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ABSTRACT
Cloud-based elastic systems run on a cloud infrastructure
and have the capability of dynamically adjusting the alloca-
tion of their resources in response to changes in the work-
load, in a way that balances the trade-off between the desired
quality-of-service and the operational costs. The actual elas-
tic behavior of these systems is determined by a combination
of factors, including the input workload, the logic of the elas-
tic controller determining the type of resource adjustment,
and the underlying technological platform implementing the
cloud infrastructure. All these factors have to be taken into
account to express the desired elastic behavior of a system,
as well as to verify whether the system manifests or not such
a behavior.

In this paper, we take a first step into these directions, by
proposing a formalization, based on the CLTLt(D) temporal
logic, of several concepts and properties related to the be-
havior of cloud-based elastic systems. We also report on our
preliminary evaluation of the feasibility to check the (for-
malized) properties on execution traces using an automated
verification tool.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods
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Theory
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1. INTRODUCTION
Cloud computing has become a practical solution to man-

age and leverage IT resources and services. Cloud platforms
offer several benefits, among which the ability to access re-
sources or service applications offered as (remote) services,
available on-demand and on-the-fly, and billed according to
a pay-per-use model.

Cloud providers offer resources and services at three differ-
ent layers: at the Software-as-a-Service (SaaS) layer, users
can remotely access full-fledged software applications; at the
Platform-as-a Service (PaaS) layer, one finds a development
platform, a deployment and a run-time execution environ-
ment, which is used to run user-provided code in sandboxes
hosted on cloud-based premises; at the Infrastructure-as-a-
Service (IaaS) the user can access computing resources such
as virtual machines, block storage, firewalls, load balancers,
or networking I/O.

In this paper, we focus on the IaaS layer, and assume,
without loss of generality, that resources offered at this level
are virtual machines. In particular, we consider cloud-based
elastic systems: elasticity [7] of computing systems is de-
fined [11] by the (US) National Institute of Standards and
Technology (NIST) as:

Capabilities can be rapidly and elastically pro-
visioned, in some cases automatically, to quickly
scale out, and rapidly released to quickly scale
in. To the consumer, the capabilities available
for provisioning often appear to be unlimited and
can be purchased in any quantity at any time.

In the case of systems based on a cloud infrastructure, this
definition can be interpreted, borrowing some terms from
physics, as the capability of the system “to stretch” by dy-
namically acquiring new computing resources (e.g., by start-
ing new virtual machines), and “to contract” by releasing
resources (e.g., by terminating virtual machines). Scaling
out (“stretching”) and scaling in (“contracting”) actions (also
called adaptation actions) are determined by an elastic con-
troller, in response to changes in the workload.

Application providers exploit resource elasticity at run
time to balance the trade-offs between the quality of service
(QoS), the input workload, and the operational costs. The
main goal is, when confronted with fluctuating workloads,



to maintain the QoS at an adequate level while minimizing
the costs. In particular, when the input workload escalates
over the current system capacity, the acquisition of new re-
sources prevents under-provisioning, and allows the system
to maintain an adequate QoS, even though operational costs
increase. On the other hand, when the input workload de-
creases below the current system capacity, releasing some
resources prevents over-provisioning, and contributes to re-
ducing the costs while still providing an adequate QoS.

The behavior (in terms of dynamically scaling up and
down resource allocation) of a cloud-based elastic system
depends on the combination of many factors, such as the
input workload, the logic that is embodied in the elastic
controller to trigger adaptations and the underlying techno-
logical platform implementing the cloud infrastructure.

The complexity of these dependencies and the hard-to-
determine effects on the behavior of the system as perceived
by users, makes the design of cloud-based elastic systems
very challenging. From the point of view of specification
and verification the three main open issues are: 1) how to
specify the desired elastic behavior of these systems; 2) how
to check whether they manifest or not such an elastic be-
havior; 3) how to identify when and how they depart from
their intended behavior.

In this paper, we take a first step in these directions, and
propose a formalization of the behavior of cloud-based elas-
tic systems, by characterizing the properties related to elas-
ticity, resource management, and quality of service. We for-
mally characterize these properties using a temporal logic
called CLTLt(D), which stands for Timed Constraint LTL.
The use of a temporal logic paves the way for using es-
tablished verification tools to check whether the proposed
properties, which correspond to specific facets of an elastic
behavior, hold or not during the execution of cloud-based
elastic systems. In regards to this, in the paper we also
report on a preliminary evaluation we performed to assess
the feasibility of checking the proposed properties expressed
in CLTLt(D) on execution traces of a realistic application
using ZOT [13], a verification toolset based on SAT- and
SMT-solvers.

The rest of the paper is organized as follows. Section 2
provides an overview of cloud-based elastic systems, describ-
ing how they operate. Section 3 introduces CLTLt(D), the
temporal logic used later for the formalization. Section 4
formally defines some general aspects of resources used in
cloud-based systems. Section 5 illustrates the formalization
of the properties that we have considered. Section 6 reports
on a preliminary evaluation of checking some properties on
realistic execution traces. Section 7 surveys the related work
and Section 8 concludes the paper by describing future lines
of research.

2. CLOUD-BASED ELASTIC SYSTEMS
Two hallmarks of cloud computing are the ability to dy-

namically manage the allocation of resources in the system
and the pay-per-use billing model. In particular, these traits
characterize cloud-based elastic systems, which are systems
that can dynamically adjust their resources allocation to
maintain a predefined/suitable level of QoS, in spite of fluc-
tuating input workloads, while minimizing running costs.
The key aspect of cloud-based elastic systems is their abil-
ity to adapt at run time, in response to a change in the
operating conditions (e.g., a spike in the number of input

requests). In this context, adaptation means trying to man-
age the allocation of resources so that they match the ca-
pacity required to properly sustain the input workload. In
other words, cloud-based elastic systems aim to prevent both
over-provisioning (allocating more resources than required)
and under-provisioning (allocating fewer resource than re-
quired).

