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Abstract. While Privacy by Design (PbD) is prescribed by modern privacy regu-
lations such as the EU’s GDPR, achieving PbD in real software systems is a noto-
riously difficult task. One emerging technique to realize PbD is Runtime enforce-
ment (RE), in which an enforcer, loaded with a specification of a system’s privacy
requirements, observes the actions performed by the system and instructs it to per-
form actions that will ensure compliance with these requirements at all times.
To be able to use RE techniques for PbD, privacy regulations first need to be
translated into an enforceable specification. In this paper, we report on our on-
going work in formalizing the GDPR. We first present a set of requirements and
an iterative methodology for creating enforceable formal specifications of legal
provisions. Then, we report on a preliminary case study in which we used our
methodology to derive an enforceable specification of part of the GDPR. Our case
study suggests that our methodology can be effectively used to develop accurate
enforceable specifications.
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1 Introduction

Ensuring compliance of software systems with privacy regulations is a notoriously
challenging task. With mounting evidence that current regulations such as the EU’s
General Data Protection Regulation (GPDR) are poorly implemented by a majority
of data controllers [8], the capacity of ex-post enforcement and fines to bring about
widespread compliance appears limited. This calls for a methodology that relies on
principled approaches to design and certify software systems to adhere to regulations,
in the spirit of Privacy by Design (PbD) [10].

Runtime enforcement1 (RE) is one such approach. In RE, a formal specification is
input to a software system, called an enforcer, that observes the actions performed by a
System under Scrutiny (SuS). In addition to observing the SuS’s actions, the enforcer can
also send commands to the SuS, typically instructing the SuS to prevent or cause certain
actions. By observing the SuS’s actions and responding with appropriate commands,
the enforcer seeks to ensure that the behavior of the SuS adheres to its specification at
all times. A specification for which such an enforcer exists is called enforceable.

1 Note that the term ‘enforcement’ has a different meaning in legal and computer science contexts.
In the former, it typically refers to the actions taken by state officials to end or penalize a
past or ongoing violation of the law. In the latter, ‘(runtime) enforcement’ refers to a process
of ensuring compliance with a policy at any time, preventing policy violations rather than
compensating for them. In the following, ‘enforcement’ shall be understood in this latter sense.
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In the context of privacy, typically regulations (e.g., the GDPR), must be enforced.
Therefore, to use RE for enforcing privacy in software systems one must formalize pri-
vacy regulations into enforceable specifications. This entails understanding the regula-
tions, making them precise in the context of specific software system actions, making
them formal (i.e., readable by an enforcer), and, finally, enforceable. In this paper, we
report on our ongoing work in formalizing GDPR that is both close to the letter of the
law and enforceable. Our work can serve as a common ground for both computer scien-
tists and legal experts to collaborate in achieving PbD.

This paper is organized as follows. First, we review existing work on formalizing
privacy regulations, especially the GDPR (Section 2) and briefly introduce RE (Sec-
tion 3). We then present four requirements and an iterative methodology for obtaining
an enforceable specification of regulations in general (Section 4). Our methodology is
applicable both to regulations for which no specification exists and those for which an
existing non-enforceable (or inaccurate) specification exists. Finally, we report on a case
study in which we applied our methodology to convert a series of GDPR provisions for-
malized in DAPRECO [29] into enforceable specifications (Section 5). In the course of
our case study, we discovered a number of inaccuracies in DAPRECO that can be, at
least in part, linked to Robaldo et al.’s choice of a formalism and methodology. We dis-
cuss how our methodology can be used to alleviate the risk of such inaccuracies while
additionally providing out-of-the-box support for RE in real systems. In conclusion, we
reflect on the limitations of our approach and open questions (Section 6).

2 Related work

While some of the first formal specifications of legal provisions [30] date back to the
1980s and there is a related active field at the interplay of logic, linguistics, computer
science, and law (see, e.g., [16]), formal specifications of legal provisions amenable
to formal reasoning are still relatively rare. Recently, tax codes were formalized using
special-purpose programming languages [23, 20]. The complexity of tax codes lies in
complex conditional structures depending on a large number of variables and conditions,
requiring the use of special (typically, default [1]) logics. However, tax codes lack most
of the temporal and system-specific dimensions that are intrinsic to privacy regulations.

