
A Formally Verified Monitor
for Metric First-Order Temporal Logic

Joshua Schneider, David Basin, Srđan Krstić, and Dmitriy Traytel

Department of Computer Science

1

Goals of Runtime Verification

to study whether runtime application of formal methods is
a viable complement to the traditional methods proving
programs correct [. . .]

to study whether formality improves traditional ad-hoc
monitoring techniques [. . .]

Source: www.runtime-verification.org (28/08/19, emphasis added)

2

RV Tools

MOP
MarQ

DejaVu

LOLA

MonPoly
. . .

Research

Applications

How can we prove that our tools are trustworthy?
Who guards the guardians?

3

RV Tools

MOP
MarQ

DejaVu

LOLA

MonPoly
. . .

Research Applications

How can we prove that our tools are trustworthy?
Who guards the guardians?

3

Verifying RV Tools

MOP
MarQ

DejaVu

LOLA

MonPoly
. . .

Research Applications

How can we prove that our tools are trustworthy?
Who guards the guardians?

3

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Criticality

Small size

|= φ

Clear specification

All RV tools and should be verified formally.

Gain understanding of assumptions and guarantees!

4

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Criticality Small size

|= φ

Clear specification

All RV tools and should be verified formally.

Gain understanding of assumptions and guarantees!

4

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Criticality Small size

|= φ

Clear specification

All RV tools and should be verified formally.

Gain understanding of assumptions and guarantees!

4

Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Criticality Small size

|= φ

Clear specification

All RV tools and should be verified formally.

Gain understanding of assumptions and guarantees!

4

Related Work

Language Verified with User e�ort

Blech et al. (2012) Regex Coq manual proof
Völlinger & Akili (2017) — Coq manual proof

Laurent et al. (2015) Copilot SMT semi-autom.

Rizaldi et al. (2017) LTL Isabelle/HOL none
Bohrer et al. (2018) dL KeYmaera X

Isabelle/HOL
HOL4

none

this work MFOTL Isabelle/HOL none

5

Related Work

Language Verified with User e�ort

Blech et al. (2012) Regex Coq manual proof
Völlinger & Akili (2017) — Coq manual proof

Laurent et al. (2015) Copilot SMT semi-autom.

Rizaldi et al. (2017) LTL Isabelle/HOL none
Bohrer et al. (2018) dL KeYmaera X

Isabelle/HOL
HOL4

none

this work MFOTL Isabelle/HOL none

5

Related Work

Language Verified with User e�ort

Blech et al. (2012) Regex Coq manual proof
Völlinger & Akili (2017) — Coq manual proof

Laurent et al. (2015) Copilot SMT semi-autom.

Rizaldi et al. (2017) LTL Isabelle/HOL none
Bohrer et al. (2018) dL KeYmaera X

Isabelle/HOL
HOL4

none

this work MFOTL Isabelle/HOL none

5

Related Work

Language Verified with User e�ort

Blech et al. (2012) Regex Coq manual proof
Völlinger & Akili (2017) — Coq manual proof

Laurent et al. (2015) Copilot SMT semi-autom.

Rizaldi et al. (2017) LTL Isabelle/HOL none
Bohrer et al. (2018) dL KeYmaera X

Isabelle/HOL
HOL4

none

this work MFOTL Isabelle/HOL none

5

Our Contribution
Verimon: verified MonPoly (w/o optimizations)

Formally verified monitor for metric first-order
temporal logic (MFOTL)
Expressive language with intervals and data quantification
Proved correct for all instances of the monitor
Explain and clarify MonPoly’s algorithm

λ →

∀
=Is

ab
el
le

β
α

HOL

Basis for exploration:
Monitor state manipulation
[ATVA’19]

Foundation for future
extensions and optimizations

Di�erential testing case study:
Used Verimon as oracle to test
unverified implementations

Tested MonPoly and DejaVu

Found bugs!

