
Stream Characteristics for First-Order Monitoring
Joshua Schneider and Srđan Krstić

Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland

Abstract

We present a benchmark suite for generating and reproducing streams of time-stamped
parametric events. The benchmark generates a stream according to user-defined char-
acteristics and reproduces it at a user-defined velocity. The characteristics relate to the
frequencies of the different events and their data values. The benchmark also provides the
expected result of monitoring the generated streams against a family of first-order tem-
poral specifications. We envision the benchmark being used to attest the performance of
online first-order monitors.

1 Introduction
We consider the online monitoring problem: Given a stream of time-stamped data, called
events, and a property formulated in a specification language, determine whether the property
is satisfied at every point in the stream. An online monitor is an algorithm that solves the
online monitoring problem for some property. It processes an event stream, one event at a time,
and produces a stream of verdicts, i.e., evaluations of the monitored property at every position
in the event stream. Streams can contain simple atomic events, or more complex, parametric
events, where each event has a number of data values.

The performance of an online monitor is often assessed in terms of its maximum memory
usage and maximum latency over all processed events. The latency of processing a single event
is the time difference between the moment the event appears in the stream until it has been fully
processed by the monitor. Latency and memory usage of online monitors depend on two main
factors: the complexity of the monitored property and the characteristics of the event stream.
The benchmark suite presented in this paper focuses on the latter factor. It consists of three
components: a stream generator, a stream replayer, and an oracle. The main idea of the
benchmark is to generate streams with characteristics that are particularly challenging for online
monitoring. The generator generates a stream with user-defined characteristics and passes it
to the replayer that can feed it to a monitor at a user-defined velocity (i.e., number of events
per second). The oracle provides the expected result (a stream of violations) for the generated
stream and a specific property specified in metric first-order temporal logic (MFOTL) [2].

This benchmark was originally developed to assess the performance of our parallel online
monitor [4], which is sensitive to the event stream characteristics.

2 Benchmark Description
Event Streams and Replay

We first recall some basic notions about event streams. An event is a tuple of data values that
is labeled with an event type. Every event type R has an associated arity ι(R), which defines
the number of data values for this type. We call 1, . . . , ι(R) the attributes of type R. We group
a finite number of events that happen concurrently (from the event source’s point of view) into
databases. An (event) stream ρ is thus an infinite sequence (τi, Di)i∈N of databases Di with

Stream Characteristics for First-Order Monitoring Schneider and Krstić

associated time-stamps τi. We distinguish between a time-stamp τi and its index in the stream
i, also called a time-point. We assume discrete time-stamps, modeled as natural numbers, and
allow event sources to have finer time granularity than the one used by time-stamps. Specifically,
a stream may have the same time-stamp τi = τj at different indices i 6= j. The sequence of time-
stamps must be non-decreasing (∀i. τi ≤ τi+1) and always eventually increasing (∀τ. ∃i. τ < τi).

In the following, we define some stream characteristics. Fix a stream ρ = (τi, Di)i∈N.
We define the index rate at time τ as the number of stream indices in one time unit, i.e.,
|{i | τ = τi}|. The event rate at time τ is defined as the total number of events in one time
unit, i.e., |{e ∈ Di | τ = τi}|. We call the rate of those events with type R the relation rate for
R. The relative frequency of R is the ratio of its relation rate and the event rate. The relative
frequency of a data value with respect to a specific attribute is the rate of events that carry
this value for the attribute, divided by the relation rate.

The time-stamps in an event stream do not necessarily correlate to the (real) times at
which the corresponding events are received by an online monitor. Therefore, we distinguish
the ingestion time of an event from its time-stamp. The ingestion rate is the total number of
events received by the monitor per unit of (real) time. The replayer reproduces an existing
event stream (or finite event log) with an ingestion rate that is proportional to the stream’s
event rate. This allows us to simulate realistic, but reproducible workloads for online monitors,
for example for latency measurements. The events with the initial time-stamp are all issued
immediately. The subsequent events with the next time-stamp are delayed proportionally to
the difference between the two time-stamps (which are interpreted as seconds). This process
is repeated for each unique time-stamp in the stream. The acceleration of the stream, i.e.,
the inverse of the delay factor, is a parameter of the tool. For example, an acceleration of 2
will replay the stream twice as fast. This parameter can be used to generate workloads with
different ingestion rates from the same data. The input of the replayer is either a stream
produced by another program or a finite log stored in a file. Input and output use the modified
CSV format from the first RV competition [1]:

event type, tp = time-point, ts = time-stamp, attribute1 = value1, ...