The behavior of an elastic system can be intuitively de-
scribed as follows. Consider the case in which there is an in-
crease in the load of a system, which might lead to the satu-
ration of system resources, causing a degradation of the QoS
perceived by end-users. To avoid the saturation, an elastic
system stretches, i.e., its capacity is scaled up by allocating
additional resources (acquired from a cloud infrastructure);
the load can then be spread over a bigger set of resources.
Conversely, when the system load decreases, some resources
might become under-utilized, hence unnecessarily expensive.
To reduce costs, an elastic system contracts, i.e., its capac-
ity is scaled down by deallocating a portion of the allocated
resources, which are then released back to the cloud infras-
tructure.

Cloud-based elastic systems usually implement the closed-
loop architecture shown in Figure 1, where an elastic con-
troller monitors the actual system (i.e., the controlled sys-
tem) and determines its adaptation. End-users send their
requests, which constitute the input workload of the elas-
tic system, through its public interface. Notice that the
workload may fluctuate because of seasonality in the users’
demand or some unexpected events such as a flash-crowd
(i.e., the appearance of a web site on a popular blog or news
column, determining an exponential spike of the requests to
the server).

The controlled system responds to end-user requests by
implementing the business logic of the application. It is de-
ployed onto a cloud infrastructure provided by a dedicated
IaaS provider, and constituted by a set of cooperating virtual
machines. The controlled system implements also the logic
to change the allocation of resources (i.e., virtual machines)
and adjust the capacity of the system; these are essential
functionalities to enable an elastic behavior. The controlled
system is also characterized by two attributes that constrain,
respectively, the minimum and the maximum number of al-
located resources. The former corresponds to the minimal
amount of resources that must be always allocated to guar-
antee the provision of the application functionalities to end-
users. As for the latter, it sets an upper bound for the max-
imum amount of allocated resources, beyond which scaling
the system is not cost-effective anymore.

The elastic controller periodically monitors the operat-
ing parameters of the controlled system (e.g., the system
load) and determines the control actions to be executed to
perform adaptation. The controller implements the logic
that tries to fulfill the high-level goals (e.g., minimizing run-
ning costs while delivering a certain level of QoS) specified
by the service provider that operates the elastic system.
The control actions that the controller can issue are scale-
up and scale-down, which correspond to instantiating and
terminating virtual machines, respectively. These actions
are sent to the controlled system through its cloud inter-
face, which plays the role of the controller actuator. No-
tice that executing these actions might take a non-negligible
time, which is called actuation delay. The cloud interface
propagates the control actions issued by the controller to
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Figure 1: High level architecture/view of cloud-based elastic systems.

the cloud IaaS provider, which performs the physical al-
location/deallocation of virtual machines. The cloud IaaS
provider tracks the total resource usage accumulated by each
service provider, who is then billed for the cost of running
the system.

3. CLTLt(D) IN A NUTSHELL
In this section we provide an overview of Timed Con-

straint LTL (CLTLt(D)), the temporal logic we have chosen
to formalize the properties of cloud-based elastic systems.
CLTLt(D) is rooted in two other temporal logics, Linear
Temporal Logic (LTL) and Constraint LTL (CLTL(D)).

LTL [10] is one of the most popular descriptive language
for defining temporal behaviors that are represented as se-
quences of observations. The time model adopted in this
logic is a totally ordered set (e.g., (N, <)) whose elements
are the positions where the behavior is observed. LTL allows
the expression of positional orders of events both towards the
past and the future. For example, a property like “if a query
Q is received, then a response R will be returned after two
positions from the one in which Q is received” is satisfied by
the following sequence of events: ∅ {Q} ∅ {R} ∅ ∅ {Q} ∅
{R} . . . , because the occurrences of event Q in position 1
and 6 are followed, respectively, by the occurrences of event
R in position 3 and 8; we denote with ∅ the positions in
which no event occurs. Leveraging the symmetry between
past and future, one can verify that the same sequence sat-
isfies the property “every R is preceded by a Q two positions
before”.

CLTL(D) [4] is an extension of LTL that includes arith-
metical atomic formulae built over a constraint system D;
this extension enables the use of variables in the formulae.
Intuitively, using this extension one can define the behavior
of variables across positions through arithmetical constraints
over D. For example, we can express a property like “when-
ever an event S occurs, in the next position, variable z must
be incremented by 1 with respect to the value at the current
position”.

To define CLTLt(D), we couple each position in the time
model with a timestamp and we introduce timing constraints
to the CLTL(D) temporal operators. Thanks to the times-
tamp information, we can account for the absolute time at
which events are observed, and define the behavior of vari-

ables over the time through arithmetical constraints over D.
For instance, consider the following sequence: ({Q}, {2}, 3)
(∅, {2}, 4) ({R}, {1}, 5) ({Q}, {2}, 15) ({R}, {0}, 20). In each
position we have a triple: the first element is a set of events
occurring in that position (e.g., Q or R); the second is a set
of values of variables (e.g., modeling the number of pending
jobs inside the system); the third element is the timestamp.
Using the timestamps, all positions in the sequence corre-
spond to time instants where the behavior of the system
changes. For example, at the first position Q occurs, the
elapsed time is 3 and the number of pending jobs is 2. Po-
sition 3 captures the fact that at time 5 the system replies
(denoted with R), completing only one of the two pending
jobs, thus one job remains. Position 4 denotes that at time
15 another query (this time equipped with one job) occurs;
the number of pending jobs is incremented accordingly. The
last position indicates that at time 20 the system generates
another reply and, by that time, all the pending jobs are
done (the corresponding variable is equal to 0).

