
Efficient Large-scale
Trace Checking

using MapReduce
Srđan Krstić

with
Marcello M. Bersani, Domenico Bianculli, Carlo Ghezzi and Pierluigi San Pietro

Efficient Large-scale
Trace Checking

using MapReduce
Srđan Krstić

with
Marcello M. Bersani, Domenico Bianculli, Carlo Ghezzi and Pierluigi San Pietro

<1s

“Developer looking at
production logs after a

regression with downtime”

Sir Joseph Noel Paton,
 Oil on Canvas, 1861

“Automatic procedure for evaluating a
formal specification over a trace of

recorded events produced by a system”

 6

Trace Checking

How do we specify
properties to check?

 7

 8

Metric Temporal Logic

� ::= p | ¬� | � � � | �UI�

Model: Timed Word

 9

p q qp

q

1 75 8 10 14

r

rr

r

Model: Timed Word

 10

p q qp

q

1 75 8 10 14

r

rr

r

Positions:

Model: Timed Word

 10

p q qp

q

1 75 8 10 14

r

rr

r

Positions:

Events:

Model: Timed Word

 10

p q qp

q

1 75 8 10 14

r

rr

r

Positions:

Events:

Timestamps:

 11

MTL Semantics

FI(�)

“Formula ɸ holds eventually in the future
within a time window I”

 12

MTL Trace Checking: Challenges

Scalability with respect to
the size of the trace

F(0,3333](�) �
G(0,5000](�) � F
�U(0,105000](�)

Scalability with respect
to the size of the timing
intervals in the formula

¬

 13

MTL Trace Checking: Challenges

Scalability with respect to
the size of the trace

 14

Wikipedia Page Traffic
Statistics Dataset

Contains 7 months of hourly page view statistics for all
articles in Wikipedia

Size: 320 GB
Created On: June 9, 2009

DARPA Scalable Network
Monitoring (SNM) Program Traffic

 15

Size: 7083.4 TB
Created On: November 12, 2009

Contains 9 days of captured network traffic

 16

Scalability with respect to the
size of the trace

 16

Scalability with respect to the
size of the trace

Solution: Distributed Trace Checking

 16

Scalability with respect to the
size of the trace

Trace checking of Metric Temporal Logic with

Aggregating Modalities using MapReduce

Domenico Bianculli1, Carlo Ghezzi2, and Srd̄an Krstić2

1 SnT Centre - University of Luxembourg, Luxembourg
domenico.bianculli@uni.lu

2 DEEP-SE group - DEIB - Politecnico di Milano, Italy
{ghezzi,krstic}@elet.polimi.it

Abstract. Modern, complex software systems produce a large amount of execu-
tion data, often stored in logs. These logs can be analyzed using trace checking
techniques to check whether the system complies with its requirements specifi-
cations. Often these specifications express quantitative properties of the system,
which include timing constraints as well as higher-level constraints on the occur-
rences of events, expressed using aggregate operators.
In this paper we present an algorithm that exploits the MapReduce programming
model to check specifications expressed in a metric temporal logic with aggregat-
ing modalities, over large execution traces. The algorithm exploits the structure of
the formula to parallelize the evaluation, with a significant gain in time. We report
on the evaluation of the implementation—based on the Hadoop framework—of
the proposed algorithm and comment on its scalability.

1 Introduction

Modern software systems, such as service-based applications (SBA), are built accord-
ing to a modular and decentralized architecture, and execute on a distributed environ-
ment. Their development and their operation depend on many stakeholders, including
the providers of various third-party services and the integrators that realize composite
applications by orchestrating third-party services. Service integrators are responsible,
to the end-users for guaranteeing an adequate level of quality of service, both in terms
of functional and non-functional requirements. This new type of software has triggered
several research efforts on the specification and verification of SBAs.

In previous work [7], some of the authors presented the results of a field study on
property specification patterns [11] used in the context of SBAs, both in industrial and
in research settings. The study identified a new set of property specification patterns
specific to service provisioning. Most of these patterns are characterized by the pres-
ence of aggregate operations on sequence of events occurring in a given time window,
such as “the average distance between pairs of events (e.g., average response time)”,
“the number of events in a given time window”, “the average (or maximum) number
of events in a certain time interval over a certain time window”. This study led to the
definition of SOLOIST [8] (SpecificatiOn Language fOr servIce compoSitions inTerac-
tions), an extension of metric temporal logic with new temporal modalities that support
aggregate operations on events occurring in a given time window. The new temporal

SEFM 2014

Solution: Distributed Trace Checking

 17

MTL Trace Checking: Challenges

Scalability with respect to
the size of the trace

F(0,3333](�) �
G(0,5000](�) � F
�U(0,105000](�)