The runtime verification community [3] has seen an increasing number of efforts to
detect (or monitor) violations of complex policies in large-scale systems. These efforts
have brought to the fore a number of challenges in terms of both policy engineering
and the design of the interaction between the SuS and monitors [12]. One of the most
comprehensive studies to date is Basin et al.’s monitoring of several millions of log en-
tries from the “Internet Computer,” a distributed Web3 platform, against large temporal-
logic policies with over 1,000 binary operators [6]. The latter study required very care-
ful policy engineering, as temporal logic policies had to be extracted from an informal
description of protocol properties provided by engineers. To the best of our knowledge,
no such large-scale study has been conducted yet with legal provisions.

In the last two decades, smaller portions of privacy laws were formalized, often based
on ad-hoc interpretations tailored to specific application domains. In an early work, Lam
et al. formalized part of the US Health Insurance Portability and Accountability Act
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Fig. 1. System model for runtime enforcement

(HIPAA) using stratified Prolog [22]. Arfelt et al. [2] formalized data subject rights and
monitored them in industrial logs. Hublet et al. [18] showed how to enforce a similar core
of GDPR provisions in web applications and extended Arfelt et al.’s study to support
runtime enforcement [19]. Palmirani and Governatori used LegalRuleML [26] and the
PrOnto ontology [27] to model GDPR provisions [25]. Bonatti et al. formalized selected
GDPR-related constraints on business processes using the Web Ontology Language
OWL2 [9]. On another line of work, a large number of publications (see the survey [15])
have focused on defining GDPR-compatible policy languages that can be used to describe
legal flows of information depending on, e.g., user consent, and help users define their
own preferences. Finally, Torre et al. [31] have translated GDPR concepts into full-
fledged ontologies, which, however, lack an associated specification of legal provisions.

Only a handful of previous works have attempted to formalize entire privacy regu-
lations in a more literal way, capturing legal concepts into an appropriate ontology and
converting individual paragraphs of the original legal document into logical formulae.
In these respects, two series of works stand out. The first one is DeYoung et al.’s ex-
tensive formal specification of those parts of the Gramm-Leach-Bliley Act (GLBA) and
HIPAA [14, 13] that defined “operational requirements” of systems. DeYoung et al. use
an extension of Least Fixed Point logic (LFP) to encode these requirements into a well-
documented set of LFP formulae. The second series of work is Robaldo, Bartolini et
al.’s DAPRECO knowledge base [29, 28], which provides the most comprehensive for-
mal specification of the GDPR to date. The authors provide an ontology and a set of
over 900 formulae that they claim to cover most of the GDPR except articles 51–76. A
small portion of this specification has been validated through interdisciplinary collabo-
ration with legal experts [4, 5]. None of these two series of work consider enforcement.

3 Runtime enforcement

In this section, we briefly overview runtime enforcement (RE). We start from a system
model that we assume a system under scrutiny (SuS) implements. This model is a
simplified version of a model introduced in our previous work [19]. We then present the
specification language that our enforcer supports.

System model. Figure 1 shows how an enforcer E supervises a SuS S , which interacts
with an environment X that E cannot control. E must ensure that the sequence of actions
executed by S complies with a given policy P. An example of such a policy is

P1 = “any use of a data item in a system has been preceded by user consent.”

E also has access to the current time τ from some reference clock.
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e(t1, . . . , tk) Event e occurs in the log with arguments t1, . . . , tk
NOTφ φ is not fulfilled
φ ANDψ Both φ and ψ are fulfilled
φ ORψ Either φ or ψ is fulfilled
φ IMPLIESψ If φ is fulfilled, then ψ is fulfilled
EXISTS x. φ There exists some value of x such that φ is fulfilled
FORALL x. φ For any value of x, the formula φ is fulfilled
ONCEφ The formula φ is fulfilled at some time-point in the past or present
HISTORICALLYφ The formula φ is fulfilled at all time-points in the past or present
EVENTUALLYφ The formula φ is fulfilled at some time-point in the present or future
ALWAYSφ The formula φ is fulfilled at all time-points in the present or future

Fig. 2. Syntax and semantics of selected MFOTL operators.

