A Formally Verified Monitor

for Metric First-Order Temporal Logic

Joshua Schneider, David Basin, Srdan Krsti¢, and Dmitriy Traytel

Department of Computer Science

ETH:zurich

Goals of Runtime Verification

to study whether runtime application of formal methods is
a viable complement to the traditional methods proving
programs correct [...]

to study whether formality improves traditional ad-hoc
monitoring techniques [...]

Source: www.runtime-verification.org (28/08/19, emphasis added)

RV Tools

MOP
MarQ
YRR
¥Al:;‘%%As
Research N LOLA ¢

DejaVu -
MonPoly

RV Tools

MOP
MarQ

Y | B 27
\‘ﬁ L}A Wf&\
Research m LOLA ¢ Applications

DejaVu >
MonPoly

Verifying RV Tools

MOP
MarQ

N
SEL
y LOL‘L Applications

Research

==

DejaVu

How can we prove that our tools are trustworthy?
Who guards the guardians?

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

A\

Criticality

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Yy K

Criticality Small size

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Yy K

Criticality Small size Clear specification

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Yy K

Criticality Small size Clear specification

All RV tools and should be verified formally.

Gain understanding of assumptions and guarantees!

Related Work

Language Verified with User effort

Blech et al. (2012) Regex Coq manual proof
Vollinger & Akili (2017) — Coq manual proof

Related Work

Language Verified with User effort

Blech et al. (2012) Regex Coq manual proof
Vollinger & Akili (2017) — Coq manual proof

Laurent et al. (2015) Copilot SMT semi-autom.

Related Work

Language Verified with User effort
Blech et al. (2012) Regex Coq manual proof
Vollinger & Akili (2017) — Coq manual proof
Laurent et al. (2015) Copilot SMT semi-autom.
Rizaldi et al. (2017) LTL Isabelle/HOL none
Bohrer et al. (2018) dc KeYmaera X none

Isabelle/HOL
HOL4

Related Work

Language Verified with User effort
Blech et al. (2012) Regex Coq manual proof
Vollinger & Akili (2017) — Coq manual proof
Laurent et al. (2015) Copilot SMT semi-autom.
Rizaldi et al. (2017) LTL Isabelle/HOL none
Bohrer et al. (2018) dc KeYmaera X none
Isabelle/HOL
HOL4
this work MFOTL Isabelle/HOL none

Our Contribution

Verimon: verified MonPoly (w/o optimizations) e\\e ”OL

m Formally verified monitor for metric first-order
temporal logic (MFOTL)

m Expressive language with intervals and data quantification

m Proved correct for all instances of the monitor
m Explain and clarify MonPoly’s algorithm

Our Contribution

Verimon: verified MonPoly (w/o optimizations) \\° ”OL

m Formally verified monitor for metric first-order
temporal logic (MFOTL)

m Expressive language with intervals and data quantification

m Proved correct for all instances of the monitor
m Explain and clarify MonPoly’s algorithm

Basis for exploration:

m Monitor state manipulation
[ATVA'19]

m Foundation for future
extensions and optimizations

Our Contribution

Verimon: verified MonPoly (w/o optimizations) e\\e ”OL

m Formally verified monitor for metric first-order
temporal logic (MFOTL)

m Expressive language with intervals and data quantification

m Proved correct for all instances of the monitor
m Explain and clarify MonPoly’s algorithm

Basis for exploration: Differential testing case study:

m Monitor state manipulation m Used Verimon as oracle to test
[ATVA'19] unverified implementations

m Foundation for future m Tested MonPoly and DejaVu

extensions and optimizations = Found bugs! @

Background: Isabelle/HOL

e\\e Ho

&

Definitions, Q& Q'
proofs

A//vFeedback

Background: Isabelle/HOL

Definit

ions, N &
proofs Check theories
/eedback \
eories

. Save th

- =

Background: Isabelle/HOL

N\ Hoy _—
NS
gFO 7
Definitions, ﬁ S
proofs Check theories
/eedback \
eories

. Save th

- =

Formalization Overview

MFOTL

T

Infinite
traces

Finite
tables

MFOTL

T

Infinite
traces

Formalization Overview

——» Algorithm

Finite
tables

MFOTL

T

Infinite
traces

Formalization Overview

——» Algorithm

Generated
code

Formalization Overview

Finite

—— Algorithm ----- Generated
tables / \ code
MFOTL Invariants Correctness
theorems
Infinite

traces

Formalization Overview

q Generated
code

Correctness
theorems

Finite
tables

l

Invariants ——

!

