Scuola Universitaria Professionale della Svizzera Italiana

SUPS

A Software Engineering Approach to Parallel Metaheuristics

Michele Ciavotta, University of Applied Sciences of Southern Switzerland

Srdan Krstic, ETH Zurich

HyperSpark

Damian A. Tamburri, Politecnico di Milano

- Motivations
- Goals
- HyperSpark programming model
- Validation case study
- Conclusions and future work

Some MOFs (metaheuristic optimization frameworks) are available

- > achieve generality
- streamlining creation of new metaheuristics
- organize the knowledge

[Parejo et al, 2012] identified the following drawbacks

- Imited support for parallel and distributed execution,
- Iack of support for automated tuning and reactive,
- SE best practices not always followed (extensibility, configurability, portability...)

Goals

SUPSI Scuola Universitaria Professionale della Svizzera Italiana

.

Study the feasibility and challenges of using a distributed computing platform for data-intensive computations to support distributed optimization

Develop a framework for parallel and distributed execution of meta-heuristic and (more-general) optimization algorithms

> Make it general, extensible, fault-tolerant, portable,

Motto: Write locally, distribute painlessly

Data parallelism (MapReduce and locality)

- Data are pre-divided
- Data resides on computational nodes
- Functional codes is moved around an executed
- Results are gathered and the process is repeated

SUPSI

della Svizzera Italiana

Scuola Universitaria Professionale

Apache Spark: Runtime model

SUPSI

Scuola Universitaria Professionale della Svizzera Italiana

val data = Array(1, 2, 3, 4, 5, 6)
val distData = sc.parallelize(data)

della Svizzera Italiana

In HyperSpark's core there is no reference to parallelization. It is a transparent feature.

The developer is encouraged to write plain single-threaded methods to tackle the considered problem, as it were to be executed on one single core machine.

The framework takes care of autonomously and transparently distributing the code, running it in parallel, and collecting results following user specifications.

SUPS

Easy-to-use – introduce abstractions to make a simple, general. Transformation to the final Spark program is hidden

Extensibility – abstractions for solution, problem, algorithm and stopping condition concepts make the framework extensible to different domains

Scalability – enable setting the number of parallel algorithm instances

Flexibility:

- > User-defined solution-space split strategy
- User-defined results aggregation operator
- Virtual topology for cooperation between parallel algorithms

- Parallel and distributed execution supported by Spark
- Portability Scala inherits Java portability
- Fault tolerance supported by Spark
- High performance in-memory computation of Spark

della Svizzera Italiana

Problem Problem splitting (optional) Algorithm selection Seeding strategy (optional) s₽₃ sP s₽₁ sP₂ ... A₁ A₂ A_s A. Parallel / Distributed execution S₃ Sn S₂ Sı ... Solution aggregation Stopping condition Solution

Michele Ciavotta, Ph.D.

- Split the problem into different sub-problems
 - Parallelize the algorithm and assign to each parallel instance a different region of the solution space to explore, or a different objective function

Scuola Universitaria Professionale della Svizzera Italiana

- One or more algorithms can be selected to deal with the split problem
- Algorithms must implement a specific interface

della Svizzera Italiana

Problem Problem splitting (optional) Algorithm selection Seeding strategy (optional) sP₃ sP s₽₁ sP₂ ... A₁ A₂ A_s A. Parallel / Distributed execution S₃ Sn S₂ Sı ... Solution aggregation Stopping condition Solution

Michele Ciavotta, Ph.D.

- This strategy defines the way an initial solution is generated at each iteration of HyperSpark (also referred to as stage)
 - E.g. this is a way to implement elitism

SUPSI Scuola Universitaria Professionale della Svizzera Italiana

- HyperSpark distributes and runs the algorithms
- To avoid high synchronization times the user is encouraged to implement algorithms that stops after the same amount of time
- HyperSpark has to wait that all the algorithms complete their execution to collect the solutions generated and combine suitably

 Aggregation function that combines solutions from different algorithms.

 HyperSpark provides by design an aggregation function that returns the solution with the minimal value obtained from the evaluation of the objective function.

14

SUPS

SCUOLA LIDIVERSITATIA PL

Scuola Universitaria Professionale della Svizzera Italiana

- the stopping condition is an arbitrary predicate that determines when HyperSpark stops its execution
- the stopping condition is checked after each stage
- Example, a fixed number of iterations, a timeout, or a complex condition that depends on the solution

Example of use

Scuola Universitaria Professionale della Svizzera Italiana

16

SUPS

Convention over configuration design paradigm: all of the setter methods, excluding the ones defining the problem and the algorithms, are optional

Michele Ciavotta, Ph.D.

