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“Developer looking at 
production logs after a 

regression with downtime”

Sir Joseph Noel Paton, 
 Oil on Canvas, 1861



“Automatic procedure for evaluating a 
formal specification over a trace of 

recorded events produced by a system” 
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Trace Checking



How do we specify 
properties to check?
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Metric Temporal Logic
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MTL Semantics

FI(�)

“Formula ɸ holds eventually in the future 
within a time window I”
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MTL Trace Checking: Challenges

Scalability with respect to 
the size of the trace

F(0,3333](�) �
G(0,5000](�) � F
�U(0,105000](�)

Scalability with respect 
to the size of the timing 
intervals in the formula

¬
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Wikipedia Page Traffic 
Statistics Dataset

Contains 7 months of hourly page view statistics for all 
articles in Wikipedia

Size: 320 GB
Created On: June 9, 2009



DARPA Scalable Network 
Monitoring (SNM) Program Traffic
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Size: 7083.4 TB
Created On: November 12, 2009

Contains 9 days of captured network traffic
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Scalability with respect to the 
size of the trace
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Scalability with respect to the 
size of the trace

Solution: Distributed Trace Checking
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Abstract. Modern, complex software systems produce a large amount of execu-
tion data, often stored in logs. These logs can be analyzed using trace checking
techniques to check whether the system complies with its requirements specifi-
cations. Often these specifications express quantitative properties of the system,
which include timing constraints as well as higher-level constraints on the occur-
rences of events, expressed using aggregate operators.
In this paper we present an algorithm that exploits the MapReduce programming
model to check specifications expressed in a metric temporal logic with aggregat-
ing modalities, over large execution traces. The algorithm exploits the structure of
the formula to parallelize the evaluation, with a significant gain in time. We report
on the evaluation of the implementation—based on the Hadoop framework—of
the proposed algorithm and comment on its scalability.

1 Introduction

Modern software systems, such as service-based applications (SBA), are built accord-
ing to a modular and decentralized architecture, and execute on a distributed environ-
ment. Their development and their operation depend on many stakeholders, including
the providers of various third-party services and the integrators that realize composite
applications by orchestrating third-party services. Service integrators are responsible,
to the end-users for guaranteeing an adequate level of quality of service, both in terms
of functional and non-functional requirements. This new type of software has triggered
several research efforts on the specification and verification of SBAs.

In previous work [7], some of the authors presented the results of a field study on
property specification patterns [11] used in the context of SBAs, both in industrial and
in research settings. The study identified a new set of property specification patterns
specific to service provisioning. Most of these patterns are characterized by the pres-
ence of aggregate operations on sequence of events occurring in a given time window,
such as “the average distance between pairs of events (e.g., average response time)”,
“the number of events in a given time window”, “the average (or maximum) number
of events in a certain time interval over a certain time window”. This study led to the
definition of SOLOIST [8] (SpecificatiOn Language fOr servIce compoSitions inTerac-
tions), an extension of metric temporal logic with new temporal modalities that support
aggregate operations on events occurring in a given time window. The new temporal
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Health Insurance Portability 
and Accountability Act of 1996
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“Retain the documentation […] for 
6 years from the date of its 

creation or the date when it last was 
in effect, whichever is later”



Trace Checking Temporal 
operators
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Trace Checking Temporal 
operators
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Queue-like data structure
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FI(�)

Size of the temporal interval

Queue-like data structure



Trace Checking Temporal 
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FI(�)

Size of the temporal interval

Queue-like data structure

Granularity of the trace



Trace Checking Temporal 
operators
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Trace Checking Temporal 
operators
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FI(�)

OutOfMemoryException!
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Scalability with respect to the 
size of the temporal intervals
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Scalability with respect to the 
size of the temporal intervals

Solution: Decomposing formulae 
with large intervals



Decomposition of 
temporal formulae
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temporal formulae
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Decomposition of 
temporal formulae
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Equivalent?

F(0,10000)( ) � F(0,5000]( ) � F=5000(F(0,5000)( ))� � �
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Point-based MTL Semantics
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Point-based MTL Semantics
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Point-based semantics relies on 
the explicit existence of a position for every formula



Point-based MTL Semantics

 30

(�, �, i) |= FI� � �i�.(i� � i � �i� � �i � I � (�, �, i�) |= �)

Point-based semantics relies on 
the explicit existence of a position for every formula



 31

q p

1 3

F=1F=1(p)F=2(p)

Point-based MTL Semantics
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q p

1 3

F=1F=1(p)F=2(p)

Point-based MTL Semantics

?



Our Proposal
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Lazy MTL Semantics
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(�, �, t) |=L FI� � �t�.(t� � t � t� � t � I � (�, �, t�) |=L �)

Lazy semantics does not require the explicit 
existence of a position for temporal operators

t t t t t t t

(however, atomic propositions still require
 the explicit existence of a position)



Properties of 
Lazy MTL Semantics
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Properties of 
Lazy MTL Semantics
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Strictly more expressive than point-based semantics

Overlapping intervals can be combined

Nested intervals can be combined



Combining the nested intervals
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Combining overlapping intervals
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temporal formulae
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Parametric Decomposition
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Parametric Decomposition

… or using any parameter K
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How to pick an appropriate  
parameter K?

 43



How to pick an appropriate  
parameter K?
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Rule of thumb: largest K supported by 
the infrastructure



Trace Checking using 
MapReduce and Lazy Semantics

1. Infer the value of K 

2. Analyze the input formula Φ

3. If all intervals are bounded by K, apply the point-based 
semantics

4. Otherwise, decompose the formula according to K and 
then apply the lazy semantics
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Evaluation Highlights
• RQ1: Scalability with respect to the size of the time interval

• RQ2:  Time/memory tradeoff with respect to the 
decomposition parameter K

• RQ3: Size and the height of the decomposed formula

•
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decomposition parameter K
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Memory scalability obtained

Smaller K: less memory, more time

Smaller K: larger formula



Summary
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Future Research Directions

• Lazy semantics vs signal-based semantics

• Automatic and heterogeneous decomposition

• Decomposition of other operators
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