During its execution, S reports events to E. An event is e(a1, . . . , ak) where e is
called the ‘event name’ and a1, . . . , ak are ‘arguments.’ An example of such an event is

uses(“website.com”, “birthday”, “Alice”, “advertisement”),

meaning “the application hosted at website.com is using user Alice’s birthday for
advertisement purposes.” In general, these events are taken from some appropriate
ontology and encode specific actions of S . Events (and the corresponding actions) s
that S reports to E are called observable. E records events in a log together with the
current time. The log is a sequence σ = ((τ1,D1), . . . , (τk,Dk), . . . ), where τ1, . . . , τk
are timestamps and D1, . . . ,Dk are sets of events. Each pair (τi,Di) is called a time-point.

E can then emit commands instructing S to cause and suppress some of its actions.
An action that can be caused is represented by a causable event; an action that can be sup-
pressed is represented by a suppressable event. Which events are causable and suppress-
able depends on the system’s functionality and the way it implements its interface with
the enforcer. For instance, if S is processing data, data usage can typically be made sup-
pressable by ensuring that S always asks E for permission before processing a data item.
On the other hand, erasure of data can typically be made causable provided that S pro-
vides the enforcer E with an interface to execute the erasure of specific data items (e.g.,
from its database). In our model [19], we allow E to send commands to S both in response
to the logging of sets of events (“reactively”) and on its own initiative (“proactively”).

Specification. The specification needed to perform enforcement in the above model
consists of three components:

1. An ontology listing the available event names and the types of their arguments and
describing their high-level meaning in terms of system actions.

2. A mapping of every event name to a set of attributes among ‘observable’, ‘causable,’
and ‘suppressable,’ which we call capabilities.

3. A policy P describing the set of all logs that are deemed legal.

In the past, various logics have been used to describe policies to be enforced at runtime.
In this paper, we will focus on Metric First-Order Temporal Logic (MFOTL) [11, 7], for
which state-of-the-art enforcement tools exists [17, 19].
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A fragment of the syntax of MFOTL and its intuitive semantics are described in
Figure 2. For a formal account, we refer the reader to previous work [7, 19]. As an
example, the policy P1 can be expressed as MFOTL formula φ1

ALWAYS (
FORALL app, data, user, purpose.

uses(app, data, user, purpose) IMPLIES ONCE(consent(user, app, purpose)))

which reads “at all times, for any app, data, user, and purpose, whenever the application
app uses the data data of user user for purpose purpose, then, at an earlier time-point
in the log, user has given consent to app to use their data for purpose.”

Properties of policies. Given an ontology and assumptions on the causability and
suppressability or events, we say that a policy is

enforceable if there exists an enforcer ensuring that SuS is policy-compliant at all times;
transparently enforceable if there exists an enforcer ensuring that SuS is policy-

compliant at all times and it causes or suppresses events only when not causing or
not suppressing them would lead to the policy being violated.

Assuming that data usage is suppressable, the policy P1 above is enforceable: the
enforcer can simply prevent data usage. By considering an enforcer that prevents data
usage only when it is not preceded by consent, we see that P1 is also transparently
enforceable, as usage is suppressed only when this is necessary for compliance. Our
tool WhyEnf [19] can decide whether an MFOTL formula is from some (transparently)
enforceable fragment, and it is able to enforce all formulae it can identify as enforceable.

4 Requirements and methodology

We describe list four key requirements for enforceable specifications of legal provisions
and present our iterative methodology to develop such a specification.

Requirements. What properties should a specification of legal provisions amenable to
RE have? The first requirement is straightforward; it comes in two variants:

R1.1) The policy must be enforceable.
R1.2) The policy must be transparently enforceable.

Some policies are known to be enforceable, but not transparently enforceable [19].
Hence, R1.2 might not always be achievable when R1.1 is.