1. Is the overhead introduced by HyperSpark acceptable in the context of parallel cooperative optimization?

2. Are the algorithms implemented using HyperSpark competitive with respect to the state-of-the-art?

Flowshop is a quite common layout in production and processing lines at industries

In a Flowshop problem we have a set N = {1,...,n} of jobs to be processed on a set M= {1,...,m} of machines.

Permutation flowshop problem: the same processing sequence for all the machines: n! sequences

> The problem NP-Hard for most objectives (even for m>2)

> Objectives: *Cmax*

Implemented Algorithms:

Algorithm	Authors	Year	Ref.	Name
NEH	Nawaz, Enscore and Ham	1983	[15]	NEH
Iterated Greedy	Ruiz and Stützle	2007	[23]	IG
Genetic Algorithm	Reeves	1995	[22]	GA
Hybrid Genetic Algorithm	Zheng and Wang	2003	[35]	HG
Simulated Annealing	Osman and Potts's addaption for PFSP	1989	[18]	SA
Improved Simulated Annealing	Xu and Oja	1990	[33]	ISA
Taboo Search	Taillard	1990	[27]	TS
Taboo Search with backjump tracking	Novicki and Smutnicki	1996	[17]	TSAB
Ant Colony Optimization	Dorigo and Stützle	2010	[9]	ACO
Max Min Ant System	Stützle	1997	[26]	MMAS
mMMAS	Rajendran and Ziegler	2004	[21]	MMMAS
PACO	Rajendran and Ziegler	2004	[21]	PACO

ms

.

Scuola Universitaria Professionale della Svizzera Italiana

Benchmarks:

instance	jobs	machines	execution time (s)
inst_ta001	20	5	3.0
inst_ta031	50	5	7.5
inst_ta061	100	5	15.0
inst_ta091	200	10	60.0
inst_ta111	500	20	300.0

Goals:

Measure time overhead imposed by Spark with respect to the number of cores used (1-40)

Scuola Universitaria Professionale della Svizzera Italiana

	instance	cores	stage_0 (s)	overhead (s)	ovr (%)	init (s)	close (s)		
	inst_ta001	1	5.80	2.8	46.69	5.80	0.60		
20 jobs.	inst_ta001	8	5.91	2.91	49.00	7.20	0.20		
,	inst_ta001	16	7.68	4.68	60.79	7.60	0.60		
3 seconds	inst_ta001	24	9.54	6.54	68.50	9.40	0.40		
	inst_ta001	32	10.76	7.76	71.94	11.80	0.60		
	inst ta001	40	13.26	10.26	77.33	12.80	0.60		
	inst_ta031	1	10.13	2.63	25.75	8.20	0.40		
50 jobs	inst_ta031	8	10.56	3.06	28.91	7.60	0.20		
00 j000,	inst_ta031	16	12.38	4.88	39.43	7.60	0.40		
7.5 seconds	inst_ta031	24	14.29	6.79	47.47	10.80	0.40		
	inst_ta031	32	15.84	8.34	52.66	12.00	0.20		
	inst_ta031	40	18.26	10.76	58.89	13.60	0.20		
	inst_ta061	1	17.37	2.37	13.66	6.40	0.00		
100 jobs	inst_ta061	8	18.22	3.22	17.63	7.60	0.20		
100 j003,	inst_ta061	16	20.14	5.14	25.35	9.00	0.20		
15 seconds	inst_ta061	24	22.21	7.21	32.38	9.20	0.60		
	inst_ta061	32	23.47	8.47	36.08	12.60	0.40		
	inst_ta061	40	25.89	10.89	42.02	12.80	1.00		
	inst_ta091	1	63.70	3.70	5.77	6.60	0.00		
200 jobs	inst_ta091	8	66.61	6.61	9.91	4.60	0.40		
200 j003,	inst_ta091	16	69.46	9.46	13.62	4.40	0.20		
1 minute	inst_ta091	24	70.16	10.16	14.47	7.60	0.20	<u>,</u>	11
	inst_ta091	32	73.28	13.28	18.12	7.40	0.40		C -
	inst ta091	40	76.97	16.97	22.04	8.00	0.80		
	inst_ta111	1	318.05	18.05	5.68	5.20	0.20		
500 jobs,	inst_ta111	8	320.89	20.89	6.51	4.40	0.20	n =	
E minutes	inst_ta111	16	326.35	36.35	8.07	4.80	0.40		
5 minutes	inst_ta111	24	332.56	32.56	9.79	6.20	0.40		
	inst_ta111	32	337.27	37.27	11.05	7.20	0.60		
	inst_ta111	40	346.33	46.33	13.38	11.80	0.80		

