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Agenda



Some MOFs (metaheuristic optimization frameworks) are 
available
Ø achieve generality
Ø streamlining creation of new metaheuristics
Ø organize the knowledge

[Parejo et al, 2012] identified the following drawbacks
Ø limited support for parallel and distributed execution,
Ø lack of support for automated tuning and reactive,
Ø SE best practices not always followed (extensibility, 
configurability, portability…)
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Motivations
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Ø Study the feasibility and challenges of using a distributed 
computing platform for data-intensive computations to support 
distributed optimization

Ø Develop a framework for parallel and distributed execution of 
meta-heuristic and (more-general) optimization algorithms

Ø Make it general, extensible, fault-tolerant, portable,

Ø Motto: Write locally, distribute painlessly

Michele Ciavotta, Ph.D. 4

Goals



Ø Data are pre-divided
Ø Data resides on computational nodes
Ø Functional codes is moved around an executed
Ø Results are gathered and the process is repeated
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Data parallelism (MapReduce and locality)
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Apache Spark: Runtime model

Spark’s secret? 
• Efficient use of Memory 

(100x faster than Hadoop)
• High-level API based on RDD

Why not use Spark to handle code for long running jobs?



ØIn HyperSpark’s core there is no reference to parallelization. It 
is a transparent feature.

ØThe developer is encouraged to write plain single-threaded 
methods to tackle the considered problem, as it were to be 
executed on one single core machine. 

ØThe framework takes care of autonomously and transparently 
distributing the code, running it in parallel, and collecting results 
following user specifications.
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Policy: Write locally, distribute painlessly



Ø Easy-to-use – introduce abstractions to make a simple, general. 
Transformation to the final Spark program is hidden

Ø Extensibility – abstractions for solution, problem, algorithm and 
stopping condition concepts make the framework extensible to 
different domains

Ø Scalability – enable setting the number of parallel algorithm 
instances

Ø Flexibility: 
Ø User-defined solution-space split strategy
Ø User-defined results aggregation operator
Ø Virtual topology for cooperation between parallel algorithms
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Driving principles



Ø Parallel and distributed execution – supported by Spark

Ø Portability – Scala inherits Java portability

Ø Fault tolerance – supported by Spark

Ø High performance – in-memory computation of Spark
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Benefits of using Spark
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Programming model

• Split the problem into different sub-problems 
• Parallelize the algorithm and assign to each 

parallel instance a different region of the 
solution space to explore, or a different 
objective function
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Programming model

• One or more algorithms can be selected to 
deal with the split problem

• Algorithms must implement a specific 
interface
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Programming model

• This strategy defines the way an initial 
solution is generated at each iteration of 
HyperSpark (also referred to as stage)

• E.g. this is a way to implement elitism
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Programming model

• HyperSpark distributes and runs the algorithms
• To avoid high synchronization times the user is 

encouraged to implement algorithms that stops 
after the same amount of time

• HyperSpark has to wait that all the algorithms 
complete their execution to collect the solutions 
generated and combine suitably
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Programming model

• Aggregation function that combines solutions 
from different algorithms. 

• HyperSpark provides by design an aggregation 
function that returns the solution with the 
minimal value obtained from the evaluation of 
the objective function.
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Programming model

• the stopping condition is an arbitrary predicate that 
determines when HyperSpark stops its execution 

• the stopping condition is checked after each stage
• Example, a fixed number of iterations, a timeout, or 

a complex condition that depends on the solution



Ø Convention over configuration design paradigm: all of the 
setter methods, excluding the ones defining the problem and the 
algorithms, are optional
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Example of use



1. Is the overhead introduced by HyperSpark acceptable in the 
context of parallel cooperative optimization?

2. Are the algorithms implemented using HyperSpark competitive 
with respect to the state-of-the-art?
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Validation: Research Questions



Ø Flowshop is a quite common layout in production and processing 
lines at industries

Ø In a Flowshop problem we have a set N = {1,….,n} of jobs to be 
processed on a set M= {1,….,m} of machines.

Ø Permutation flowshop problem: the same processing sequence 
for all the machines: n! sequences

Ø The problem NP-Hard for most objectives (even for m>2)

Ø Objectives: Cmax
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Case study - Permutation Flowshop
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Extensibility

Implemented Algorithms:
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Experiment 1: overhead estimation

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝑗𝑜𝑏𝑠 ×
𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠

2 ×60 [𝑚𝑠]

Benchmarks:

Goals:

Measure time overhead imposed by Spark with respect to the number 
of cores used (1-40)

One algorithm (IG), 5 runs  



Experiment 1: overhead estimation

20 jobs, 
3 seconds

50 jobs, 
7.5 seconds

100 jobs, 
15 seconds

200 jobs, 
1 minute

500 jobs, 
5 minutes



Ø Overhead for parallelism and synchronization depends on both 
cluster and instance sizes

Ø The impact is very high for small instances (up to 80%) acceptable 
for more time-demanding scenarios (5%-13%)

Ø The overhead time is much higher for the first stage than for the 
following ones.

Ø Initialization time grows only with the cluster size (5-13 seconds)

Ø Closing time constant and less than 1 second

Experiment 1: overhead estimation



Experiment 2

POLITECNICO DI MILANO

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝑗𝑜𝑏𝑠 ×
𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠

2
×60 [𝑚𝑠]

POLITECNICO DI MILANO

Introduce cooperation. Measure time overhead for each iteration (stage)
Determine the best (algorithm, seeding strategy) combination

Benchmarks:

Goals:
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Obtained results – Experiment 2a
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Obtained results – Experiment 2b
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Ø We outlined, evaluated, and discussed a framework for execution of parallel 
metaheuristics implemented on top of Apache Spark

Ø We aimed at following sound software engineering principles like, ease-of-
use, configurability, flexibility, cooperation, extensibility, and portability

Ø We realized a promising preliminary experimental evaluation to validate the 
approach 

Ø We plan:  
Ø to provide out-of-the-box support for stateful inter-stage execution
Ø To integrate with more mature MOFs such as jMetal
Ø To facilitate asynchronous communication for better cooperative optimization
Ø To support multi-objective optimization
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Conclusions and Future work



Questions?
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Thank you for your attention!