Let D be structure (Z,=, (<d)d∈Z), and let V be a set
of variables over D. The binary relation <d is defined as
x <d y ⇔ x < y + d. With these settings, we can for
example abbreviate the conjunction y <1−d x ∧ x <d+1 y
with the notation x = y+d. The logic introduced so far has
been proved to be decidable in [9].

In the rest of this section, we formally define CLTLt(D).
Atomic formulae in CLTLt(D) can be propositions or con-
straints over D. The syntax of the terms used in the con-
straints, called arithmetic temporal terms (hereafter simply
called terms) is defined as:

α := c | x | Y(α) | X(α)

where c ∈ Z is a constant, x ∈ V is a variable, Y is the
arithmetical previous temporal operator, and X is the arith-
metical next temporal operator. The temporal operators are
applied to terms, and they refer to the value of that term
in the previous (Y) and in the next (X) position in the se-
quence, i.e., the corresponding discrete position. The depth
of term α (denoted as |α|) is the total amount of tempo-
ral shift needed in evaluating α. For example |XX(x)| = 2,
|YYY(x)| = −3 and |YX(x)| = |XY(x)| = 0.



A well-formed CLTLt(D) formula φ is defined according
to this syntax:

φ ::= p | α ∼ α | ¬φ | φ ∧ φ | φUI φ | φ SI φ

where p is an atomic proposition from a finite set Π; α is a
term; the relation ∼ belongs to {=, (<d)d∈Z}; I identifies a
non-empty interval over N;1 UI (“Until”) and SI (“Since”)
are the modalities of LTL.

Additional modalities can be defined using the standard
conventions. Let ⊥ be an abbreviation for p ∧ ¬p repre-
senting “false”. “Yesterday” can be defined as YIφ↔⊥ SIφ,
“Next”as XIφ↔⊥ UIφ. Similarly, one can also define other
modalities such as GI (“Globally”), FI (“Eventually in the
future”), PI (“Eventually in the past”).

An example of a well-formed CLTLt(D) formula is G(φ→
X(z) = z + 1). This formula states that whenever φ is true,
the value of variable z in the next time instant is constrained
to be increased by one with respect to the value at the cur-
rent instant.

Hereafter, we use quantifiers (∀ and ∃) and parameterized
propositions over finite sets as a shorthand for representing
a group of constraints. For example, given the set A =
{1, 2, 3} and the parameterized proposition p(·), the formula
∀a ∈ A : p(a) is a shorthand for p1∧p2∧p3, where p1, p2, p3 ∈
Π. We omit the definition of the set when it is clear from
the context.

The formal semantics of CLTLt(D) formulae can be de-
fined as follows. Let τ = τ0τ1 . . . be a timed sequence,
i.e., an infinite strictly monotonic sequence of values so that
τi < τi+1, for all i ≥ 0. Let π = π0π1 . . . be an infinite
sequence over ℘(Π) which associates a subset of the set of
propositions with each position. Let σ = σ0σ1 . . . be an in-
finite sequence of evaluations σi : V → Z defining the value
of variables at each time position. We denote the value of x
at position i with σi(x) and the value σi+|α|(xα) with σi(α),
where xα is the variable in V occurring in term α, if any.
Given a time instant i ≥ 0 and a structure (π, σ, τ), we define
the satisfaction relation (π, σ, τ), i |= φ for CLTLt(D) formu-
lae as shown in Figure 2. A formula φ ∈ CLTLt(D) is satisfi-
able if there exists a triple (π, σ, τ) such that (π, σ, τ), 0 |= φ;
in this case, we say that (π, σ, τ) is a model of φ, with (π, τ)
being the timed propositional model and σ being the arith-
metic model. CLTL(D) over infinite words has been proven
undecidable [4], however we use CLTLt(D) over finite words
(i.e., for trace checking), thus we retain decidability.

4. MODELING RESOURCES OF CLOUD-
BASED SYSTEMS

At the basis of cloud-based service provisioning there is
the possibility of accessing remote resources. As anticipated
in Section 1, in this paper we consider elastic behaviors with
respect to the management and adaptation of resources of-
fered at the IaaS level, in particular virtual machines; here-
after, by slightly abusing the terminology, we will refer to
resources and virtual machines interchangeably. In the rest
of this section we introduce some useful notation and ex-
press in CLTLt(D) some general aspects that characterize
the lifecycle of resources in a cloud-based system.2 These

1We omit the interval from the formulae when it is [0,+∞).
2We use the term “cloud-based system” instead of the one
“cloud-based elastic system” used elsewhere in the paper,
since the aspects described here for modeling the resources

(π, σ, τ), i |= p⇔ p ∈ πi for p ∈ Π

(π, σ, τ), i |= α1 ∼ α2 ⇔ σi(α1) ∼ σi(α2)

(π, σ, τ), i |= ¬φ⇔ (π, σ, τ), i 6|= φ

(π, σ, τ), i |= φ ∧ ψ ⇔ (π, σ, τ), i |= φ and (π, σ, τ), i |= ψ

(π, σ, τ), i |= φUI ψ ⇔ ∃ j > i : (π, σ, τ), j |= ψ and

∀n ∈ (i, j) :

(
(π, σ, τ), n |= φ and

τj − τi ∈ I

)
(π, σ, τ), i |= φ SI ψ ⇔ ∃ 0 ≤ j < i : (π, σ, τ), j |= ψ and

∀n ∈ (j, i) :

(
(π, σ, τ), n |= φ and

τj − τi ∈ I.

)
.

Figure 2: Semantics of CLTLt(D).

aspects will then be assumed to hold across the formaliza-
tion of the properties of cloud-based elastic systems in the
next section.