Scalability with respect to
the size of the timing

intervals in the formula

¬

 17

MTL Trace Checking: Challenges

Scalability with respect to
the size of the trace

Distr
ibuted

Trace
 Checking

F(0,3333](�) �
G(0,5000](�) � F
�U(0,105000](�)

Scalability with respect to
the size of the timing

intervals in the formula

¬

 18

MTL Trace Checking: Challenges

F(0,3333](�) �
G(0,5000](�) � F
�U(0,105000](�)

Scalability with respect to
the size of the timing

intervals in the formula

¬

Health Insurance Portability
and Accountability Act of 1996

 19

“Retain the documentation […] for
6 years from the date of its

creation or the date when it last was
in effect, whichever is later”

Trace Checking Temporal
operators

 20

FI(�)

Trace Checking Temporal
operators

 20

FI(�)

Metric Eventually operator

Trace Checking Temporal
operators

 20

FI(�)

Reverse scanning

Metric Eventually operator

Trace Checking Temporal
operators

 20

FI(�)

Reverse scanning

Incremental verdict

Metric Eventually operator

Trace Checking Temporal
operators

 20

FI(�)

��� � � � � � � � ��� � � � �� � � �

Reverse scanning

Incremental verdict

Metric Eventually operator

Trace Checking Temporal
operators

 21

FI(�)

Trace Checking Temporal
operators

 21

FI(�)

Queue-like data structure

Trace Checking Temporal
operators

 21

FI(�)

Size of the temporal interval

Queue-like data structure

Trace Checking Temporal
operators

 21

FI(�)

Size of the temporal interval

Queue-like data structure

Granularity of the trace

Trace Checking Temporal
operators

 22

FI(�)

Trace Checking Temporal
operators

 23

FI(�)

OutOfMemoryException!

 24

Scalability with respect to the
size of the temporal intervals

 24

Scalability with respect to the
size of the temporal intervals

Solution: Decomposing formulae
with large intervals

Decomposition of
temporal formulae

 25

0 10000

Decomposition of
temporal formulae

 25

()

F(0,10000]()�

0 10000

Decomposition of
temporal formulae

 26

()](

F(0,5000]() F(0,5000)()� �

0 10000

Decomposition of
temporal formulae

 26

()](

F(0,5000]() F(0,5000)()� �

F(0,10000)() � F(0,5000]() � F=5000(F(0,5000)())� � �

0 10000

Decomposition of
temporal formulae

 27

Equivalent?

F(0,10000)() � F(0,5000]() � F=5000(F(0,5000)())� � �

 28

Point-based MTL Semantics

F(3,9](�)

p q qp

q

…

0 43 6 8 9

p

10

q

!

 29

Point-based MTL Semantics

p q qp

q

…

0 43 6 8 9

p

10

q

(]

F(3,9](�)
�!

Point-based MTL Semantics

 30

(�, �, i) |= FI� � �i�.(i� � i � �i� � �i � I � (�, �, i�) |= �)

Point-based semantics relies on
the explicit existence of a position for every formula

Point-based MTL Semantics

 30

(�, �, i) |= FI� � �i�.(i� � i � �i� � �i � I � (�, �, i�) |= �)

Point-based semantics relies on
the explicit existence of a position for every formula

 31

q p

1 3

F=1F=1(p)F=2(p)

Point-based MTL Semantics

 32

q p

1 3

F=1F=1(p)F=2(p)

Point-based MTL Semantics

?

Our Proposal

 33

Lazy MTL Semantics

 34

F(3,9](�)

Lazy MTL Semantics

p q qp

q

…

0 43 6 8 9

p

10

q

!

 35

(]

F(3,9](�)
�

Lazy MTL Semantics

p q qp

q

…

0 43 6 8 9

p

10

q

!

Lazy MTL Semantics

 36

(�, �, t) |=L FI� � �t�.(t� � t � t� � t � I � (�, �, t�) |=L �)

Lazy semantics does not require the explicit
existence of a position for temporal operators

Lazy MTL Semantics

 36

(�, �, t) |=L FI� � �t�.(t� � t � t� � t � I � (�, �, t�) |=L �)

Lazy semantics does not require the explicit
existence of a position for temporal operators

t t t t t t t

Lazy MTL Semantics

 36

(�, �, t) |=L FI� � �t�.(t� � t � t� � t � I � (�, �, t�) |=L �)

Lazy semantics does not require the explicit
existence of a position for temporal operators

t t t t t t t

(however, atomic propositions still require
 the explicit existence of a position)

Properties of
Lazy MTL Semantics

 37

Properties of
Lazy MTL Semantics

 38

Strictly more expressive than point-based semantics

Overlapping intervals can be combined

Nested intervals can be combined

Combining the nested intervals

 39

p q qp

q

…

1 43 6 8 9

p

10

q

Combining the nested intervals

 39

p q qp

q

…

1 43 6 8 9

p

10

q

!