6

Our Contribution
Verimon: verified MonPoly (w/o optimizations)

Formally verified monitor for metric first-order
temporal logic (MFOTL)
Expressive language with intervals and data quantification
Proved correct for all instances of the monitor
Explain and clarify MonPoly’s algorithm

λ →

∀
=Is

ab
el
le

β
α

HOL

Basis for exploration:
Monitor state manipulation
[ATVA’19]

Foundation for future
extensions and optimizations

Di�erential testing case study:
Used Verimon as oracle to test
unverified implementations

Tested MonPoly and DejaVu

Found bugs!

6

Our Contribution
Verimon: verified MonPoly (w/o optimizations)

Formally verified monitor for metric first-order
temporal logic (MFOTL)
Expressive language with intervals and data quantification
Proved correct for all instances of the monitor
Explain and clarify MonPoly’s algorithm

λ →

∀
=Is

ab
el
le

β
α

HOL

Basis for exploration:
Monitor state manipulation
[ATVA’19]

Foundation for future
extensions and optimizations

Di�erential testing case study:
Used Verimon as oracle to test
unverified implementations

Tested MonPoly and DejaVu

Found bugs!

6

Background: Isabelle/HOL

λ →

∀
=Is

ab
el
le

β
α

HOL

Definitions,
proofs

Feedback

Check theories

Save theories

Code

7

Background: Isabelle/HOL

λ →

∀
=Is

ab
el
le

β
α

HOL

Definitions,
proofs

Feedback
Check theories

Save theories

Code

7

Background: Isabelle/HOL

λ →

∀
=Is

ab
el
le

β
α

HOL

Definitions,
proofs

Feedback
Check theories

Save theories

Code

7

Formalization Overview

MFOTL

Infinite
traces

AlgorithmFinite
tables

Generated
code

Invariants Correctness
theorems

8

Formalization Overview

MFOTL

Infinite
traces

AlgorithmFinite
tables

Generated
code

Invariants Correctness
theorems

8

Formalization Overview

MFOTL

Infinite
traces

AlgorithmFinite
tables

Generated
code

Invariants Correctness
theorems

8

Formalization Overview

MFOTL

Infinite
traces

AlgorithmFinite
tables

Generated
code

Invariants Correctness
theorems

8

Formalization Overview

MFOTL

Infinite
traces

AlgorithmFinite
tables

Generated
code

Invariants Correctness
theorems

8

Background: MFOTL

M Metric: time intervals
�∀x. access(x)→ (¬release(x) S[0,1s] acquire(x))

FO First-Order: data and quantification
�∀x. access(x)→ (¬release(x) S acquire(x))

TL Temporal Logic: linear time # � ◊ � � S U
� (access→ (¬release S acquire))

Monitorable fragment:
Safety properties (�φ with bounded future)
NOT: � (open→ ◊close)
Finitely evaluable violations
NOT: �∀x. P(x)

9

Background: MFOTL

M Metric: time intervals
�∀x. access(x)→ (¬release(x) S[0,1s] acquire(x))

FO First-Order: data and quantification
�∀x. access(x)→ (¬release(x) S acquire(x))

TL Temporal Logic: linear time # � ◊ � � S U
� (access→ (¬release S acquire))

Monitorable fragment:
Safety properties (�φ with bounded future)
NOT: � (open→ ◊close)
Finitely evaluable violations
NOT: �∀x. P(x)

9

Background: MFOTL

M Metric: time intervals
�∀x. access(x)→ (¬release(x) S[0,1s] acquire(x))

FO First-Order: data and quantification
�∀x. access(x)→ (¬release(x) S acquire(x))

TL Temporal Logic: linear time # � ◊ � � S U
� (access→ (¬release S acquire))

Monitorable fragment:
Safety properties (�φ with bounded future)
NOT: � (open→ ◊close)
Finitely evaluable violations
NOT: �∀x. P(x)

9

Background: MFOTL

M Metric: time intervals
�∀x. access(x)→ (¬release(x) S[0,1s] acquire(x))