We model the total resources in use by a system at a cer-
tain time instant by means of a non-negative integer variable
R ∈ V . We use constants Rmin and Rmax to denote the min-
imum and maximum number of resources that the system
can allocate. At any time, the amount of resources allocated
to a system must be within these limits. We capture this
constraint on resource allocation with the following formula:

G(Rmin ≤ R ∧ R ≤ Rmax ) (Mbound)

which states that number of resources R is bounded through-
out the entire execution of the cloud-based system.

We use a non-negative integer variable L ∈ V to denote
the current load of the system, expressed in terms of required
resources. We assume that each cloud-based system has
always enough resources to support the current load (the
manageable load assumption), as stated below:

G(L ≤ Rmax ) (Mload)

Virtual Machine Lifecycle
At the IaaS layer, users create virtual machines to host their
applications; each virtual machine is uniquely identified by
an ID. Let Rmax be a positive integer parameter represent-
ing the maximum number of virtual machines that can be
allocated by a system. The set of valid virtual machines IDs
is then defined as ID = {0, . . . , Rmax − 1}.

To model the events characterizing the lifecycle of a vir-
tual machine, we represent them as parameterized proposi-
tions. We use Mstart(·) to denote a request to instantiate a
new virtual machine; conversely, we use Mstop(·) to denote
a shut-down request. After receiving the request to instan-
tiate a new virtual machine, the cloud infrastructure starts
the actual instantiation process by allocating the physical
resources and booting the OS: the end of the OS boot is de-
noted with proposition Mboot(·). The actual event in which
the user application is ready to process the input is denoted
with Mready(·). Similarly, in the case of a shut-down request,
we denote the actual termination of the virtual machine (fol-
lowing the shut-down request) with the proposition Mend(·).
The order of occurrence of these events has to match the one

can be assumed to hold for every kind of cloud-based system,
not necessarily with an elastic behavior.



defined by the lifecycle of a virtual machine: Mstart–Mboot–
Mready–Mstop–Mend . We state this constraint by AND-ing
the following formulae Msb , Mbr , Mrs , Mse :

∀id : G(Mstart(id)→((¬Mstart(id) ∧ ¬Mready(id)

∧ ¬Mstop(id) ∧ ¬Mend(id))

UMboot(id))) (Msb)

∀id : G(Mboot(id)→((¬Mboot(id) ∧ ¬Mstart(id)

∧ ¬Mstop(id) ∧ ¬Mend(id))

UMready(id))) (Mbr )

∀id : G(Mready(id)→((¬Mready(id) ∧ ¬Mstart(id)

∧ ¬Mboot(id) ∧ ¬Mend(id))

UMstop(id))) (Mrs)

∀id : G(Mstop(id)→((¬Mstop(id) ∧ ¬Mready(id)

∧ ¬Mstart(id) ∧ ¬Mboot(id))

UMend(id))) (Mse)

All the formulae above follow the same structure. For ex-
ample, in the case of Formula Msb , we state that after a
request to instantiate a certain virtual machine (Mstart), all
other requests for the same machine (events Mstart , Mready ,
Mstop , Mend) cannot occur until the OS boot ends (event
Mboot).

In addition, we require that the lifecycle of a virtual ma-
chine starts with event Mstart :

∀id : G(Mend(id)→ P(Mstart(id))) (Mstart)

The formula states that event Mend is always preceded by
event Mstart , for any id.

Finally, we specify that the transition from event Mstart(·)
to event Mboot(·) might take some finite time, bounded by
the parameter Tcd defined by each single provider. This
requirement is expressed as:

∀id : G(Mstart(id)→ F(0,Tcd )(Mboot(id)))3 (Mbad)

The formula states that after receiving a request to allocate
a new virtual machine, the boot process has to complete
within Tcd time units.

5. CONCEPTS AND PROPERTIES OF
CLOUD-BASED ELASTIC SYSTEMS

In this section we present concepts and properties that
can be used to characterize relevant behaviors of cloud-based
elastic systems. The concepts and the properties have been
selected and derived based on our research experience in
the field, especially matured within EU-funded projects like
RESERVOIR [12] and CELAR [3]. The presentation is di-
vided in three groups: elasticity, resource management, and
quality of service.

As previously remarked, for the proposed formalization
of properties, we assume that the concepts described in the

3A closed interval [a, b] over N can be expressed as an open
one of the form (a− 1, b+ 1), a ≥ 1.

previous section must always hold, i.e., if Csystem is the con-
junction of all formulae described in Section 4, we consider
execution traces that satisfy Csystem .

5.1 Elasticity
As we have seen in Section 2, elastic systems are supposed

to dynamically adapt in reaction to fluctuations in the input
workload, by changing their computing capacity. In the case
of cloud-based elastic systems, the adaptation is performed
either by increasing the computing capacity with the allo-
cation of additional resources, or by decreasing the capacity
by releasing a portion of those resources.

Recall that we model the resources currently in use by a
system with a non-negative integer variable R. Since elastic
systems usually start with a minimal allocation of resources,
at the beginning we set the value of variable R equal to Rmin :

R = Rmin (Minit)

A cloud-based elastic system must change its resources
allocation according to the decisions made by the elastic
controller. These decisions result in the requests Mstart and
Mstop , to allocate or deallocate resources, which ultimately
determine the amount of resources that are actually in use
by the system, which we model with the variable R. The
value of R has to change when either an Mstart or Mstop

event occurs. We set an arithmetic constraint on the value
of R with the following formulae:

∀id : G(Mstart(id)→ R = Y(R) + 1) (Mi)

∀id : G(Mstop(id)→ R = Y(R)− 1) (Md)

The first formula states that after receiving the request to
instantiate a new virtual machine the number of resources in
use by the system must be increased; conversely, the second
formula states that when there is a request to shut down a
virtual machine, the number of resources must be decreased.