Whether a policy is enforceable depends on its structure and on the causability and
suppressability of the events it uses. In order for a specification to be usable for RE, we
want such assumptions to be realistic. That is, we want to be able to effectively instrument
the SuS in such a way that the enforcer can cause or suppress the actions that causable
and suppressable events respectively represent. Moreover, we want SuS to accurately
report all observable events to the enforcer. We call this property instrumentability. In
practice, instrumentability can be assessed either generically for a family of systems
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fulfilling certain (formal or informal) requirements, or specifically for a single SuS. The
latter can be most convincingly demonstrated by actually implementing the code that
reports relevant events and executes the enforcer’s commands. We obtain

R2) The system must be instrumentable based on the stated capabilities, i.e.:
R2a) The system must report all actions that give rise to observable events.
R2b) The system must support causation of all actions that give rise to causable

events.
R2c) The system must support suppression of all actions that give rise to suppress-

able events.

Another key requirement for a specification of legal provisions is that is should
capture an acceptable interpretation of the law. This is a qualitative requirement that can
only be fully assessed through an interdisciplinary effort with legal experts. How literal
and strict the interpretation should be—e.g., whether the policy should strictly follow
the logical structure of the law or simply state some stronger condition that guarantees
legality—will depend on the specific application. In the following, we refer to this as
the faithfulness requirement. To obtain a faithful specification, not only does the policy
need to be carefully formulated, but the ontology must also be designed in such a way
that the semantics of each event aligns with legal definitions and are sufficiently precise
to avoid an incorrect instrumentation. We thus get

R3) The ontology and policy must faithfully capture the underlying legal provisions,
i.e., all of the following conditions must hold:

R3a) The policy must capture an acceptable interpretation of the law,
R3b) Every event in the ontology must come together with a clear documentation of

its semantics,
R3c) This semantics must be sufficiently precise so that the instrumentation of each

action (logging and possibly causation/suppression of events) will be consistent
with legal definitions and the expectations of legal experts.

For consistency with previous work [14, 29], we will focus on a ‘literal’ approach that
closely follows the logical structure of existing legislation. Hence, R3a will be understood
as requiring a close logical correspondence with the law.

As formal specifications of legal provisions should serve as bridges between the
legal and technical communities, it is reasonable to require that these specifications be
understandable by both legal and technical experts. Yet, accessibility to an audience
without any exposure to formal reasoning is likely to be infeasible, even when using
a user-friendly surface representation [4]. Fortunately, legal experts involved in the
assessment of formal specifications of software systems are generally more technically
experienced than their peers. They may additionally be offered some form of training
that should, however, not be excessively long or difficult. Those trained experts are those
we will refer to as ‘legal experts’ in the rest of this paper.

Ensuring the understandability of formal specifications is not only important for
legal experts. Even technical experts’ understanding of a policy may be influenced when
the complexity of the policy grows. As the the representation of the same policy in
various formal frameworks can be very different, the understandability of a specification
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depends on the formalism used. But even within a given formalism, certain design
decisions such as, e.g., ensuring that the policy is written in a reasonably concise way,
can significantly improve understandability.

R4) The policy must be understandable by both technical and legal experts, i.e., all of
the following conditions must hold:

R4a) The logical formalism must be accessible to both technical and legal audiences
assuming a moderate amount of training,

R4b) The policy must be expressed in a clear and concise way,
R4c) The complexity (size, logical structure) of the policy must not grow beyond

what experts can comprehend.

Only R1 can be automatically checked using a tool such as WhyEnf [19], while R2
can be demonstrated by either concrete implementation or high-level reasoning and R3–
4 are qualitative. Figure 3 summarizes the parts of the specification that each requirement
concerns and which tool or expert(s) can assert its fulfillment.

Involves...
Ontology Capabilities Policy Assessment by...

R1 ✓ ✓ ✓ Tool (e.g. [19])
R2a ✓ ✓ Technical expert
R2b ✓ ✓ Technical expert
R2c ✓ ✓ Technical expert
R3a ✓ ✓ Legal expert
R3b ✓ Legal expert
R3c ✓ Legal and technical expert
R4a ✓ Legal and technical expert
R4b ✓ Legal and technical expert
R4c ✓ Legal and technical expert

Fig. 3. Summary of requirements

Methodology. We now present an iterative methodology to develop a specification
fulfilling R1–4. The flowchart of our methodology is shown in Figure 4.