FO First-Order: data and quantification
�∀x. access(x)→ (¬release(x) S acquire(x))

TL Temporal Logic: linear time # � ◊ � � S U
� (access→ (¬release S acquire))

Monitorable fragment:
Safety properties (�φ with bounded future)
NOT: � (open→ ◊close)
Finitely evaluable violations
NOT: �∀x. P(x)

9

Monitor Output
Checking the specification �∀x. φ(x):

output whether |=σ �∀x. φ(x)

Reporting violating points of ∀x. φ(x):

output all i s.t. i 6|=σ ∀x. φ(x)

⇐⇒ Reporting satisfying points of the negation ∃x. ¬φ(x):

output all i s.t. i |=σ ∃x. ¬φ(x)

Reporting satisfying points and assignments of ¬φ(x):

output all (i, x) s.t. i, x |=σ ¬φ(x)

10

Monitor Output
Checking the specification �∀x. φ(x):

output whether |=σ �∀x. φ(x)

Reporting violating points of ∀x. φ(x):

output all i s.t. i 6|=σ ∀x. φ(x)

⇐⇒ Reporting satisfying points of the negation ∃x. ¬φ(x):

output all i s.t. i |=σ ∃x. ¬φ(x)

Reporting satisfying points and assignments of ¬φ(x):

output all (i, x) s.t. i, x |=σ ¬φ(x)

10

Monitor Output
Checking the specification �∀x. φ(x):

output whether |=σ �∀x. φ(x)

Reporting violating points of ∀x. φ(x):

output all i s.t. i 6|=σ ∀x. φ(x)

⇐⇒ Reporting satisfying points of the negation ∃x. ¬φ(x):

output all i s.t. i |=σ ∃x. ¬φ(x)

Reporting satisfying points and assignments of ¬φ(x):

output all (i, x) s.t. i, x |=σ ¬φ(x)

10

Monitor Output
Checking the specification �∀x. φ(x):

output whether |=σ �∀x. φ(x)

Reporting violating points of ∀x. φ(x):

output all i s.t. i 6|=σ ∀x. φ(x)

⇐⇒ Reporting satisfying points of the negation ∃x. ¬φ(x):

output all i s.t. i |=σ ∃x. ¬φ(x)

Reporting satisfying points and assignments of ¬φ(x):

output all (i, x) s.t. i, x |=σ ¬φ(x)

10

Monitor Interface

¬φ(x)

or Monitor

Negated monitorable spec.

Event stream or prefix

type event = string× domain list
type database = event set

type ts = nat
type prefix = {p :: (database× ts) list. sorted (map snd p)}

type output = (nat× tuple) set

11

Monitor Interface

¬φ(x)

or Monitor

Negated monitorable spec.

Event stream or prefix

type event = string× domain list
type database = event set

type ts = nat
type prefix = {p :: (database× ts) list. sorted (map snd p)}

type output = (nat× tuple) set

11

Monitor Interface

¬φ(x)

or Monitor

Negated monitorable spec.

Event stream or prefix

type event = string× domain list
type database = event set

type ts = nat
type prefix = {p :: (database× ts) list. sorted (map snd p)}

type output = (nat× tuple) set

11

Monitor Interface

¬φ(x)

or Monitor

Negated monitorable spec.

Event stream or prefix

Output

type event = string× domain list
type database = event set

type ts = nat
type prefix = {p :: (database× ts) list. sorted (map snd p)}

type output = (nat× tuple) set

all pairs (i, x) such that i, x |=σ ¬φ(x)

11

Specification
Define the expected output of the monitor algorithm:

definition spec :: formula⇒ prefix⇒ output where
spec φ π = {(i, t). wf_tuple φ t∧

(∀σ. prefix_of π σ→ i < progress σ φ (len π)∧ sat σ t i φ)}

12

Specification
Define the expected output of the monitor algorithm:

definition spec :: formula⇒ prefix⇒ output where
spec φ π = {(i, t). wf_tuple φ t∧