F(2,5]F(3,4](p)

Combining the nested intervals

 39

p q qp

q

…

1 43 6 8 9

p

10

q

(]

F(3,4](p)

!!

F(2,5]F(3,4](p)

Combining the nested intervals

 39

p q qp

q

…

1 43 6 8 9

p

10

q

(]

F(3,4](p)

!!

F(2,5]F(3,4](p)

(]!
p

� F(5,9](p)

Combining overlapping intervals

 40

p q qp

q

…

1 43 6 8 9

p

10

q

Combining overlapping intervals

 40

p q qp

q

…

1 43 6 8 9

p

10

q

!

F(2,5](p) � F(4,8](p)

Combining overlapping intervals

 40

p q qp

q

…

1 43 6 8 9

p

10

q

(]
!
p

!

F(2,5](p) � F(4,8](p)

Combining overlapping intervals

 40

p q qp

q

…

1 43 6 8 9

p

10

q

(]
!
p

(]
!
p!

F(2,5](p) � F(4,8](p)

Combining overlapping intervals

 40

p q qp

q

…

1 43 6 8 9

p

10

q

� F(2,8](p)

(]
!
p!

F(2,5](p) � F(4,8](p)

Decomposition of
temporal formulae

 41

F(0,10000)() � F(0,5000]() � F=5000(F(0,5000)())� � �

Decomposition of
temporal formulae

 41

Nested intervals� �� �
F(0,10000)() � F(0,5000]() � F=5000(F(0,5000)())� � �

Decomposition of
temporal formulae

 41

Nested intervals� �� �

� �� �
Overlapping intervals

F(0,10000)() � F(0,5000]() � F=5000(F(0,5000)())� � �

Decomposition of
temporal formulae

 41

Nested intervals� �� �

� �� �
Overlapping intervals

F(0,10000)() � F(0,5000]() � F=5000(F(0,5000)())� � �

 42

Parametric Decomposition
0 10000

 42

Parametric Decomposition

()

F(0,10000]()�
K=10000

0 10000

 42

Parametric Decomposition

()

F(0,10000]()�
K=10000

()](

F(0,5000]() F(0,5000)()� �
K=5000

0 10000

 42

Parametric Decomposition

()

F(0,10000]()�
K=10000

()](

F(0,5000]() F(0,5000)()� �
K=5000

()](](

F(0,3333]() F(0,3333]() F(0,3333]()� � �
K=3333

0 10000

 42

Parametric Decomposition

… or using any parameter K

()

F(0,10000]()�
K=10000

()](

F(0,5000]() F(0,5000)()� �
K=5000

()](](

F(0,3333]() F(0,3333]() F(0,3333]()� � �
K=3333

0 10000

How to pick an appropriate
parameter K?

 43

How to pick an appropriate
parameter K?

 43

Rule of thumb: largest K supported by
the infrastructure

Trace Checking using
MapReduce and Lazy Semantics

1. Infer the value of K

2. Analyze the input formula Φ

3. If all intervals are bounded by K, apply the point-based
semantics

4. Otherwise, decompose the formula according to K and
then apply the lazy semantics

 44

Evaluation Highlights
• RQ1: Scalability with respect to the size of the time interval

• RQ2: Time/memory tradeoff with respect to the
decomposition parameter K

• RQ3: Size and the height of the decomposed formula

•

 45

Evaluation Highlights
• RQ1: Scalability with respect to the size of the time interval

• RQ2: Time/memory tradeoff with respect to the
decomposition parameter K

• RQ3: Size and the height of the decomposed formula

•

 45

Memory scalability obtained

Evaluation Highlights
• RQ1: Scalability with respect to the size of the time interval

• RQ2: Time/memory tradeoff with respect to the
decomposition parameter K

• RQ3: Size and the height of the decomposed formula

•

 45

Memory scalability obtained

Smaller K: less memory, more time

Evaluation Highlights
• RQ1: Scalability with respect to the size of the time interval

• RQ2: Time/memory tradeoff with respect to the
decomposition parameter K

• RQ3: Size and the height of the decomposed formula

•

 45

Memory scalability obtained

Smaller K: less memory, more time

Smaller K: larger formula

Summary

 47

 47

 47

 47

 47

 47

 47

Efficient Large-scale
Trace Checking

using MapReduce
Srđan Krstić

with
Marcello M. Bersani, Domenico Bianculli, Carlo Ghezzi and Pierluigi San Pietro

Future Research Directions

• Lazy semantics vs signal-based semantics

• Automatic and heterogeneous decomposition

• Decomposition of other operators

 49

