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GDPR sum of fines and penalties
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Privacy requirements

Source of requirements:
Privacy regulations: GDPR, CCPA, DCIA, PIPL
User preferences and concerns
Self-imposed organization policies
Risk-based scenarios and best practices

Common requirements:
Purpose limitation
Data subject consent
Right to rectification, erasure, and restriction
Data minimization
Storage limitation
...
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Personal data shall be collected for specified, explicit and
legitimate purposes and not further processed in a manner

that is incompatible with those purposes.
(‘Purpose limitation‘) — Art. 5 §1 (b)

Processing shall be lawful only if the data subject
has given consent to the processing of his or her
personal data for one or more specific purposes.

(‘Data subject consent‘) — Art. 7 §1
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Handling privacy requirements
Current challenges

Specification: Absence of effective languages and tools.

Implementation: Ad hoc, no guarantee of correctness.

Evolution/Maintenance: error prone and time consuming.
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Our solution: Model-driven development
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Model-driven Development
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Model-driven Security

Lodderstedt et al. have specialized a new model-driven development
methodology that supports security.
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Model-driven Security and Privacy

Our work: purpose limitation and data subject consent requirements
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Handling privacy requirements
using Model-driven Privacy

Specification: Formal language with precise semantics.

Code generation: Cross-cutting, correct by design.

Evolution: Change model(s), regenerate code.
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Main contribution
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Methodology

1. Create the data model

2. Create the privacy model
(a) Identify the User sort
(b) Identify sorts containing

personal data
(c) Determine basic purposes
(d) Define the declared purposes
(e) Annotate the actual purposes

Extended data model Classes and method stubs

Privacy policy

Privacy enforcement mechanism

Consent collection

Purpose tracking

: input models : model-to-model transformation
: intermediate artifacts �!: model-to-code transformation
: output artifacts : model-to-text transformation

1
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Examples
Conference Management System – Data model

Figure: Data model (UML class diagram)
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Examples
Conference Management System – Privacy model

1 {

2 "personalData": ["Researcher"], // (2.b.) Identifying personal data

3 " purposes ": [

4 {

5 "name ": " RecommendPapers ",

6 " endpoints ": [

7 {

8 " class ": " Researcher ",

9 "met ": " recommendPapers "

10 }

11 ]

12 }

13 ],

14 " policy ": [

15 {

16 " purpose ": " RecommendPapers ",

17 " action ": "read",

18 " resources ": [

19 {

20 " class ": " Researcher ",

21 "ends ": " authors "

22 }

23 ],

24 " constraint ": "self. student "

25 }

26 ]

27 }
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Methodology

1. Create the data model

2. Create the privacy model
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Examples
Conference Management System – Extended data model

Figure: Data model (extended with privacy classes)
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Examples
Conference Management System – Generated artifacts

Methods are generated as empty stubs annotated with their purposes.
1 @label ([ ’RecommendPapers ’]) // Actual purpose annotation

2 def recommendPapers ():

3 // TODO: Implement method stub
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Examples
Conference Management System – Generated artifacts

Privacy notice is generated automatically.
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Implementation

Model transformations:

Case study applications:
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Evaluation
(Selected1) Research questions

Development effort
How much developer effort is required to use our approach?

Performance overhead
How much runtime overhead does our approach incur?

1More in the paper
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Evaluation
Development effort (on Conference Management System case study)

Set up: Define models ! Generate code ! Implement methods.

Define models:
I 13 LoC (data model)
I 20 LoC (security + privacy model).

Generate code:
I 1954 LoC (C#)
I 731 LoC (Python)

Implement methods:
I 344 LoC (C#)
I 142 LoC (Python)
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Evaluation
Development effort (on Conference Management System case study)

Set up: Define models ! Generate code ! Implement methods.
Define models:

I 13 LoC (data model)
I 20 LoC (security + privacy model).

Generate code:
I 1954 LoC (C#)
I 731 LoC (Python)

Implement methods:
I 344 LoC (C#)
I 142 LoC (Python)

Model-driven Privacy (ETH Zürich) PETS 24 29 / 33
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Evaluation
Development effort (on Conference Management System case study)

Set up: Define models ! Generate code ! Implement methods.
Specification: 33 LoC
Implementation:

I 2298 LoC (C#, 85% generated)
I 873 LoC (Python, 84% generated)

Developers need to implement only 15-16% of the overall codebase.

Model-driven Privacy (ETH Zürich) PETS 24 30 / 33



Evaluation
Performance overhead (on MiniTwit case study)

open-source, unsecured application (baseline)

I manually implement privacy checks (secured)
I implement application our approach (flask)

execute public_timeline() endpoint (pagination for 30 messages).

Performance overhead is
modest compared to man-
ual implementation.
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Future Work

extend to other class of privacy requirements.

proving the correctness of the transformation.
conduct a user-�developer� case study.
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Future Work

extend to other class of privacy requirements.
proving the correctness of the transformation.

conduct a user-�developer� case study.

Model-driven Privacy (ETH Zürich) PETS 24 32 / 33



Future Work

extend to other class of privacy requirements.
proving the correctness of the transformation.
conduct a user (i.e., developer) case study.
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Questions?
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