(∀σ. prefix_of π σ→ i < progress σ φ (len π)∧ sat σ t i φ)}

t is assignment to free variables

12

Specification
Define the expected output of the monitor algorithm:

definition spec :: formula⇒ prefix⇒ output where
spec φ π = {(i, t). wf_tuple φ t∧

(∀σ. prefix_of π σ→ i < progress σ φ (len π)∧ sat σ t i φ)}

t is assignment to free variables

all infinite extensions σ of π

12

Specification
Define the expected output of the monitor algorithm:

definition spec :: formula⇒ prefix⇒ output where
spec φ π = {(i, t). wf_tuple φ t∧

(∀σ. prefix_of π σ→ i < progress σ φ (len π)∧ sat σ t i φ)}

t is assignment to free variables

all infinite extensions σ of π MFOTL semantics

12

Specification
Define the expected output of the monitor algorithm:

definition spec :: formula⇒ prefix⇒ output where
spec φ π = {(i, t). wf_tuple φ t∧

(∀σ. prefix_of π σ→ i < progress σ φ (len π)∧ sat σ t i φ)}

t is assignment to free variables

all infinite extensions σ of π MFOTL semantics

delay verdicts for formulas with future modalities

12

Specification
Define the expected output of the monitor algorithm:

definition spec :: formula⇒ prefix⇒ output where
spec φ π = {(i, t). wf_tuple φ t∧

(∀σ. prefix_of π σ→ i < progress σ φ (len π)∧ sat σ t i φ)}

t is assignment to free variables

all infinite extensions σ of π MFOTL semantics

delay verdicts for formulas with future modalities

φ ≡ P∧ ◊[0,10s]Q

-10 now +10

P Q P QQ

progress
lookahead

12

Specification
Define the expected output of the monitor algorithm:

definition spec :: formula⇒ prefix⇒ output where
spec φ π = {(i, t). wf_tuple φ t∧

(∀σ. prefix_of π σ→ i < progress σ φ (len π)∧ sat σ t i φ)}

t is assignment to free variables

all infinite extensions σ of π MFOTL semantics

delay verdicts for formulas with future modalities

φ ≡ P∧ ◊[0,10s]Q

-10 now +10
P Q

P QQ

progress
lookahead

12

Specification
Define the expected output of the monitor algorithm:

definition spec :: formula⇒ prefix⇒ output where
spec φ π = {(i, t). wf_tuple φ t∧

(∀σ. prefix_of π σ→ i < progress σ φ (len π)∧ sat σ t i φ)}

t is assignment to free variables

all infinite extensions σ of π MFOTL semantics

delay verdicts for formulas with future modalities

φ ≡ P∧ ◊[0,10s]Q

-10 now +10
P Q P Q

Q

progress
lookahead

12

Specification
Define the expected output of the monitor algorithm:

definition spec :: formula⇒ prefix⇒ output where
spec φ π = {(i, t). wf_tuple φ t∧

(∀σ. prefix_of π σ→ i < progress σ φ (len π)∧ sat σ t i φ)}

t is assignment to free variables

all infinite extensions σ of π MFOTL semantics

delay verdicts for formulas with future modalities

φ ≡ P∧ ◊[0,10s]Q

-10 now +10
P Q P Q

Q

progress
lookahead

12

Specification
Define the expected output of the monitor algorithm:

definition spec :: formula⇒ prefix⇒ output where
spec φ π = {(i, t). wf_tuple φ t∧

(∀σ. prefix_of π σ→ i < progress σ φ (len π)∧ sat σ t i φ)}

t is assignment to free variables

all infinite extensions σ of π MFOTL semantics

delay verdicts for formulas with future modalities

φ ≡ P∧ ◊[0,10s]Q

-10 now +10
P Q P

Q

Q

progress
lookahead

12

Correctness (1)
Does the spec function characterize a reasonable monitor?