We also require that changes to the allocation of resource
should happen only as a consequence of an Mstart or Mstop

request, triggered by the elastic controller.4 This require-
ment is expressed as a constraint on changes to the value of
R with the following formulae:

∃id : G(R = Y(R) + 1→Mstart(id)) (Mix )

∃id : G(R = Y(R)− 1→Mstop(id)) (Mdx )

We explicitly require that the value of R must not change if
neither Mstart nor Mstop occurs with the formula:

G((∀id : ¬Mstart(id) ∧ ¬Mstop(id))↔ R = Y(R)) (Meq)

After formalizing resource change over time, we introduce
the concepts of eagerness and sensitivity, which capture dy-
namic aspects of an elastic behavior, such as the speed of
adaptation and the minimum variation in the load that trig-
gers an adaptation.

Eagerness informally refers to the speed of the reaction
of a system upon a change of the load. It captures the fact
that elastic systems must adapt to changes in the workload
in a timely manner. We introduce parameter Te to represent
the maximum amount of time within which an elastic system
must react to change in the load.

Sensitivity informally refers to the minimum change in
the load that should trigger adaptation. It captures the fact

4We assume that the elastic controller is the only component
that can issue the Mstart and Mstop requests.



that different elastic systems may react to different load
intensities and variations. Sensitivity prevents the system
from adapting to small, transient changes in the load, pos-
sibly creating unnecessary costs. We model the sensitivity
of a system with the parameter ∆. This parameter defines
a range over the currently measured load: if the load stays
within this range, then adaptations are not necessary and
will not be triggered. The parameter ∆ can assume values
from the [0, Rmax ) interval. The case ∆ = 0 identifies an
elastic system that reacts to any change in the load. Under
the “manageable load” assumption (see FormulaMload), the
case ∆ = Rmax would identify a system that is totally in-
sensitive to the load, i.e., a system that does not adapt. In
our understanding this is not an elastic system, and we do
not allow this behavior.

We introduce an auxiliary variable, La ∈ V , to model
eagerness and sensitivity. This variable accumulates the
change in the value of the load L. The behavior of La is
constrained as shown below:

La = 0 (Prt1 )

G((−∆ ≤ La ≤ ∆)→ X(La) = La + X(L)− L) (Prt2)

The first formula initializes the value of La to zero. The
second formula constraints the value of La to change only if
its value stays within the threshold defined by the parameter
∆; the value of La is incremented according to the difference
of the values of the system load L in two consecutive time
positions (X(L)− L).

We can now characterize the behavior of a system when
scaling up and down occur in terms of variables R and La:

G((La > ∆)→ (X(La) = X(L)− L ∧ F(0,Te](X(R) > R)))
(Prt3 )

G((La < −∆)→ (X(La) = X(L)− L ∧ F(0,Te](X(R) < R)))
(Prt4 )

The two formulae express the possible changes in the num-
ber of allocated resources: either an increase (denoted with
the arithmetical constraint X(R) > R in Prt3 ) or a decrease
(denoted with X(R) < R in Prt4 ). In both cases, the adap-
tation is triggered when the value of La (the accumulated
change of the load) exceeds the threshold defined by param-
eter ∆. Moreover, the number of resources R is constrained
to change within the temporal bound Te. Furthermore, the
formulae constrain also the value of La in the next instant,
by “resetting” the value accumulated so far.
Plasticity. A distinctive characteristic of elastic systems

is their ability to release resources when the load decreases.
In particular, when the load drops to zero an elastic sys-
tem must be able to deallocate all its resources within a
reasonable time and return to the minimal configuration of
resource allocation. We call systems that do not show this
behavior plastic; a plastic system is a system that cannot
return to its minimal configuration after increasing the num-
ber of resources. Ideally, a truly elastic system should never
show a plastic behavior.

We introduce parameters Tp1 and Tp2 . Parameter Tp1
indicates for how long the system needs to experience no
load, before deallocating all the resources; it is useful to
avoid reacting to transient and short-term changes in the
load. The other parameter Tp2 represents the maximum
time the system has to react if a complete deallocation of

resources is needed. The following formula characterizes a
system that is not plastic:

G(G(0,Tp1
](L = 0)→ F(0,Tp2

]R = Rmin) (Ppl)

It states that, for all time positions, if a load is equal to
zero in a time range bounded by Tp1 , then the number of
resources will return to its minimal configuration within Tp2 .
The violation of Formula (Ppl) is a sufficient condition for a
system to be plastic.

5.2 Resource Management
There is a variety of valid elastic behaviors that our model

allows. In this section, we list some properties that can be
used to better characterize these behaviors. All the proper-
ties described in this section focus on resource management,
that is, how resources are allocated and deallocated by the
system.

Precision identifies how good is the elastic system in al-
locating and deallocating the right number of resources with
respect to variation in the load. In other terms, precision
constrains the amount of resources that system is allowed to
over- or under-provision. We capture precision by means of
parameter ε and Formula Pdiv , under the “manageable load”
assumption:

G(|R− L| < ε) (Pdiv )

The formula5 states that during the course of system execu-
tion the overall difference between the load and the resources
allocation cannot differ more than the specified amount ε.
This parameter should be defined by the designer of the
cloud-based application depending on its requirements.