Overhead for parallelism and synchronization depends on both cluster and instance sizes

The impact is very high for small instances (up to 80%) acceptable for more time-demanding scenarios (5%-13%)

The overhead time is much higher for the first stage than for the following ones.

Initialization time grows only with the cluster size (5-13 seconds)

Closing time constant and less than 1 second

Experiment 2

Benchmarks:

instance	jobs	machines	execution time (s)
inst_ta{001-010}	20	5	3.0
inst_ta{011-020}	20	10	6.0
inst_ta{021-030}	20	20	12.0
inst_ta{031-040}	50	5	7.5
inst_ta{041-050}	50	10	15.0
inst_ta{051-060}	50	20	30.0
inst_ta{061-070}	100	5	15.0
inst_ta{071-080}	100	10	30.0
inst_ta{081-090}	100	20	60.0
inst_ta{091-100}	200	10	60.0
inst_ta{101-110}	200	20	120.0
inst_ta{110-120}	500	20	300.0

Goals: xecutionTime =
$$jobs \times \frac{machines}{2} \times 60$$
 [ms]

Introduce cooperation. Measure time overhead for each iteration (stage) Determine the best (algorithm, seeding strategy) combination

FROLLITTECON COODDMIMAINON O

Obtained results – Experiment 2a

size	exec.	init	stage	stage	stages	stages	stages	close	compute
	time	time	0	0	1to9	1to9	1to9	time	ovr (%)
			time	ovr	time	ovr	avg ovr		
50 x 5	7.5	9.64	6.73	5.98	8.94	2.19	0.24	0.48	51.19
50 x 10	15	9.84	7.50	6.00	15.87	2.37	0.26	0.49	35.25
50 x 20	30	6.78	11.41	8.41	29.52	2.52	0.28	0.65	26.55
100 x 5	15	9.06	8.05	6.55	17.04	3.54	0.39	0.48	39.62
100 x 10	30	6.70	11.35	8.35	30.96	3.96	0.44	0.40	28.91
100 x 20	60	6.43	14.63	8.63	59.52	5.52	0.61	0.54	18.91
200 x 10	60	6.24	16.37	10.37	72.56	18.56	2.06	0.62	30.19
200 x 20	120	6.42	22.63	10.63	139.09	31.09	3.45	0.72	23.75
average		7.64						0.55	

Obtained results – Experiment 2b

size	HG_SS	IG_SS	HG_SPSW	IG_SPSW	HG_SPFW	IG_SPFW
50 x 5	0.18	0.10	0.15	0.06	0.15	0.06
50 x 10	2.24	1.74	2.27	1.74	2.28	1.75
50 x 20	3.42	2.87	3.50	2.62	3.52	2.67
100 x 5	0.19	0.10	0.21	0.16	0.21	0.16
100 x 10	1.32	1.11	1.38	1.50	1.38	1.49
100 x 20	3.98	3.58	4.17	3.96	4.17	4.02
200 x 10	0.87	1.05	0.92	1.03	0.90	1.03
200 x 20	3.65	3.76	3.73	3.87	3.76	3.87
average	1.98	1.79	2.04	1.87	2.05	1.88

We outlined, evaluated, and discussed a framework for execution of parallel metaheuristics implemented on top of Apache Spark

> We aimed at following sound software engineering principles like, ease-ofuse, configurability, flexibility, cooperation, extensibility, and portability

We realized a promising preliminary experimental evaluation to validate the approach

> We plan:

- > to provide out-of-the-box support for stateful inter-stage execution
- > To integrate with more mature MOFs such as jMetal
- > To facilitate asynchronous communication for better cooperative optimization
- To support multi-objective optimization

Thank you for your attention!

Scuola Universitaria Professionale della Svizzera Italiana

27

Questions?

Michele Ciavotta, Ph.D.