Fix an event stream σ and a prefix π (i.e., prefix_of π σ is true).

Soundness:

(i, t) ∈ spec φ π implies sat σ t i φ.

Eventual completeness:

If i < len π and wf_tuple φ t and ∀σ′. prefix_of π σ′ → sat σ′ t i φ,
then there exists a prefix π′ of σ such that (i, t) ∈ spec φ π′.

φ ≡ P∧ ◊[0,10s]Q

-10 now +10i
P Q

π

π′

13

Correctness (1)
Does the spec function characterize a reasonable monitor?

Fix an event stream σ and a prefix π (i.e., prefix_of π σ is true).

Soundness:

(i, t) ∈ spec φ π implies sat σ t i φ.

Eventual completeness:

If i < len π and wf_tuple φ t and ∀σ′. prefix_of π σ′ → sat σ′ t i φ,
then there exists a prefix π′ of σ such that (i, t) ∈ spec φ π′.

φ ≡ P∧ ◊[0,10s]Q

-10 now +10i
P Q

π

π′

13

Correctness (1)
Does the spec function characterize a reasonable monitor?

Fix an event stream σ and a prefix π (i.e., prefix_of π σ is true).

Soundness:

(i, t) ∈ spec φ π implies sat σ t i φ.

Eventual completeness:

If i < len π and wf_tuple φ t and ∀σ′. prefix_of π σ′ → sat σ′ t i φ,
then there exists a prefix π′ of σ such that (i, t) ∈ spec φ π′.

φ ≡ P∧ ◊[0,10s]Q

-10 now +10i
P Q

π

π′

13

Correctness (1)
Does the spec function characterize a reasonable monitor?

Fix an event stream σ and a prefix π (i.e., prefix_of π σ is true).

Soundness:

(i, t) ∈ spec φ π implies sat σ t i φ.

Eventual completeness:

If i < len π and wf_tuple φ t and ∀σ′. prefix_of π σ′ → sat σ′ t i φ,
then there exists a prefix π′ of σ such that (i, t) ∈ spec φ π′.

φ ≡ P∧ ◊[0,10s]Q

-10 now +10i
P Q

π π′
13

Implementation
Online interface (unbounded stream):
definition init :: formula⇒ state

definition step :: database× ts⇒ state⇒ output× state

φ init step
st0

step
st1 step

st2 . . .st3

. . .(db1, τ1)

X1

(db2, τ2)

X2

(db3, τ3)

X3

O�ine interface (finite prefix):
definitionmonitor :: formula⇒ prefix⇒ output

monitorφ
⋃n

i=1 Xi

14

Implementation
Online interface (unbounded stream):
definition init :: formula⇒ state
definition step :: database× ts⇒ state⇒ output× state

φ init step
st0 step

st1

step
st2 . . .st3

. . .(db1, τ1)

X1

(db2, τ2)

X2

(db3, τ3)

X3

O�ine interface (finite prefix):
definitionmonitor :: formula⇒ prefix⇒ output

monitorφ
⋃n

i=1 Xi

14

Implementation
Online interface (unbounded stream):
definition init :: formula⇒ state
definition step :: database× ts⇒ state⇒ output× state

φ init step
st0 step

st1 step
st2 . . .st3

. . .(db1, τ1)

X1

(db2, τ2)

X2

(db3, τ3)

X3

O�ine interface (finite prefix):
definitionmonitor :: formula⇒ prefix⇒ output

monitorφ
⋃n

i=1 Xi

14

Implementation
Online interface (unbounded stream):
definition init :: formula⇒ state
definition step :: database× ts⇒ state⇒ output× state

φ init step
st0 step

st1 step
st2 . . .st3

. . .(db1, τ1)

X1

(db2, τ2)

X2

(db3, τ3)

X3

O�ine interface (finite prefix):
definitionmonitor :: formula⇒ prefix⇒ output

monitorφ
⋃n

i=1 Xi

14

Correctness (2)
Is the implementation correct?

