics:
3. Arithmetic relations change semantics of quantifiers, e.g.,
$\neg \varphi$ vs. $\neg \exists x . \varphi \wedge x=42$
4. Active domain does not include constants in the formula, e.g., $\neg \exists x . x=42 \wedge \neg P(x)$ on $\mathrm{P}(101)$

Ongoing and Future Work

Achieve parity with MonPoly:
■ Sliding window algorithm
■ Refinement to imperative data structures
■ Aggregations (count, sum, max, ...)

New and verified optimizations:
■ Multi-way joins (completed by Thibault Dardinier)

New features:
■ State splitting and merging [ATVA'19]
■ MFODL - adds regular expressions

A Formally Verified Monitor for MFOTL

Language Verified with User effort
Verimon MFOTL
none

A Formally Verified Monitor for MFOTL

Language Verified with User effort
Verimon MFOTL
none

A Formally Verified Monitor for MFOTL

	Language	Verified with	User effort
Verimon	MFOTL		none

Questions?

Joshua Schneider David Basin Srđan Krstić Dmitriy Traytel

ETHzürich