Oscillation. An elastic system that repeatedly allocates
and deallocates resources even when the load stays stable is
said to oscillate. Oscillations may appear as a consequence
of the discrete nature of resources allocation in combination
with poorly-designed conditions that trigger adaptation. For
example, an elastic controller might try to allocate an aver-
age capacity of 1.5 virtual machines by switching between
the allocation of one virtual machine and two virtual ma-
chines. Despite oscillations being a valid elastic behavior,
they might impact on the running costs of the system. We
characterize non-oscillating behaviors with the following for-
mulae:

G(X(R) > R→ P(0,Te](X(L) > L)) (Ppo1 )

G(X(R) < R→ P(0,Te](X(L) < L)) (Ppo2 )

The formulae constrain the increase (decrease) of the num-
ber of resources only in correspondence with an increase,
respectively an decrease, of the load. The formulae use the
eagerness parameter (Te) to limit the observation of load
variations in the past (expressed with P(0,Te]). If the con-
troller performs an adaptation not “justified” by a change in
the load, it will violate the property captured by the formu-
lae above.

Resource Thrashing. Elastic systems may present op-
posite adaptations in a very short time; for example, a sys-
tem may scale up, and then, right after finishing the adap-

5For clarity, in the formula we use the metric | · |, which does
not belong to the CLTLt(D) syntax. A CLTLt(D) compliant
formulation can be obtained by applying the following rule:
|a| ∼ b ≡ (a ∼ b ∧ a ≥ 0) ∨ (−a ∼ b ∧ a < 0), where ∼ is a
relational operator.



tation, it can start to scale down. This situation is com-
monly known as resource thrashing. In other words, resource
thrashing is a temporary, yet very quick, oscillation in the
allocation of resources. In the case of a resource thrash-
ing situation, the resources that are impacted by the adap-
tation generally do not perform any useful work, yet they
contribute to an increment of the running costs. Resource
thrashing is parametrized by a minimum time Trtx allowed
between an increase and a decrease in the number resources.
This time is usually defined by the designer of the cloud-
based application, after taking into account the actuation
delay of the controller. For a system not manifesting a
resource trashing condition, the following formulae should
hold:

G(R < X(R)→ ¬F(0,Trtx ](R > X(R))) (Prtx1 )

G(R > X(R)→ ¬F(0,Trtx ](R < X(R))) (Prtx2 )

The formulae constrain the occurrence of opposite adapta-
tions to happen after a minimum amount of time Trtx .

Cool-down period is a strategy adopted by designers
to achieve a bounded number adaptations over a period of
time. It is used to prevent the controller from adapting
faster than the time needed for the actual actuation on the
cloud-based system. The controller is required to freeze for
a given amount of time and let the system stabilize after an
adaptation. We consider a system unstable if it is in the
process of adaptation; this is represented by proposition A.
In the following formulae

G

∀id :

¬Mready(id) SMstart(id)

∨
¬Mend(id) SMstop(id)

→ A

 (Mai)

G

∃id : A→

¬Mready(id) SMstart(id)

∨
¬Mend(id) SMstop(id)


 (Madp)

we yield the proposition A true whenever an adaptation is
currently in progress: either event Mstart(id) or Mstop(id)
were issued, but no Mready (respectively Mend) event is ob-
served. This notions are expressed using the “Since” (S)
modality. We can then use proposition A to express the fact
that the controller needs to wait for all recently allocated
resources to be ready before performing a new adaptation.
This can be represented as a constraint on R to not change
when A holds:

G(A→ Y(R) = R) (Pcdp)

Bounded concurrent adaptations. Sometimes forcing
the controller not to react during adaption can be consid-
ered a very rigid policy. We can relax this requirement by
allowing the controller a fixed number of actions during the
adaptation. This property can be viewed as a generaliza-
tion of the previous one, where the fixed number of actions
during adaption was one. To formalize this property we rely
on formulae Mai and Madp to distinguish the time posi-
tions during which an adaptation of the system occurs. The
constant Ma represents the maximum number of allowed ac-
tions for the controller (either allocations or deallocations)
while the system is in the unstable state. In the formaliza-

tion, we also introduce an additional variable ca that counts
how many overlapping adaptations occur.

ca = 0 (Pbca1 )

G((Y(R) 6= R)→ X(ca) = ca + 1) (Pbca2 )

G((A ∧ Y(R) = R)→ X(ca) = ca) (Pbca3 )

G(¬A→ X(ca) = 0) (Pcdp3 )

G(ca < Ma) (Pbca4 )

Formula (Pbca1 ) initializes the variable ca at position 0. For-
mulae (Pbca2 ) and (Pbca3 ) update ca. Formula (Pbca2 ) in-
creases ca when there is a change in the number of resources
(Y(R) 6= R), while formula (Pbca3 ) propagates the current
value of ca during adaptation (hence, A is required to hold
in its antecedent). When the system is not adapting (de-
noted by ¬A) we reset the value of ca to zero, expressed in
(Pcdp3 ). Finally, we constrain the value of ca to be less then
Ma over the whole execution trace.

Bounded resource usage. The running costs of elas-
tic systems can be constrained by specifying properties that
apply on the whole set of resources in use. For example,
we can specify a constraint on the absolute amount of re-
sources in use by the system, as done in Section 4 with
Formula Mbound . We can also specify time-dependent con-
straints that temporarily bound the maximum number of
resources to certain predefined levels. Time dependent con-
straints are useful if the budget allocated to the elastic sys-
tem is very limited, and one must guarantee that the system
will run for a given period of time. If the budget is exhausted
while the system is still running, the infrastructure abruptly
stops and deallocates all the virtual machines. To avoid this
situation, an elastic system might need to limit the use of
resources beyond a certain threshold, for a specified time
interval. We call this requirement bounded resource usage
and define two parameters to characterize it: a stricter re-
source bound Rtmax with Rtmax < Rmax , that represents
the temporary new threshold for allocating resources, and a
time bound Tbru , within which resources above the thresh-
old Rtmax should be released. This requirement is expressed
as follows:

G(R > Rtmax → F(0,Tbru ](R ≤ Rtmax )) (Pbru)

The formula states that whenever the controller allocates
more resources than allowed by the temporary threshold, it
needs to release them within Tbru time.