1. init establishes the invariant wf_state:

φ is monitorable implies wf_state φ [] (init φ).

2. step preserves the invariant:

Let step (db, τ) st = (X, st′). If wf_state φ π st and
last_ts π ≤ τ, then wf_state φ (π @ [(db, τ)]) st′, . . .

3. step’s output corresponds to spec:

. . . and X = spec φ(π @ [(db, τ)])− spec φ π.

4. monitor φ π = spec φ π (if φ is monitorable)

15

Correctness (2)
Is the implementation correct?

1. init establishes the invariant wf_state:

φ is monitorable implies wf_state φ [] (init φ).

2. step preserves the invariant:

Let step (db, τ) st = (X, st′). If wf_state φ π st and
last_ts π ≤ τ, then wf_state φ (π @ [(db, τ)]) st′, . . .

3. step’s output corresponds to spec:

. . . and X = spec φ(π @ [(db, τ)])− spec φ π.

4. monitor φ π = spec φ π (if φ is monitorable)

15

Correctness (2)
Is the implementation correct?

1. init establishes the invariant wf_state:

φ is monitorable implies wf_state φ [] (init φ).

2. step preserves the invariant:

Let step (db, τ) st = (X, st′). If wf_state φ π st and
last_ts π ≤ τ, then wf_state φ (π @ [(db, τ)]) st′, . . .

3. step’s output corresponds to spec:

. . . and X = spec φ(π @ [(db, τ)])− spec φ π.

4. monitor φ π = spec φ π (if φ is monitorable)

15

Correctness (2)
Is the implementation correct?

1. init establishes the invariant wf_state:

φ is monitorable implies wf_state φ [] (init φ).

2. step preserves the invariant:

Let step (db, τ) st = (X, st′). If wf_state φ π st and
last_ts π ≤ τ, then wf_state φ (π @ [(db, τ)]) st′, . . .

3. step’s output corresponds to spec:

. . . and X = spec φ(π @ [(db, τ)])− spec φ π.

4. monitor φ π = spec φ π (if φ is monitorable)

15

Executable Monitor
Current approach:

Extract OCaml code from formalization using Isabelle/HOL’s
code generator
Reuse MonPoly’s parser/data structures and add “glue”

Trust assumptions:
Isabelle’s kernel and code generator
Parser and glue code
OCaml compiler, runtime environment etc.

Satisfactory?
The algorithm is the challenging part
Various techniques for full-stack verification exist, for example
CakeML (used in VeriPhy)

16

Executable Monitor
Current approach:

Extract OCaml code from formalization using Isabelle/HOL’s
code generator
Reuse MonPoly’s parser/data structures and add “glue”

Trust assumptions:
Isabelle’s kernel and code generator
Parser and glue code
OCaml compiler, runtime environment etc.

Satisfactory?
The algorithm is the challenging part
Various techniques for full-stack verification exist, for example
CakeML (used in VeriPhy)

16

Executable Monitor
Current approach:

Extract OCaml code from formalization using Isabelle/HOL’s
code generator
Reuse MonPoly’s parser/data structures and add “glue”

Trust assumptions:
Isabelle’s kernel and code generator
Parser and glue code
OCaml compiler, runtime environment etc.

Satisfactory?
The algorithm is the challenging part
Various techniques for full-stack verification exist, for example
CakeML (used in VeriPhy)

16

Performance

((�[0,10] A(a,b))∧ B(a, c))∧
◊[0,10] C(a,d)

((�[0,10] A(a,b))∧ B(b, c))∧
◊[0,10] C(c,a)

0

10000

20000

30000

40000

50000

60000

1x

1x

.35x .18x

Event throughput [1/s] – higher is better

MonPoly Verimon

17

Di�erential Testing

Idea: Find bugs in unverified implementations by comparing
their output on random inputs with Verimon.

