
HyperSpark
A Software Engineering Approach to Parallel
Metaheuristics

vMichele Ciavotta, University of Applied Sciences of Southern Switzerland

vSrdan Krstic, ETH Zurich

vDamian A. Tamburri, Politecnico di Milano

Ø Motivations

Ø Goals

Ø HyperSpark programming model

Ø Validation case study

Ø Conclusions and future work

Michele Ciavotta, Ph.D. 2

Agenda

Some MOFs (metaheuristic optimization frameworks) are
available
Ø achieve generality
Ø streamlining creation of new metaheuristics
Ø organize the knowledge

[Parejo et al, 2012] identified the following drawbacks
Ø limited support for parallel and distributed execution,
Ø lack of support for automated tuning and reactive,
Ø SE best practices not always followed (extensibility,
configurability, portability…)

3

Motivations

Michele Ciavotta, Ph.D.

Ø Study the feasibility and challenges of using a distributed
computing platform for data-intensive computations to support
distributed optimization

Ø Develop a framework for parallel and distributed execution of
meta-heuristic and (more-general) optimization algorithms

Ø Make it general, extensible, fault-tolerant, portable,

Ø Motto: Write locally, distribute painlessly

Michele Ciavotta, Ph.D. 4

Goals

Ø Data are pre-divided
Ø Data resides on computational nodes
Ø Functional codes is moved around an executed
Ø Results are gathered and the process is repeated

Michele Ciavotta, Ph.D. 5

Data parallelism (MapReduce and locality)

. . .Partition 1

Task 1

Partition 2

Task 2

Partition 3

Task 3

Partition N

Task N

Task 0

Master
node

Worker
node

Michele Ciavotta, Ph.D. 6

Apache Spark: Runtime model

Spark’s secret?
• Efficient use of Memory

(100x faster than Hadoop)
• High-level API based on RDD

Why not use Spark to handle code for long running jobs?

ØIn HyperSpark’s core there is no reference to parallelization. It
is a transparent feature.

ØThe developer is encouraged to write plain single-threaded
methods to tackle the considered problem, as it were to be
executed on one single core machine.

ØThe framework takes care of autonomously and transparently
distributing the code, running it in parallel, and collecting results
following user specifications.

Michele Ciavotta, Ph.D. 7

Policy: Write locally, distribute painlessly

Ø Easy-to-use – introduce abstractions to make a simple, general.
Transformation to the final Spark program is hidden

Ø Extensibility – abstractions for solution, problem, algorithm and
stopping condition concepts make the framework extensible to
different domains

Ø Scalability – enable setting the number of parallel algorithm
instances

Ø Flexibility:
Ø User-defined solution-space split strategy
Ø User-defined results aggregation operator
Ø Virtual topology for cooperation between parallel algorithms

Michele Ciavotta, Ph.D. 8

Driving principles

Ø Parallel and distributed execution – supported by Spark

Ø Portability – Scala inherits Java portability

Ø Fault tolerance – supported by Spark

Ø High performance – in-memory computation of Spark

Michele Ciavotta, Ph.D. 9

Benefits of using Spark

Michele Ciavotta, Ph.D. 10

Programming model

• Split the problem into different sub-problems
• Parallelize the algorithm and assign to each

parallel instance a different region of the
solution space to explore, or a different
objective function

Michele Ciavotta, Ph.D. 11

Programming model

• One or more algorithms can be selected to
deal with the split problem

• Algorithms must implement a specific
interface

Michele Ciavotta, Ph.D. 12

Programming model

• This strategy defines the way an initial
solution is generated at each iteration of
HyperSpark (also referred to as stage)

• E.g. this is a way to implement elitism

Michele Ciavotta, Ph.D. 13

Programming model

• HyperSpark distributes and runs the algorithms
• To avoid high synchronization times the user is

encouraged to implement algorithms that stops
after the same amount of time

• HyperSpark has to wait that all the algorithms
complete their execution to collect the solutions
generated and combine suitably

Michele Ciavotta, Ph.D. 14

Programming model

• Aggregation function that combines solutions
from different algorithms.

• HyperSpark provides by design an aggregation
function that returns the solution with the
minimal value obtained from the evaluation of
the objective function.

Michele Ciavotta, Ph.D. 15

Programming model

• the stopping condition is an arbitrary predicate that
determines when HyperSpark stops its execution

• the stopping condition is checked after each stage
• Example, a fixed number of iterations, a timeout, or

a complex condition that depends on the solution

Ø Convention over configuration design paradigm: all of the
setter methods, excluding the ones defining the problem and the
algorithms, are optional

Michele Ciavotta, Ph.D. 16

Example of use

1. Is the overhead introduced by HyperSpark acceptable in the
context of parallel cooperative optimization?

2. Are the algorithms implemented using HyperSpark competitive
with respect to the state-of-the-art?

Michele Ciavotta, Ph.D. 17

Validation: Research Questions

Ø Flowshop is a quite common layout in production and processing
lines at industries

Ø In a Flowshop problem we have a set N = {1,….,n} of jobs to be
processed on a set M= {1,….,m} of machines.

Ø Permutation flowshop problem: the same processing sequence
for all the machines: n! sequences

Ø The problem NP-Hard for most objectives (even for m>2)

Ø Objectives: Cmax

Michele Ciavotta, Ph.D. 18

Case study - Permutation Flowshop

Michele Ciavotta, Ph.D. 19

Extensibility

Implemented Algorithms:

Michele Ciavotta, Ph.D. 20

Experiment 1: overhead estimation

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝑗𝑜𝑏𝑠 ×
𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠

2 ×60 [𝑚𝑠]

Benchmarks:

Goals:

Measure time overhead imposed by Spark with respect to the number
of cores used (1-40)

One algorithm (IG), 5 runs

Experiment 1: overhead estimation

20 jobs,
3 seconds

50 jobs,
7.5 seconds

100 jobs,
15 seconds

200 jobs,
1 minute

500 jobs,
5 minutes

Ø Overhead for parallelism and synchronization depends on both
cluster and instance sizes

Ø The impact is very high for small instances (up to 80%) acceptable
for more time-demanding scenarios (5%-13%)

Ø The overhead time is much higher for the first stage than for the
following ones.

Ø Initialization time grows only with the cluster size (5-13 seconds)

Ø Closing time constant and less than 1 second

Experiment 1: overhead estimation

Experiment 2

POLITECNICO DI MILANO

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝑗𝑜𝑏𝑠 ×
𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠

2
×60 [𝑚𝑠]

POLITECNICO DI MILANO

Introduce cooperation. Measure time overhead for each iteration (stage)
Determine the best (algorithm, seeding strategy) combination

Benchmarks:

Goals:

26

Obtained results – Experiment 2a

POLITECNICO DI MILANO27

Obtained results – Experiment 2b

POLITECNICO DI MILANO28

Ø We outlined, evaluated, and discussed a framework for execution of parallel
metaheuristics implemented on top of Apache Spark

Ø We aimed at following sound software engineering principles like, ease-of-
use, configurability, flexibility, cooperation, extensibility, and portability

Ø We realized a promising preliminary experimental evaluation to validate the
approach

Ø We plan:
Ø to provide out-of-the-box support for stateful inter-stage execution
Ø To integrate with more mature MOFs such as jMetal
Ø To facilitate asynchronous communication for better cooperative optimization
Ø To support multi-objective optimization

Michele Ciavotta, Ph.D. 26

Conclusions and Future work

Questions?

Michele Ciavotta, Ph.D. 27

Thank you for your attention!