Infinite
traces

Background: MFOTL

TL Temporal Logic: lineartime @ O ¢ $mOSU
O(access — (—release S acquire))

Background: MFOTL

Fo First-Order: data and quantification
O Vx. access(x) — (—release(x) S acquire(x))

TL Temporal Logic: lineartime @ O ¢ $mOSU
O(access — (—release S acquire))

Background: MFOTL

M Metric: time intervals
OVx. access(x) — (—release(x) Sjo, 1] acquire(x))

Fo First-Order: data and quantification
O Vx. access(x) — (—release(x) S acquire(x))

TL Temporal Logic: lineartime @ O ¢ $mOSU
O(access — (—release S acquire))

Background: MFOTL

M Metric: time intervals

Monitorable fragment:

m Safety properties (O ¢ with bounded future)
NOT: O(open — ¢ close)

m Finitely evaluable violations
NOT: OVx. P(x)

O(access — (—release S acquire

Monitor Qutput

Checking the specification O Vx. ¢(x):
output whether =, OVX. ¢(x)

Monitor Qutput
Checking the specification O Vx. ¢(x):
output whether =, OVX. ¢(x)
Reporting violating points of Vx. ¢(x):
output all i s.t. 7}Eq VX. @(X)

Monitor Output
Checking the specification OVx. ¢(x):
output whether =, OVX. ¢(x)
Reporting violating points of Vx. ¢(x):
output all i s.t. 7}Eq VX. @(X)
<= Reporting satisfying points of the negation Ix. —¢(x):

output all i s.t. i |Eg IX. ~@(X)

Monitor Output

Checking the specification OVx. ¢(x):

output whether =, OVX. ¢(x)
Reporting violating points of Vx. ¢(x):

output all i s.t. 7}Eq VX. @(X)
<= Reporting satisfying points of the negation Ix. —¢(x):

output all i s.t. i |Eg IX. ~@(X)
Reporting satisfying points and assignments of —¢(x):

output all (i, x) s.t. i, x Fo ~@(x)

Monitor Interface

/V
SR or

Monitor Interface

—9(X)
A
SR o

Monitor Interface

—9(X)
/
g o [

Event stream or prefix

Monitor

type event = string x domain list
type database = event set

type ts = nat
type prefix = {p :: (database x ts) list. sorted (map snd p)}

Monitor Interface

—9(X)
/ <&

S or Fm

Event stream or prefix

type output = (nat x tuple) set

all pairs (i, x) such that i, x =g = @(X)
type event = string x domain list
type database = event set
type ts = nat

type prefix = {p :: (database x ts) list. sorted (map snd p)}

Specification

Define the expected output of the monitor algorithm:
definition spec :: formula = prefix = output where
spec @ ™= {(i, t). wf_tuple ¢ tA
(Vo. prefix_of mo — i < progress o ¢ (len) Asatoti@)}

Specification

Define the expe

. tis aSS|gnment to free varlables
definition spec Wi

spec @ ™= {(i,t). wf_tuple @ tA
(Vo. prefix_of mo — i < progress o ¢ (len) Asatoti@)}

Specification

Define the expe

tis aSS|gnment to free varlables

definition spec
spec @ ™= {(i,t). wf_tuple @ tA
(Vo. prefix_of mo — i < progress o ¢ (len) Asatoti@)}

all infinite extensions o of

Specification

Define the expe

tis aSS|gnment to free varlables

definition spec
spec @ ™= {(i,t). wf_tuple @ tA
(Vo. prefix_of mo — i < progresso ¢ (lenmt) Asatoti@)}

all infinite extensions o of MFOTL semantics

Specification

Define the expe

. tis aSS|gnment to free varlables
definition spec Wi

spec ¢ ™= {(i, t). wf_tuple @ tA
(Vo. prefix_of mo — i < progress 0 ¢ (len) Asatoti@)}

all infinite extensions o of MFOTL semantics

delay verdicts for formulas with future modalities

Specification

Define the expe

. tis aSS|gnment to free varlables
definition spec

spec ¢ ™= {(i, t). wf_tuple @ tA
(Vo. prefix_of mo — i < progress 0 ¢ (len) Asatoti@)}

all infinite extensions o of MFOTL semantics

delay verdicts for formulas with future modalities

® =P A 9,105 Q

-10 now +10

Specification

Define the expe

. tis aSS|gnment to free varlables
definition spec

spec ¢ ™= {(i, t). wf_tuple @ tA
(Vo. prefix_of mo — i < progress 0 ¢ (len) Asatoti@)}

