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Goals of Runtime Verification

to study whether runtime application of formal methods is
a viable complement to the traditional methods proving
programs correct [...]

to study whether formality improves traditional ad-hoc
monitoring techniques [...]

Source: www.runtime-verification.org (28/08/19, emphasis added)
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How can we prove that our tools are trustworthy?
Who guards the guardians?
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Why Theorem Proving?

Machine-checked theorem proving is suitable for RV tools:

Yy K

Criticality Small size Clear specification

All RV tools and should be verified formally.

Gain understanding of assumptions and guarantees!
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Our Contribution

Verimon: verified MonPoly (w/o optimizations) e\\e ”OL

m Formally verified monitor for metric first-order
temporal logic (MFOTL)

m Expressive language with intervals and data quantification

m Proved correct for all instances of the monitor
m Explain and clarify MonPoly’s algorithm

Basis for exploration: Differential testing case study:

m Monitor state manipulation m Used Verimon as oracle to test
[ATVA'19] unverified implementations

m Foundation for future m Tested MonPoly and DejaVu

extensions and optimizations = Found bugs! @
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Background: MFOTL

M Metric: time intervals

Monitorable fragment:

m Safety properties (O ¢ with bounded future)
NOT: O(open — ¢ close)

m Finitely evaluable violations
NOT: OVx. P(x)

O(access — (—release S acquire
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Monitor Output

Checking the specification OVx. ¢(x):

output whether =, OVX. ¢(x)
Reporting violating points of Vx. ¢(x):

output all i s.t. 7}Eq VX. @(X)
<= Reporting satisfying points of the negation Ix. —¢(x):

output all i s.t. i |Eg IX. ~@(X)
Reporting satisfying points and assignments of —¢(x):

output all (i, x) s.t. i, x Fo ~@(x)
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Event stream or prefix

type output = (nat x tuple) set

all pairs (i, x) such that i, x =g = @(X)
type event = string x domain list
type database = event set
type ts = nat

type prefix = {p :: (database x ts) list. sorted (map snd p)}



Specification

Define the expected output of the monitor algorithm:
definition spec :: formula = prefix = output where
spec @ ™= {(i, t). wf_tuple ¢ tA
(Vo. prefix_of mo — i < progress o ¢ (len ) Asatoti@)}
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Implementation

Online interface (unbounded stream):

definition init :: formula = state
definition step :: database x ts = state = output x state

(db+, T+) (dba, T2) (dbs, T3)

sto sty sty st3
¢ —> int —> step —>» step —>» step —>---
¢ X1 ¢ X2 ¢ X3

Offline interface (finite prefix):

definition monitor :: formula = prefix = output
— - o>

v

@ —» monitor — |J"_, Xi
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Is the implementation correct?
1. init establishes the invariant wf_state:

@ is monitorable implies wf_state ¢ [] (init @).

2. step preserves the invariant:

Let step (db, T) st = (X, st’). If wf_state ¢ m st and

last_ts ™ < T, then wf_state ¢ (m @ [(db, T)]) st/, ...

3. step’s output corresponds to spec:

. and X = spec ¢(m @ [(db, T)]) — spec ¢ .

4. monitor @ = spec @ 7 (if ¢ is monitorable)
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Executable Monitor

Current approach:

m Extract OCaml code from formalization using Isabelle/HOL's
code generator

m Reuse MonPoly’s parser/data structures and add “glue”

Trust assumptions:

m Isabelle’s kernel and code generator

m Parser and glue code

m OCaml compiler, runtime environment etc.

Satisfactory?
m The algorithm is the challenging part

m Various techniques for full-stack verification exist, for example
CakeML (used in VeriPhy)



Performance

Event throughput [1/s] - higher is better
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Differential Testing

Idea: Find bugs in unverified implementations by comparing
their output on random inputs with Verimon.

Two targets: MonPoly and DejaVu

m Random formulas parameterized by size n, free variables FV
m Generated 1000 formulas eachfor2<n <5, |FV| <6

m Random prefixes with 20, 40, 60, 100 databases
m Reuse recent event parameters with probability p
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Results

Two bugs found in MonPoly:
1. Wrong output for class of formulas, for example
Q(x, y) A =(P(x) S Q(v, x)) on prefix with only Q(1,2)

2. Additional violation output for finite traces
@. (time point @): true
@MaxTS (time point 1): true

Documented differences in DejaVu’s semantics:
3. Arithmetic relations change semantics of quantifiers, e.g.,
=@ vs. —Ax. g Ax=42

4. Active domain does not include constants in the formula, e.g.,
—3x. x =42 A =P(x) on P(101)



Ongoing and Future Work

Achieve parity with MonPoly:

m Sliding window algorithm

m Refinement to imperative data structures
m Aggregations (count, sum, max, ...)

New and verified optimizations:
m Multi-way joins (completed by Thibault Dardinier)

New features:
m State splitting and merging [ATVA'19]
m MFODL - adds regular expressions

20
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Questions?

Joshua Schneider David Basin

Srdan Krsti¢ Dmitriy Traytel E""ZUI”ICh
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