Specification and Oracle

Our benchmark targets a family of specifications that are built around a single temporal pattern
consisting of three event types A, B, and C. The specifications differ only in the way these
events are related. They can be formalized using the following parametric MFOTL formula [2]:

� ∀~x.
(
�[0,w)A(~xA)

)
∧B(~xB)→ �[0,w) ¬C(~xC),

where is w is a positive integer and ~xA, ~xB , and ~xC are variable patterns. Informally, it states
that whenever there is a B event that was preceded by a matching A event less than w time
units ago, there must not be a matching C event within the next w time units. The events are
parametrized by integer values. Two events with different types match if their values coincide
according to the variable patterns ~xA, ~xB , and ~xC , respectively. For example, if ~xA = (x, y)
and ~xB = (y, z), then the events A(1, 2) and B(2, 5) match, but A(1, 2) and B(1, 5) do not.
The variable patterns can be any three non-empty lists of variables such that at least two pairs
of patterns each have at least one variable in common.

The oracle provides the expected output of monitoring the above-mentioned family of
specifications on a stream generated by the generator. It makes use of the Monpoly moni-
toring tool [3], conveniently wrapping its invocation with the appropriate formula.

2

Stream Characteristics for First-Order Monitoring Schneider and Krstić

Stream Generation

The generator produces a random but reproducible event stream in the same format used by
the replayer. It generates output as quickly as possible, thus to tune the ingestion rate one
must use the replayer. The stream is intended to be monitored against the above-mentioned
family of specifications. The variable patterns can be chosen freely by the user. There are also
three built-in patterns: star (~xA = (w, x), ~xB = (w, y), and ~xC = (w, z)), linear (~xA = (w, x),
~xB = (x, y), and ~xC = (y, z)), and triangle (~xA = (x, y), ~xB = (y, z), and ~xC = (z, x)).

Data values are chosen randomly and independently with the following constraints: (1)
every A event must be matched with a B event within the interval w to ensure that the premise
of the specification is satisfied frequently; (2) a user-specified percentage of violations must be
generated. Constraint (2) is enforced by generating an appropriate number of C events that
match both a proceeding B event and an A event before that (both within appropriate intervals
of length w). By default, values are sampled uniformly from the set D = {0, 1, . . . , 109−1}. It is
also possible to select a Zipf distribution per variable, which has the probability mass function
p(x) = x−z/

∑109

n=1 n
−z for x ∈ {1, 2, . . . , 109}. The larger the exponent z > 0 is, the fewer

values have a large relative frequency. Events that form a violation are always drawn from the
uniform distribution to prevent unintended matchings. For the same reason, Zipf-distributed
values of C events are increased by 1 000 000. Note that there is still a nonzero probability that
additional violations occur, even though the domain D is large.

Events with types A, B and C are generated randomly and independently according to
user-specified relative frequencies pA, pB , and pC . There are, however, some constraints: (1)
the sum of all three frequencies must be 1; (2) pA can be at most pB ; and (3) the relative
frequency of violations can be at most the minimum of pA and pC .

3 User Guide
We provide the components of our benchmark as a Docker image [6] with all required depen-
dencies installed. The components can also be built manually from the source repository [5] by
running mvn package (needs Maven). In the following, we assume that Docker version 1.13 or
higher is installed and configured properly. The components can be invoked with the command

docker run -i infsec/benchmark component [arguments ...]

where component is replaced by the name of the component. In the examples below, we omit
the Docker part of the invocation and only show the component name and its arguments.

The generator prints the generated stream to the standard output. It is invoked with

generator {-S | -L | -T | -P pattern } [options ...] [length]

If length is given, a finite log of that length (in seconds) is produced instead of an unbounded
stream. It is required to select either a built-in or a custom variable pattern. The flags -S
(star), -L (linear), and -T (triangle) select a built-in pattern. A custom pattern can be given
after flag -P. The format is explained in the README.txt file in the source repository [5].

The relative frequencies of the event types are set with -pA ratio and -pB ratio . The
frequency of type C is implied by the frequencies of type A and B because their sum is always 1.

To sample values from a Zipf distribution, the exponent of the distribution must be specified.
The distribution can be changed per variable. The exponents for all variables whose distribution
should be modified is passed as a single argument after option -z. For example,

3

Stream Characteristics for First-Order Monitoring Schneider and Krstić

generator -T -z "x=1.5,z=2"

generates events following the triangle pattern, with the values of variables x and z following a
Zipf distribution with exponents 1.5 and 2. Variable y values are distributed uniformly.