all infinite extensions o of MFOTL semantics

delay verdicts for formulas with future modalities

® =P A 9,105 Q

-10 now +10

Specification

Define the expe

. tis aSS|gnment to free varlables
definition spec

spec ¢ ™= {(i, t). wf_tuple @ tA
(Vo. prefix_of mo — i < progress 0 ¢ (len) Asatoti@)}

all infinite extensions o of MFOTL semantics

delay verdicts for formulas with future modalities

® =P A 9,105 Q

-10 now +10

Specification

Define the expe
tis aSS|gnment to free varlables

definition spec Wi
spec @ ™= {(i,t). wf_tuple @ tA
(Vo. prefix_of mo — i < progress 0 ¢ (len) Asatoti@)}

all infinite extensions o of MFOTL semantics

delay verdicts for formulas with future modalities

® =P A 9,105 Q
/\ ,/’_""‘x
+—~P : Q—+—P —Q . >
-10 now +10

Specification

Define the expe
tis aSS|gnment to free varlables

definition spec Wi
spec @ ™= {(i,t). wf_tuple @ tA
(Vo. prefix_of mo — i < progress 0 ¢ (len) Asatoti@)}

all infinite extensions o of MFOTL semantics

delay verdicts for formulas with future modalities

® =P A 9,105 Q
/\ - A
+——P : Q—+—P—Q— . >
-10 now +10

Correctness (1)

Does the spec function characterize a reasonable monitor?

Correctness (1)

Does the spec function characterize a reasonable monitor?

Fix an event stream o and a prefix 7 (i.e., prefix_of m o is true).
Soundness:

(i, t) € spec @ mimpliessat o ti ¢.

Correctness (1)

Does the spec function characterize a reasonable monitor?

Fix an event stream o and a prefix 7 (i.e., prefix_of m o is true).
Soundness:

(i, t) € spec @ mimpliessat o ti ¢.

Eventual completeness:

If i < len mand wf_tuple ¢ t and Vo’. prefix_of mo’ — sat o’ ti ¢,
then there exists a prefix ’ of o such that (i, t) € spec ¢ 1’.

® =P AQpp,105 Q

: : P—+—Q] : —
-10 now +10

Correctness (1)

Does the spec function characterize a reasonable monitor?

Fix an event stream o and a prefix 7 (i.e., prefix_of m o is true).
Soundness:

(i, t) € spec @ mimpliessat o ti ¢.

Eventual completeness:

If i < len mand wf_tuple ¢ t and Vo’. prefix_of mo’ — sat o’ ti ¢,
then there exists a prefix ’ of o such that (i, t) € spec ¢ 1’.

® =P AQpp,105 Q

: : P—+—Q } : —
-10 now +10

Implementation

Online interface (unbounded stream):
definition init :: formula = state

.. Sto
®—> init —>

Implementation

Online interface (unbounded stream):

definition init :: formula = state
definition step :: database x ts = state = output x state

(db1, T1)

.. Sto St4
¢ —> jnit —>» step —»

"

Implementation

Online interface (unbounded stream):

definition init :: formula = state
definition step :: database x ts = state = output x state

(db+, T+) (dba, T2) (dbs, T3)

Sto Sty st St3
¢ —> int —> step —>» step —>» step —>---

" " "

Implementation

Online interface (unbounded stream):

definition init :: formula = state
definition step :: database x ts = state = output x state

(db+, T+) (dba, T2) (dbs, T3)

sto sty sty st3
¢ —> int —> step —>» step —>» step —>---
¢ X1 ¢ X2 ¢ X3

Offline interface (finite prefix):

definition monitor :: formula = prefix = output
— - o>

v

@ —» monitor — |J"_, Xi

Correctness (2)

Is the implementation correct?

1.

init establishes the invariant wf_state:

@ is monitorable implies wf_state ¢ [] (init @).

Correctness (2)

Is the implementation correct?
1. init establishes the invariant wf_state:

@ is monitorable implies wf_state ¢ [] (init @).

2. step preserves the invariant:

Let step (db, T) st = (X, st’). If wf_state ¢ 7 st and
last_ts ™ < T, then wf_state ¢ (m @ [(db, T)]) st/, ...

Correctness (2)

Is the implementation correct?
1. init establishes the invariant wf_state:

@ is monitorable implies wf_state ¢ [] (init @).

2. step preserves the invariant:

Let step (db, T) st = (X, st’). If wf_state ¢ 7 st and

last_ts ™ < T, then wf_state ¢ (m @ [(db, T)]) st/, ...

3. step’s output corresponds to spec:

. and X = spec ¢(m @ [(db, T)]) — spec @ T.