5.3 Quality of Service
As any other computer system, elastic systems must pro-

vide some predefined level of QoS; however, cloud-based
elastic systems introduce a new way to enforce them with
respect to non-elastic systems. In the rest of this section, we
describe some properties that determine the QoS perceived
for a cloud-based system.

Bounded QoS degradation. Implementing a system
adaptation, such as scaling up or down resources, may in-
cur in non-trivial operations inside the system. Component
synchronization, registration, data replication and data mi-
gration are just the most widely known examples. During
systems adaptation it may happen that the system shows a
degraded QoS. Elastic systems may be required to limit this
amount of QoS degradation.

Assuming that the level of quality of service is measur-
able with a single value, we model the normally-required



QoS limit with the parameter c. In addition, we define the
parameter d to model the reduced (degraded) bound on the
value of QoS (c ≥ d). We formalize the requirements on
bounded degradation during adaptation as follows:

G(A→ Q > d) ∧G(¬A→ Q > c) (Pbqos)

The formula above says that the threshold on the normally-
required QoS level c should be satisfied only when the system
is not performing any adaptation. Instead, during adapta-
tion, the relaxed value d for the QoS is enforced.

Bounded actuation delay. The performance of an elas-
tic system is greatly impacted by the reaction time of its
controller, and a controller with a slow reaction time may
determine non-effective elastic systems, because adaptations
are triggered too late. However, even though the controller
triggers an adaptation in time, the system could still be non-
effective if the resources take too long to be ready. For this
reason, we constrain the actuation delay of the controller
with the following formulae:

∀id : G(Mboot(id)→ F(0,Tad )(Mready(id))) (Pbad)

∀id : G(Mstop(id)→ F(0,Tad )(Mend(id))) (Pbad′)

We introduce a temporal bound, denoted by parameter Tad ,
in Formula (Pbad) (respectively, (Pbad′)) between occurrences
of theMboot(id) andMready(id) events (respectively, Mstop(id)
and Mend(id)). Intuitively, the time needed for the applica-
tion to be ready to serve requests must be less than Tad .

6. PRELIMINARY EVALUATION
We evaluated our formalization of the relevant proper-

ties of cloud-based systems by determining whether it could
be effectively applied to check this class of properties over
execution traces of realistic applications. In particular, we
performed off-line trace checking6 of some of the properties
described in Section 5 over system execution traces. Our
goal was to evaluate the resource usage (execution time and
memory) of the trace checking procedure for the different
types of properties.

6.1 Methodology
Traces were obtained from the execution of an instance

of the “Elastic Doodle” service (see below), deployed over a
private OpenStack cloud infrastructure. To trigger elastic
behaviors in the application, we created several input work-
loads, fluctuating according to sine waves, squared waves,
and sawtooth patterns. We configured the monitoring tools
of the application to create a set of execution traces, each
of them containing the timestamped events corresponding
to the allocation and deallocation of virtual machines. We
leveraged the AUToCLES tool [6] to automate the execution
of multiple runs of the system with different input workloads,
and to perform data collection.

The following properties were selected for verification over
the generated traces: (RT) Resource thrashing; (PL) Plas-
ticity; (CDP) Cool down period.

We used the ZOT verification toolset7 to perform the ac-
tual trace checking procedure. The ZOT toolset supports
satisfiability checking [1] [2] of CLTLt(D) formulae by means

6Also called history checking or post-mortem analysis.
7http://code.google.com/p/zot/.
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Figure 3: High-level architecture of the “Elastic
Doodle” service.

of SMT solvers. We translated the traces collected from the
execution of the “Elastic Doodle” service into a CLTLt(D)
formula, where each occurrence of a virtual machine alloca-
tion or deallocation event is mapped onto an atomic propo-
sition holding at the corresponding timestamp. The logical
conjunction of this formula, of the formulae presented in Sec-
tion 4, and of the CLTLt(D) version of each of the properties
to verify was then provided as input to ZOT. For each ver-
ification run, we recorded the memory usage and the SMT
verification time.

The Elastic Doodle
The “Elastic Doodle” service is an open-source clone of the
popular Internet calendar tool of the same name. We ex-
tended the original code base to support elastic behaviors,
by including both the adaptation logic and the elastic con-
troller. We also added advanced monitor capabilities.

Figure 3 shows the high-level architecture of this elastic
service. The system is organized as a n-tier system with
a load-balancer that exposes the service endpoint to end-
users on one side, and forwards client requests to a lineup
of application servers on the other side. The application
servers interact with a shared database that acts as the stor-
age/persistency tier of the system. The middle tier has an
elastic behavior: instances of the applications server com-
posing this tier can be dynamically added and removed.
This elastic behavior is determined by the controller, which
periodically (e.g., every ten seconds) reads the monitored
data and decides on the next resource allocation strategy
using a rule-based approach. The following two rules are in
place:

scale-up: if the average number of requests per running
application server in the last minute is over a cer-
tain maximum threshold, a new instance of application
server is allocated; the controller stops its execution for
one minute;

scale-down: if the average number of requests per running
application server in the last minute is below a certain
minimum threshold, a running instance of application
server is deallocated; the controller stops its execution
for two minutes.



