
Model-driven Privacy

Sr�an Krstić Hoàng Nguy�n David Basin

Information Security Group

Computer Science Department

ETH Zürich, Switzerland

PETS 24, Bristol, UK

Model-driven Privacy (ETH Zürich) PETS 24 1 / 33

GDPR sum of fines and penalties

Model-driven Privacy (ETH Zürich) PETS 24 2 / 33

-

Privacy requirements

Source of requirements:
Privacy regulations: GDPR, CCPA, DCIA, PIPL
User preferences and concerns
Self-imposed organization policies
Risk-based scenarios and best practices

Common requirements:
Purpose limitation
Data subject consent
Right to rectification, erasure, and restriction
Data minimization
Storage limitation
...

Model-driven Privacy (ETH Zürich) PETS 24 3 / 33

Privacy requirements

Source of requirements:
Privacy regulations: GDPR, CCPA, DCIA, PIPL
User preferences and concerns
Self-imposed organization policies
Risk-based scenarios and best practices

Common requirements:
Purpose limitation
Data subject consent
Right to rectification, erasure, and restriction
Data minimization
Storage limitation
...

Model-driven Privacy (ETH Zürich) PETS 24 4 / 33

Personal data shall be collected for specified, explicit and
legitimate purposes and not further processed in a manner

that is incompatible with those purposes.
(‘Purpose limitation‘) — Art. 5 §1 (b)

Processing shall be lawful only if the data subject
has given consent to the processing of his or her
personal data for one or more specific purposes.

(‘Data subject consent‘) — Art. 7 §1

Model-driven Privacy (ETH Zürich) PETS 24 5 / 33

Handling privacy requirements
Current challenges

Specification: Absence of effective languages and tools.

Implementation: Ad hoc, no guarantee of correctness.

Evolution/Maintenance: error prone and time consuming.

Model-driven Privacy (ETH Zürich) PETS 24 6 / 33

Handling privacy requirements
Current challenges

Specification: Absence of effective languages and tools.

Implementation: Ad hoc, no guarantee of correctness.

Evolution/Maintenance: error prone and time consuming.

Model-driven Privacy (ETH Zürich) PETS 24 6 / 33

Handling privacy requirements
Current challenges

Specification: Absence of effective languages and tools.

Implementation: Ad hoc, no guarantee of correctness.

Evolution/Maintenance: error prone and time consuming.

Model-driven Privacy (ETH Zürich) PETS 24 6 / 33

Our solution: Model-driven development

Model-driven Privacy (ETH Zürich) PETS 24 7 / 33

Model-driven Development

Model-driven Privacy (ETH Zürich) PETS 24 8 / 33

Model-driven Security

Lodderstedt et al. have specialized a new model-driven development
methodology that supports security.

Model-driven Privacy (ETH Zürich) PETS 24 9 / 33

Model-driven Security and Privacy

Our work: purpose limitation and data subject consent requirements

Model-driven Privacy (ETH Zürich) PETS 24 10 / 33

Handling privacy requirements
using Model-driven Privacy

Specification: Formal language with precise semantics.

Code generation: Cross-cutting, correct by design.

Evolution: Change model(s), regenerate code.

Model-driven Privacy (ETH Zürich) PETS 24 11 / 33

~

Handling privacy requirements
using Model-driven Privacy

Specification: Formal language with precise semantics.

Code generation: Cross-cutting, correct by design.

Evolution: Change model(s), regenerate code.

Model-driven Privacy (ETH Zürich) PETS 24 11 / 33

~

~

Handling privacy requirements
using Model-driven Privacy

Specification: Formal language with precise semantics.

Code generation: Cross-cutting, correct by design.

Evolution: Change model(s), regenerate code.

Model-driven Privacy (ETH Zürich) PETS 24 11 / 33

~

~

~

Main contribution

Model-driven Privacy (ETH Zürich) PETS 24 12 / 33

Main contribution

Model-driven Privacy (ETH Zürich) PETS 24 13 / 33

Main contribution

Model-driven Privacy (ETH Zürich) PETS 24 14 / 33

Methodology

1. Create the data model

2. Create the privacy model
(a) Identify the User sort
(b) Identify sorts containing

personal data
(c) Determine basic purposes
(d) Define the declared purposes
(e) Annotate the actual purposes

Extended data model Classes and method stubs

Privacy policy

Privacy enforcement mechanism

Consent collection

Purpose tracking

: input models : model-to-model transformation
: intermediate artifacts �!: model-to-code transformation
: output artifacts : model-to-text transformation

1

Model-driven Privacy (ETH Zürich) PETS 24 15 / 33

Methodology

1. Create the data model

2. Create the privacy model
(a) Identify the User sort
(b) Identify sorts containing

personal data
(c) Determine basic purposes
(d) Define the declared purposes
(e) Annotate the actual purposes