Correctness (2)

Is the implementation correct?
1. init establishes the invariant wf_state:

@ is monitorable implies wf_state ¢ [] (init @).

2. step preserves the invariant:

Let step (db, T) st = (X, st’). If wf_state ¢ m st and

last_ts ™ < T, then wf_state ¢ (m @ [(db, T)]) st/, ...

3. step’s output corresponds to spec:

. and X = spec ¢(m @ [(db, T)]) — spec ¢ .

4. monitor @ = spec @ 7 (if ¢ is monitorable)

Executable Monitor

Current approach:

m Extract OCaml code from formalization using Isabelle/HOL's
code generator

m Reuse MonPoly’s parser/data structures and add “glue”

Executable Monitor

Current approach:

m Extract OCaml code from formalization using Isabelle/HOL's
code generator

m Reuse MonPoly’s parser/data structures and add “glue”

Trust assumptions:

m Isabelle’s kernel and code generator

m Parser and glue code

m OCaml compiler, runtime environment etc.

Executable Monitor

Current approach:

m Extract OCaml code from formalization using Isabelle/HOL's
code generator

m Reuse MonPoly’s parser/data structures and add “glue”

Trust assumptions:

m Isabelle’s kernel and code generator

m Parser and glue code

m OCaml compiler, runtime environment etc.

Satisfactory?
m The algorithm is the challenging part

m Various techniques for full-stack verification exist, for example
CakeML (used in VeriPhy)

Performance

Event throughput [1/s] - higher is better
60000
50000
40000
1x
30000
20000 1%
10000 35x

.18x

0

((#10,101A(a, b)) A B(a, c)) A ((#10,101A(a, b)) A B(b, c)) A
Q10,101 C(a, d) Q10,10 C(c, a)

M MonPoly M Verimon

Differential Testing

Idea: Find bugs in unverified implementations by comparing
their output on random inputs with Verimon.

Two targets: MonPoly and DejaVu

Differential Testing

Idea: Find bugs in unverified implementations by comparing
their output on random inputs with Verimon.

Two targets: MonPoly and DejaVu

m Random formulas parameterized by size n, free variables FV
m Generated 1000 formulas eachfor2<n <5, |FV| <6

Differential Testing

Idea: Find bugs in unverified implementations by comparing
their output on random inputs with Verimon.

Two targets: MonPoly and DejaVu

m Random formulas parameterized by size n, free variables FV
m Generated 1000 formulas eachfor2<n <5, |FV| <6

m Random prefixes with 20, 40, 60, 100 databases
m Reuse recent event parameters with probability p

Results

Two bugs found in MonPoly:

1. Wrong output for class of formulas, for example
Q(x, ¥) A =(P(x) S Q(y, x)) on prefix with only Q(1,2)

Results

Two bugs found in MonPoly:

1. Wrong output for class of formulas, for example
Q(x, ¥) A =(P(x) S Q(y, x)) on prefix with only Q(1,2)

2. Additional violation output for finite traces
@. (time point @): true
@MaxTS (time point 1): true

Results

Two bugs found in MonPoly:
1. Wrong output for class of formulas, for example
Q(x, y) A =(P(x) S Q(v, x)) on prefix with only Q(1,2)

2. Additional violation output for finite traces
@. (time point @): true
@MaxTS (time point 1): true

Documented differences in DejaVu’s semantics:
3. Arithmetic relations change semantics of quantifiers, e.g.,
=@ vs. —Ax. g Ax=42

4. Active domain does not include constants in the formula, e.g.,
—3x. x =42 A =P(x) on P(101)

Ongoing and Future Work

Achieve parity with MonPoly:

m Sliding window algorithm

m Refinement to imperative data structures
m Aggregations (count, sum, max, ...)

New and verified optimizations:
m Multi-way joins (completed by Thibault Dardinier)

New features:
m State splitting and merging [ATVA'19]
m MFODL - adds regular expressions

20

A Formally Verified Monitor for MFOTL

Language Verified with User effort

o Ho

Verimon MFOTL none

21

A Formally Verified Monitor for MFOTL

Language Verified with User effort

Neo

Verimon MFOTL ﬁg’ none

21

A Formally Verified Monitor for MFOTL

Language Verified with User effort

Neo

Verimon MFOTL NS none

Questions?

Joshua Schneider David Basin

Srdan Krsti¢ Dmitriy Traytel E""ZUI”ICh
2

1

	Introduction
	Outline
	Monitor
	Code Generation
	Differential Testing
	Conclusion