Our methodology resembles pair programming [23] in which a technical expert
(TE, e.g., a programmer or a logician) collaborates with a legal expert (LE) to develop
an enforceable specification of a given set of legal provisions. The TE and LE start by
selecting a formalism or a series of formalisms that fulfills R4a. Using several formalisms
that can be mechanically converted into each other can be meaningful when, e.g., the
LE is more comfortable with a textual representation of the formula while the TE
wishes a more mathematical representation [4]. If previous work has already developed
a partial specification of the law, then this existing specification can be converted into a
specification in the new formalism and serve as a starting point.

After a possible conversion step, the TE and LE start by jointly drafting an ontology
representing the law’s main concepts and checking its compatibility with requirements
R3b–c (clarity, precision). Next, they draft a policy representing the law’s provisions
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and check its compatibility with requirements R3a and R4b–c (acceptable interpretation
of the law, understandability). Then, the TE sets the capacities of each event described
in the ontology to fulfill R2a–c. Finally, they use a tool such as WhyEnf [19] to check
whether the policy is enforceable (i.e., R1). If this is the case, then the TE and LE have
successfully derived a specification that fulfills all of the stated requirements. Otherwise,
the following can be attempted to recover enforceability: (1) extend the capabilities
(if possible) to observe, cause, or suppress more actions (2) modify the policy (while
preserving R3a and R4b–c) to make it enforceable (3) modify the ontology and/or the
policy (while preserving all requirements) to make the policy enforceable. We suggest
to try these in the order of the least required changes to the specification.

5 Case study

In this section, we report on a preliminary case study in developing an enforceable
GDPR specification using the methodology in Section 4. This case study was conducted
as part of one of the authors’ Master’s thesis [21], using the existing specification from
DAPRECO [29] as a starting point. While this preliminary case study did not involve
legal experts, we claim that it already demonstrates the potential of our approach to
improve over the state of the art. Namely, our case study allowed us to discover and correct
a number of inaccuracies in the existing specification, and generate a specification of
single GDPR provisions that is directly amenable to formal reasoning using the WhyEnf
enforcement tool [19].

Formalism selection and conversion. We pick MFOTL as a formalism for specifying
our policies as previous work [2, 18] has shown that MFOTL provides the necessary
expressivity for encoding (parts of) existing laws, and enforcement tools for MFOTL
are available [17, 19].

We first developed a series of algorithms to convert the Reified I/O Logic specifica-
tion by Robaldo et al. [29] into an equivalent2 MFOTL specification [21], and applied
it to the DAPRECO knowledge base to obtain an MFOTL formula for each of 966 Rei-
fied I/O Logic formulae of DAPRECO. Conversion involved transforming I/O rules into
classical implications to be enforced; identifying the temporal patterns encoded through
reification; and rewriting these patterns using MFOTL operators. We also implemented
a number of static checks aimed at identifying incorrect syntactic patterns, such as un-
used variables. The DAPRECO ontology, which to the best of our knowledge remained
documented, was then extracted from the resulting MFOTL formulae.

Deriving an enforceable formal specification of Art. 7(1). In the following, we describe
in detail how we derived an enforceable specification for Article 7(1) GDPR and cor-
rected inaccuracies in an initial specification derived from DAPRECO. We chose this ar-
ticle as it served as an example to demonstrate DAPRECO’s validation methodology [4,
5], which involved legal experts. Article 7(1) GDPR states

2 In the course of developing this conversion algorithm, it became apparent that some of the
logical formalisms used by Robaldo et al., especially reification, lacked formal semantics. A
semantics thus had to be reconstructed based on textual descriptions from previous work.
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Fig. 4. Flowchart of our methodology
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Where processing is based on consent, the controller shall be able to demonstrate
that the data subject has consented to processing of his or her personal data.

After an automated conversion to MFOTL, the DAPRECO version of this provision reads

φD
7(1) = ALWAYS (

EXISTS ep, eau, edp,w, z, x, epu, c. (
PersonalDataProcessing(ep, x, z) AND isBasedOn(ep, epu)
ANDGiveConsent(ehc,w, c) ANDAuthorizedBy(eau, epu, c)
AND nominates(edp, y, x) ANDPersonalData(z,w) ANDPurpose(epu))

IMPLIES (EXISTS ea, ed. (AbleTo(ea, y, ed) ANDDemonstrate(ed, y, ehc)))).