Extended data model Classes and method stubs

Privacy policy

Privacy enforcement mechanism

Consent collection

Purpose tracking

: input models : model-to-model transformation
: intermediate artifacts �!: model-to-code transformation
: output artifacts : model-to-text transformation

1

Model-driven Privacy (ETH Zürich) PETS 24 16 / 33

Examples
Conference Management System – Data model

Figure: Data model (UML class diagram)

Model-driven Privacy (ETH Zürich) PETS 24 17 / 33

Examples
Conference Management System – Privacy model

1 {

2 "personalData": ["Researcher"], // (2.b.) Identifying personal data

3 " purposes ": [

4 {

5 "name ": " RecommendPapers ",

6 " endpoints ": [

7 {

8 " class ": " Researcher ",

9 "met ": " recommendPapers "

10 }

11]

12 }

13],

14 " policy ": [

15 {

16 " purpose ": " RecommendPapers ",

17 " action ": "read",

18 " resources ": [

19 {

20 " class ": " Researcher ",

21 "ends ": " authors "

22 }

23],

24 " constraint ": "self. student "

25 }

26]

27 }

Model-driven Privacy (ETH Zürich) PETS 24 18 / 33

Examples
Conference Management System – Privacy model

1 {

2 " personalData ": [" Researcher "], // (2.b.) Identifying personal data

3 "purposes": [// (2.c) Determining (basic) purposes

4 {

5 "name": "RecommendPapers",

6 " endpoints ": [

7 {

8 " class ": " Researcher ",

9 "met ": " recommendPapers "

10 }

11]

12 }

13],

14 " policy ": [

15 {

16 " purpose ": " RecommendPapers ",

17 " action ": "read",

18 " resources ": [

19 {

20 " class ": " Researcher ",

21 "ends ": " authors "

22 }

23],

24 " constraint ": "self. student "

25 }

26]

27 }

Model-driven Privacy (ETH Zürich) PETS 24 19 / 33

Examples
Conference Management System – Privacy model

1 {

2 " personalData ": [" Researcher "], // (2.b.) Identifying personal data

3 " purposes ": [// (2.c) Determining (basic) purposes

4 {

5 "name ": " RecommendPapers ",

6 " endpoints ": [

7 {

8 " class ": " Researcher ",

9 "met ": " recommendPapers "

10 }

11]

12 }

13],

14 " policy ": [

15 { // (2.d.) Defining declared purposes

16 "purpose": "RecommendPapers",

17 "action": "read",

18 "resources": [

19 {

20 "class": "Researcher",

21 "ends": "authors"

22 }

23],

24 "constraint": "self.student"

25 }

26]

27 }

Model-driven Privacy (ETH Zürich) PETS 24 20 / 33

Examples
Conference Management System – Privacy model

1 {

2 " personalData ": [" Researcher "], // (2.b.) Identifying personal data

3 " purposes ": [// (2.c) Determining (basic) purposes

4 {

5 "name": "RecommendPapers",

6 "endpoints": [// (2.e.) Annotating actual purposes

7 {

8 "class": "Researcher",

9 "met": "recommendPapers"

10 }

11]

12 }

13],

14 " policy ": [

15 { // (2.d.) Defining declared purposes

16 " purpose ": " RecommendPapers ",

17 " action ": "read",

18 " resources ": [

19 {

20 " class ": " Researcher ",

21 "ends ": " authors "

22 }

23],

24 " constraint ": "self. student "

25 }

26]

27 }

Model-driven Privacy (ETH Zürich) PETS 24 21 / 33

Methodology

1. Create the data model

2. Create the privacy model
(a) Identify the User sort
(b) Identify sorts containing

personal data
(c) Determine basic purposes
(d) Define the declared purposes
(e) Annotate the actual purposes

Extended data model Classes and method stubs

Privacy policy

Privacy enforcement mechanism

Consent collection

Purpose tracking

: input models : model-to-model transformation
: intermediate artifacts �!: model-to-code transformation
: output artifacts : model-to-text transformation

1

Model-driven Privacy (ETH Zürich) PETS 24 22 / 33

Examples
Conference Management System – Extended data model

Figure: Data model (extended with privacy classes)

Model-driven Privacy (ETH Zürich) PETS 24 23 / 33

Methodology

1. Create the data model

2. Create the privacy model
(a) Identify the User sort
(b) Identify sorts containing

personal data
(c) Determine basic purposes
(d) Define the declared purposes
(e) Annotate the actual purposes

Extended data model Classes and method stubs

Privacy policy

Privacy enforcement mechanism

Consent collection

Purpose tracking

: input models : model-to-model transformation
: intermediate artifacts �!: model-to-code transformation
: output artifacts : model-to-text transformation

1

Model-driven Privacy (ETH Zürich) PETS 24 24 / 33

Examples
Conference Management System – Generated artifacts

Methods are generated as empty stubs annotated with their purposes.
1 @label ([’RecommendPapers ’]) // Actual purpose annotation

2 def recommendPapers ():

3 // TODO: Implement method stub

Model-driven Privacy (ETH Zürich) PETS 24 25 / 33

Examples
Conference Management System – Generated artifacts

Privacy notice is generated automatically.