The generator has the following additional options. -e rate and -i rate modify the
event and index rates, which default to 10 and 1, respectively. The frequency of violations
relative to the number of events is set with -x ratio (default: 0.01). The interval size w,
which bounds the distance of related events, is set with -w interval (in seconds, default: 10).

The replayer reads events from standard input and copies them with a delay to standard
output. It is invoked with

replayer [options ...]

The most important option is the acceleration factor, which can be changed with option -a
acceleration (default: 1). Events can be read from another process through a pipe, or from
a log file. If a process is used, it needs to be fast enough such that the events can be replayed
at the proper time. Use a shell redirection to read events from a file:

replayer -a 10 < test.csv

With option -m set, the component prints the output in Monpoly’s format [3]. Otherwise,
the modified CSV format is used. Together with an acceleration of 0, which replays the stream
as quickly as possible, the tool can thus function as a converter from CSV to Monpoly format.

If option -o host :port is given together with a hostname and port, a TCP server listening
to that address will be created. The first client connecting to the TCP server will receive the
event stream. The first event is sent only once the client has connected. No more clients will
be accepted afterwards.

The replayer maintains some statistics about the number of events processed. It also
keeps track of the delay between the scheduled event time and the time the event could be
written to the output. The latter may be useful to analyze a monitor that reads the event
stream via a pipe or socket. The options -v (-vv) generate a compact (or verbose) report once
every second, which is written to standard error. The format of the reports is explained in the
accompanying README.txt file. Note that delays are tracked only up to the operating system’s
buffer that is associated with the pipe or socket.

The implementation of the replayer uses two threads, one for reading and one for writing
events, which are connected by a queue with limited capacity. If the queue is drained fully,
an underrun occurs and events may not be reproduced at the appropriate time. The verbose
report (-vv) displays the number of underruns. If this number is non-zero and especially if it
is growing, the queue capacity should be increased with option -q size (default: 1024).

The oracle reads events in Monpoly format from the standard input and prints a stream of
violations to the standard output. It is invoked with

oracle {-S | -L | -T | -P pattern } [-w interval]

where the arguments define the specification as described for the generator. It assumes that
the input stream is generated following the same specification. Finally, we give an example that
combines all three components into a single command:

generator -S | replayer -m -a 10 | oracle -S

This generates a stream according to the star pattern, speeds it up 10 times and converts it to
the Monpoly format. The oracle then converts the stream to a stream of expected results.

4

Stream Characteristics for First-Order Monitoring Schneider and Krstić

Acknowledgment. Joshua Schneider is supported by the US Air Force grant “Monitoring
at Any Cost” (FA9550-17-1-0306). Srđan Krstić is supported by the Swiss National Science
Foundation grant “Big Data Monitoring” (167162).

References
[1] E. Bartocci, B. Bonakdarpour, and Y. Falcone. First international competition on software for

runtime verification. In B. Bonakdarpour and S. A. Smolka, editors, RV 2014, volume 8734 of
LNCS, pages 1–9. Springer, 2014.

[2] D. Basin, F. Klaedtke, S. Müller, and E. Zălinescu. Monitoring metric first-order temporal proper-
ties. J. ACM, 62(2):15:1–15:45, 2015.

[3] D. Basin, F. Klaedtke, and E. Zalinescu. The MonPoly monitoring tool. In G. Reger and
K. Havelund, editors, RV-CuBES 2017, volume 3 of Kalpa Publications in Computing, pages 19–28.
EasyChair, 2017.

[4] J. Schneider, D. Basin, S. Krstić, F. Brix, and D. Traytel. Scalable online first-order monitoring.
In C. Colombo and M. Leucker, editors, RV 2018. Springer, 2018.

[5] J. Schneider and S. Krstić. 2018 Runtime Verification Benchmark Challenge – FOStreams bench-
mark. https://github.com/runtime-verification/benchmark-challenge-2018.git, 2018.

[6] J. Schneider and S. Krstić. FOStreams benchmark (Docker image). https://hub.docker.com/r/
infsec/benchmark/, 2018.

5

https://github.com/runtime-verification/benchmark-challenge-2018.git
https://hub.docker.com/r/infsec/benchmark/
https://hub.docker.com/r/infsec/benchmark/

	Introduction
	Benchmark Description
	User Guide