English equivalent: “Whenever personal data of an individual is processed by a pro-
cessor nominated by a controller, and the processing is based on a purpose, and the
individual’s consent authorizes the purpose (sic!), then the controller must be able to
demonstrate that that consent has been given. ”

The corresponding (undocumented) ontology contains all the events appearing in
the formula. First, we need to reconstruct the precise semantics of the events it contains
(R3b–c). For space reasons, we do not spell out the semantics of all of these events
here, but focus on GiveConsent, inBasedOn, and AuthorizedBy. From its use in the
specification, the semantics of GiveConsent(ehc,w, c) can be reconstructed as “the
individual w gives consent c; the individual’s action of giving consent is given the unique
identifier ehc.” The meaning of isBasedOn(ep, epu) and AuthorizedBy(eau, epu, c) is
much less clear: the use of the variable epu suggest the semantics “the processing task
ep is based on the purpose epu” and “[usage for] purpose epu is authorized by consent
c; this authorization relation is given the unique identifier eau.” However, the law only
refers to “based on consent,” not to “based on a purpose” and “authorized by consent,”
and the consent action appears to be missing the identity of the controller. While
Robaldo et al. may have chosen this approach for consistency with the earlier PrOnto
ontology [27], which has isBasedOn, we see this part of the ontology as diverging from
the GDPR’s concepts. We suggest to instead use two predicates isBasedOn(ep, ehc)
and GiveConsent(ehc,w, x, epu) with the semantics “data processing ep is based on
consent action ehc” and ”by consent action ehc, user w grands consent to x to use her data
for purpose epu,” and to add an event hasPurpose(ep, epu) meaning “the processing
ep has the purpose epu.” The fact that epu is always a purpose makes an additional
Purpose(epu) event redundant in this case. After modifying the ontology, our formula is

φ2
7(1) = ALWAYS (

EXISTS ep, eau, edp,w, z, x, epu, c. (
PersonalDataProcessing(ep, x, z) AND isBasedOn(ep, ehc)
ANDGiveConsent(ehc,w, x, epu) AND hasPurpose(ep, epu)
AND nominates(edp, y, x) ANDPersonalData(z,w))

IMPLIES (EXISTS ea, ed. (AbleTo(ea, y, ed) ANDDemonstrate(ed, y, ehc)))).



Towards an Enforceable GDPR Specification 11

English equivalent: “Whenever personal data of an individual is processed by a proces-
sor nominated by a controller, and the processing is based on consent given by the user
for the purpose of the current processing, then the controller must be able to demon-
strate that that consent has been given. ”

Now, we perform the checks related to the policy. Does φD
7(1) accurately reflect the

letter of the law (R3a)? We claim that the temporal structure of the formula is not cor-
rect, as the specification states that an obligation to demonstrate consent only exists
when the data processing (PersonalDataProcessing) and consent (GiveConsent) are
simultaneous. This obviously goes against standard legal interpretations (see, e.g., [24,
Art. 7, Rn. 6]). Hence, we must correct φ2

7(1) by replacing GiveConsent(ehc,w, x, epu)
by ONCE GiveConsent(ehc,w, x, epu). We call the resulting formula φ3

7(1) Note that
this problem is independent of the mismatch between GDPR concepts and the on-
tology that we corrected in the previous step. Is the formula clear (R4b–c)? From a
mathematical point of view, one potential source of confusion is that two variables
(ehc, y) are implicitly universally quantified [29]. After adding explicit quantifiers (i.e.,
ALWAYS FORALL ehc, y . . . ), we obtain

φ4
7(1) = ALWAYS FORALL ehc, y. (

EXISTS ep, eau, edp,w, z, x, epu, c. (
PersonalDataProcessing(ep, x, z) AND isBasedOn(ep, ehc)
AND (ONCEGiveConsent(ehc,w, x, epu)) AND hasPurpose(ep, epu)
AND nominates(edp, y, x) ANDPersonalData(z,w))

IMPLIES (EXISTS ea, ed. (AbleTo(ea, y, ed) ANDDemonstrate(ed, y, ehc)))).