Model-driven Privacy (ETH Zürich) PETS 24 26 / 33

Implementation

Model transformations:

Case study applications:

Model-driven Privacy (ETH Zürich) PETS 24 27 / 33

Evaluation
(Selected1) Research questions

Development effort
How much developer effort is required to use our approach?

Performance overhead
How much runtime overhead does our approach incur?

1More in the paper
Model-driven Privacy (ETH Zürich) PETS 24 28 / 33

Evaluation
Development effort (on Conference Management System case study)

Set up: Define models ! Generate code ! Implement methods.

Define models:
I 13 LoC (data model)
I 20 LoC (security + privacy model).

Generate code:
I 1954 LoC (C#)
I 731 LoC (Python)

Implement methods:
I 344 LoC (C#)
I 142 LoC (Python)

Model-driven Privacy (ETH Zürich) PETS 24 29 / 33

Evaluation
Development effort (on Conference Management System case study)

Set up: Define models ! Generate code ! Implement methods.
Define models:

I 13 LoC (data model)
I 20 LoC (security + privacy model).

Generate code:
I 1954 LoC (C#)
I 731 LoC (Python)

Implement methods:
I 344 LoC (C#)
I 142 LoC (Python)

Model-driven Privacy (ETH Zürich) PETS 24 29 / 33

Evaluation
Development effort (on Conference Management System case study)

Set up: Define models ! Generate code ! Implement methods.
Define models:

I 13 LoC (data model)
I 20 LoC (security + privacy model).

Generate code:
I 1954 LoC (C#)
I 731 LoC (Python)

Implement methods:
I 344 LoC (C#)
I 142 LoC (Python)

Model-driven Privacy (ETH Zürich) PETS 24 29 / 33

Evaluation
Development effort (on Conference Management System case study)

Set up: Define models ! Generate code ! Implement methods.
Define models:

I 13 LoC (data model)
I 20 LoC (security + privacy model).

Generate code:
I 1954 LoC (C#)
I 731 LoC (Python)

Implement methods:
I 344 LoC (C#)
I 142 LoC (Python)

Model-driven Privacy (ETH Zürich) PETS 24 29 / 33

Evaluation
Development effort (on Conference Management System case study)

Set up: Define models ! Generate code ! Implement methods.
Specification: 33 LoC
Implementation:

I 2298 LoC (C#, 85% generated)
I 873 LoC (Python, 84% generated)

Developers need to implement only 15-16% of the overall codebase.

Model-driven Privacy (ETH Zürich) PETS 24 30 / 33

Evaluation
Performance overhead (on MiniTwit case study)

open-source, unsecured application (baseline)

I manually implement privacy checks (secured)
I implement application our approach (flask)

execute public_timeline() endpoint (pagination for 30 messages).

Performance overhead is
modest compared to man-
ual implementation.

Model-driven Privacy (ETH Zürich) PETS 24 31 / 33

Evaluation
Performance overhead (on MiniTwit case study)

open-source, unsecured application (baseline)
I manually implement privacy checks (secured)

I implement application our approach (flask)
execute public_timeline() endpoint (pagination for 30 messages).

Performance overhead is
modest compared to man-
ual implementation.

Model-driven Privacy (ETH Zürich) PETS 24 31 / 33

Evaluation
Performance overhead (on MiniTwit case study)

open-source, unsecured application (baseline)
I manually implement privacy checks (secured)
I implement application our approach (flask)

execute public_timeline() endpoint (pagination for 30 messages).

Performance overhead is
modest compared to man-
ual implementation.

Model-driven Privacy (ETH Zürich) PETS 24 31 / 33

Evaluation
Performance overhead (on MiniTwit case study)

open-source, unsecured application (baseline)
I manually implement privacy checks (secured)
I implement application our approach (flask)

execute public_timeline() endpoint (pagination for 30 messages).

Performance overhead is
modest compared to man-
ual implementation.

Model-driven Privacy (ETH Zürich) PETS 24 31 / 33

Future Work

extend to other class of privacy requirements.

proving the correctness of the transformation.
conduct a user-�developer� case study.

Model-driven Privacy (ETH Zürich) PETS 24 32 / 33

Future Work

extend to other class of privacy requirements.
proving the correctness of the transformation.

conduct a user-�developer� case study.

Model-driven Privacy (ETH Zürich) PETS 24 32 / 33

Future Work

extend to other class of privacy requirements.
proving the correctness of the transformation.
conduct a user (i.e., developer) case study.

Model-driven Privacy (ETH Zürich) PETS 24 32 / 33

Questions?

Model-driven Privacy (ETH Zürich) PETS 24 33 / 33

PETS24