Table 1: Evaluation data of the Elastic Doodle service

Trace RT PL CDP

ID Events Time span (s) Max resources Time (s)/Memory(MB) Time (s)/Memory(MB) Time (s)/Memory(MB)

T1 15 1102 2 1.44/120.1 1.20/117.7 2.29/126.2
T2 43 635 4 2.83/135.3 1.47/121.8 1.42/121.5
T3 29 641 3 1.77/131.5 1.21/117.7 1.62/126.2
T4 17 499 3 1.20/116.7 1.27/116.0 1.38/115.9
T5 44 644 3 2.94/135.4 1.45/122.1 1.45/121.7

6.2 Results and Discussion
Our trace checking procedure processes the logs gener-

ated by the Elastic Doodle service and filters only signifi-
cant events like Mstart , Mboot , Mready , Mstop , Mend and any
change in the value of the load assigned to L. These events
were conjuncted into a formula representing the trace. Let
us define a formula (MR) as a conjunction of all formulae
that define the behavior of the variable R: (Minit) ∧ (Mload)
∧ (Mi) ∧ (Md) ∧ (Mix ) ∧ (Mdx ) ∧ (Meq). Similarly, we
define (MA) as the conjunction of formulae that define the
behavior of proposition A: (Mai) ∧ (Madp).

For the property (RT) we perform bounded satisfiability
checking of the formula FRT= (MR) ∧ ¬ ((Prtx1 ) ∧ (Prtx2 ))
over the traces. We conjunct the term (MR) in FRT be-
cause resource thrashing formula relies on variable R. We
choose Trtx to be 50 seconds. For the property (PL) we check
formula FPL=(MR) ∧ ¬ (Ppl). Plasticity formula also uses
variable R, hence the conjunct (MR). We choose Tp1 to be 3
minutes and Tp2 30 seconds. Finally, for the property (CDP)
we check FCDP=(MR) ∧ (MA) ∧ ¬ (Pcdp). Since cool down
period formula relies both on variable R and proposition A
we conjunct their definitions with FCDP .

Notice that in FRT , FPL and FCDP we are negating the
property formulae. This is done because we perform sat-
isfiability checking and the models of the formulae in fact
represent counterexamples of the properties.

We chose five traces with different values for the number
of significant events, the time span, and the maximum num-
ber of resources being allocated during execution. We report
time and memory results for the verification of each prop-
erty RT, PL and CDP in Table 1. Besides the size of the
formula, the parameters that affect the time and memory
of the verification procedure are the number of significant
events in the traces and the number of resources allocated
during the execution.

The trace checking procedure confirmed that traces T1,
T3 and T5 satisfy all three properties. Trace T2 violates
property RT due to deallocation of a resource 30 seconds
after its allocation; it also violates property PL since not all
resources are deallocated in the last 3 minutes. Trace T4
violates both properties RT and CDP because of a single
(wrong) decision made by the elastic controller: it deallo-
cated a resource while another resource was still initializing,
within 50 seconds.

The results of the evaluation suggest that checking the
proposed properties formalized in CLTLt(D) over realistic
execution traces is feasible, since the time needed for exe-
cuting the checking is small (1.66 seconds on average) and
the amount of memory required is reasonable (123MB on
average).

7. RELATED WORK
There have been few proposals for modeling and formaliz-

ing elastic properties in the literature so far. Herbst et al. [7]
highlight the need for a precise definition of elasticity in the
context of cloud computing. Similarly to the modeling ap-
proach followed in this paper, the authors characterize the
degree of elasticity in terms of speed of adaptation and pre-
cision of adaptation. Starting from basic concepts such as
adaptation, demands and capacity the authors define a set
of properties to describe the elastic behavior of cloud-based
systems. However, these descriptions are informal; the pa-
per only described a set of metrics for measuring system
elasticity.

Islam et al. [8] provide a quantitative definition of elas-
ticity using financial terms, taking the point of view of a
customer of an elastic system who wants to measure the
elasticity provided by the system. The authors measure the
financial penalty for systems under-provisioning (due to SLA
violations) and over-provisioning (unnecessarily costs) using
a reference benchmark suite to characterize the system elas-
ticity. Several critical situations identified in [8] have been
reported/discussed in this paper. However, Islam and coau-
thors provide only an informal description for the properties.

A formal definition and modeling of system plasticity is
provided in [5]. The authors model elastic systems by means
of state transition systems where transitions are associated
with probabilities of switching between states, i.e., differ-
ent resources allocations, as they are observed in the system
run. Plasticity is identified when the model has transitions
corresponding to scaling up but lacks (some) transitions cor-
responding to scaling down. The authors use the proposed
model to define an automated procedure for the generation
of test cases that expose plastic behaviors of cloud-based
elastic systems.

8. CONCLUSION AND FUTURE WORK
In this paper we have shown a possible formalization of

cloud-based elastic systems, based on the CLTLt(D) tempo-
ral logic. The concepts and properties related to the behav-
ior of cloud-based elastic systems have been derived from
our experience in research projects related to cloud comput-
ing and are commonly encountered when designing a cloud-
based elastic system. By formalizing the properties using a
temporal logic, we are able to leverage automated verifica-
tion tools for checking whether the proposed properties hold
or not during the execution of cloud-based elastic systems.
Indeed, we have also reported on our preliminary evaluation
showing that it is feasible to check these properties over
execution traces of a realistic system, using an SMT-based
verification toolkit.



This paper marks only the initial step of our work on
the formalization, specification, and verification of proper-
ties of cloud-based elastic systems. We are currently working
on the refinement of the proposed modeling and formaliza-
tion to better represent the load of the system and the im-
pact of the the number of resources on the load at a certain
time. We are also working on the extension of the proposed
modeling to account for other elasticity mechanisms differ-
ent from horizontal scalability (i.e., virtual machine replica-
tion). More specifically, we plan to consider vertical scaling
(to dynamically change the amount of resources allocated to
single instances of a virtual machine), migration of virtual
machines (to enable re-balancing of the load in the cloud),
and software and (virtual) hardware reconfigurations. We
plan to conduct a thorough evaluation of the performance
of checking the proposed properties using execution traces
derived from industrial-strength case studies. Furthermore,
we plan to integrate the underlying trace checking approach
into a run-time monitoring (and verification) platform for
cloud-based elastic systems.
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