English equivalent: “Whenever personal data of an individual is processed by a proces-
sor nominated by a controller, and the processing is based on consent previously given
by the user for the purpose of the current processing, then the controller must be able
to demonstrate that that consent has been given. ”

We claim thatφ4
7(1) is mathematically clear and concise, and that its complexity (a few

lines) is reasonable. Making this formula understandable to non-technical experts does,
however, require some accurate higher-level representation, e.g., of the form proposed
by Robaldo et al. [29].

Next, we set the capabilities, assuming, as suggested in Section 3, that data pro-
cessing in our SuS can be subjected to prior approval by the enforcer. In this case,
PersonalDataProcessing can be made observable and suppressable. The other relevant
actions can all be made observable by ensuring that the SuS can report the legal basis and
purposes of processing, received consent, processor-controller delegation relationships,
and its capacity to demonstrate consent to the enforcer. This satisfies R2a–c. Finally, we
use WhyEnf [19] to check the enforceability of φ4

7(1) when PersonalDataProcessing is
suppressable. The check succeeds, guaranteeing transparent enforceability (R1.2): to en-
sure compliance withφ4

7(1) at all times, it necessary and sufficient to prevent personal data
processing when the system can not demonstrate that it has previously obtained consent.
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Discussion. We performed a similar effort for all provisions of Articles 5, 6, 7, 11, 12, 13,
and 17 covered by DAPRECO. We discovered many issues related to unclear semantics
of predicates, inaccurate modeling of time, unused variables, and lack of clarity [21].

The fact that even the specification that Robaldo et al. validated with legal ex-
perts [29] proved to be incorrect after a more precise analysis shows the benefits of
our methodology and its anchoring in formal methods, especially RE. The criteria of
“accuracy, completeness, correctness, consistency, and conciseness” [29] against which
Robaldo et al. asked their experts to evaluate the policy failed to prevent the inaccuracies
we identified, likely because (1) the semantics of the ontology was never documented
and evaluated together with the policy, and (2) the representation of time in Reified I/O
logic was too complex to be properly used even by the experts themselves.

Our conversion to MFOTL made many modeling mistakes apparent. Hence, another
take-away is that MFOTL is a promising specification language to formalize legal
provisions, allowing for expressive first-order modeling with a transparent encoding of
time.

6 Conclusion and open questions

In this paper, we have presented four requirements and a new methodology for devel-
oping enforceable formal specifications of privacy laws. We have then reported on a
preliminary case study focusing on selected provisions of the General Data Protection
Regulation (GDPR). In the course of our case study, we have identified several inaccu-
racies in an existing GDPR specification. Overall, our case study demonstrates the ben-
efits of our methodology and suggests Metric First-Order Temporal Logic (MFOTL) as
a promising language for formalizing laws.

In order to obtain an enforceable, state-of-the-art specification that can serve as a
reference for both computer scientists and legal experts, our preliminary case study needs
to be extended in two directions: by involving several technical and legal experts, and by
extending the scope of the formalization effort to a larger fragment of the GDPR—ideally
covering all provisions that regulate computer systems’ behavior. To allow for efficient
collaboration between legal and technical experts in this context, relying a more user-
friendly specification language with some temporal features (rather than just MFOTL)
is indispensable. We plan to develop such a language as part of our future work.

Another open question is how to refine general specifications of the ‘literal’ kind we
discussed into simpler, more concrete specifications tailored to guarantee the compliance
of specific systems. While a rich theory of refinement exists within formal methods, we
are not aware of any previous work that would apply these techniques in a legal context.

Last but not least, our preliminary results and the inaccuracies we identified in
previous work call for the development of more systematic methodology for the joint
assessment of legal compliance by both legal and technical experts. In general, technical
experts alone cannot assert the compliance of a system with legal requirements. But
neither can legal experts if their understanding of the system’s behavior is not informed
by trustworthy technical experts’ knowledge. As a result, only a joint assessment of
compliance is ever possible. This raises fundamental theoretical and practical questions
than can be interesting to both the technical and legal communities.
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