Two targets: MonPoly and DejaVu

Random formulas parameterized by size n, free variables FV
Generated 1000 formulas each for 2 ≤ n ≤ 5, |FV| ≤ 6

Random prefixes with 20, 40, 60, 100 databases
Reuse recent event parameters with probability p

18

Di�erential Testing

Idea: Find bugs in unverified implementations by comparing
their output on random inputs with Verimon.

Two targets: MonPoly and DejaVu

Random formulas parameterized by size n, free variables FV
Generated 1000 formulas each for 2 ≤ n ≤ 5, |FV| ≤ 6

Random prefixes with 20, 40, 60, 100 databases
Reuse recent event parameters with probability p

18

Di�erential Testing

Idea: Find bugs in unverified implementations by comparing
their output on random inputs with Verimon.

Two targets: MonPoly and DejaVu

Random formulas parameterized by size n, free variables FV
Generated 1000 formulas each for 2 ≤ n ≤ 5, |FV| ≤ 6

Random prefixes with 20, 40, 60, 100 databases
Reuse recent event parameters with probability p

18

Results
Two bugs found in MonPoly:

1. Wrong output for class of formulas, for example
Q(x, y)∧¬(P(x) S Q(y, x)) on prefix with only Q(1,2)

2. Additional violation output for finite traces
@0. (time point 0): true
@MaxTS (time point 1): true

Documented di�erences in DejaVu’s semantics:

3. Arithmetic relations change semantics of quantifiers, e.g.,
¬φ vs. ¬∃x. φ∧ x = 42

4. Active domain does not include constants in the formula, e.g.,
¬∃x. x = 42∧¬P(x) on P(101)

19

Results
Two bugs found in MonPoly:

1. Wrong output for class of formulas, for example
Q(x, y)∧¬(P(x) S Q(y, x)) on prefix with only Q(1,2)

2. Additional violation output for finite traces
@0. (time point 0): true
@MaxTS (time point 1): true

Documented di�erences in DejaVu’s semantics:

3. Arithmetic relations change semantics of quantifiers, e.g.,
¬φ vs. ¬∃x. φ∧ x = 42

4. Active domain does not include constants in the formula, e.g.,
¬∃x. x = 42∧¬P(x) on P(101)

19

Results
Two bugs found in MonPoly:

1. Wrong output for class of formulas, for example
Q(x, y)∧¬(P(x) S Q(y, x)) on prefix with only Q(1,2)

2. Additional violation output for finite traces
@0. (time point 0): true
@MaxTS (time point 1): true

Documented di�erences in DejaVu’s semantics:

3. Arithmetic relations change semantics of quantifiers, e.g.,
¬φ vs. ¬∃x. φ∧ x = 42

4. Active domain does not include constants in the formula, e.g.,
¬∃x. x = 42∧¬P(x) on P(101)

19

Ongoing and Future Work

Achieve parity with MonPoly:
Sliding window algorithm
Refinement to imperative data structures
Aggregations (count, sum, max, . . .)

New and verified optimizations:
Multi-way joins (completed by Thibault Dardinier)

New features:
State splitting and merging [ATVA’19]
MFODL – adds regular expressions

20

A Formally Verified Monitor for MFOTL

Language Verified with User e�ort

Verimon MFOTL λ →

∀
=Is

ab
el
le

β
α

HOL

none

Questions?
Joshua Schneider David Basin
Srđan Krstić Dmitriy Traytel

21

A Formally Verified Monitor for MFOTL

Language Verified with User e�ort

Verimon MFOTL λ →

∀
=Is

ab
el
le

β
α

HOL

none

Questions?
Joshua Schneider David Basin
Srđan Krstić Dmitriy Traytel

21

A Formally Verified Monitor for MFOTL

Language Verified with User e�ort

Verimon MFOTL λ →

∀
=Is

ab
el
le

β
α

HOL

none

Questions?
Joshua Schneider David Basin
Srđan Krstić Dmitriy Traytel

21

	Introduction
	Outline
	Monitor
	Code Generation
	Differential Testing
	Conclusion

