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Abstract
The relational calculus (RC) is a concise, declarative query language. However, existing RC query
evaluation approaches are inefficient and often deviate from established algorithms based on finite
tables used in database management systems. We devise a new translation of an arbitrary RC query
into two safe-range queries, for which the finiteness of the query’s evaluation result is guaranteed.
Assuming an infinite domain, the two queries have the following meaning: The first is closed and
characterizes the original query’s relative safety, i.e., whether given a fixed database, the original
query evaluates to a finite relation. The second safe-range query is equivalent to the original query, if
the latter is relatively safe. We compose our translation with other, more standard ones to ultimately
obtain two SQL queries. This allows us to use standard database management systems to evaluate
arbitrary RC queries. We show that our translation improves the time complexity over existing
approaches, which we also empirically confirm in both realistic and synthetic experiments.
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1 Introduction

Codd’s theorem states that all domain-independent queries of the relational calculus (RC)
can be expressed in relational algebra (RA) [10]. A popular interpretation of this result is that
RA suffices to express all interesting queries. This interpretation justifies why SQL evolved as
the practical database query language with the RA as its mathematical foundation. SQL is
declarative and abstracts over the actual RA expression used to evaluate a query. Yet, SQL’s
syntax inherits RA’s deliberate syntactic limitations, such as union-compatibility, which
ensure domain independence. RC does not have such syntactic limitations, which arguably
makes it a more attractive declarative query language than both RA and SQL. The main
problem of RC is that it is not immediately clear how to evaluate even domain-independent
queries, much less how to handle the domain-dependent (i.e., not domain-independent) ones.

As a running example, consider a shop in which brands (unary finite relation B of brands)
sell products (binary finite relation P relating brands and products) and products are reviewed
by users with a score (ternary finite relation S relating products, users, and scores). We
consider a brand suspicious if there is a user and a score such that all the brand’s products
were reviewed by that user with that score. An RC query computing suspicious brands is

Qsusp B B(b) ∧ ∃u, s. ∀p. P(b, p) −→ S(p, u, s).
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11:2 Practical Relational Calculus Query Evaluation

This query is domain-independent and follows closely our informal description. It is not,
however, clear how to evaluate it because its second conjunct is domain-dependent as it is
satisfied for every brand that does not occur in P. Finding suspicious brands using RA or
SQL is a challenge, which only the best students from an undergraduate database course
will accomplish. We give away an RA answer next (where − is the set difference operator
and ▷ is the anti-join, also known as the generalized difference operator [1]):

πbrand((πuser,score(S)× B)− πbrand,user,score((πuser,score(S)× P) ▷ S)) ∪ (B− πbrand(P)).

The highlighted expressions πuser,score(S) are called generators. They ensure that the left
operands of the anti-join and set difference operators include or have the same columns (i.e.,
are union-compatible) as the corresponding right operands. (Following Codd [10], one could
in principle also use the active domain to obtain canonical, but far less efficient, generators.)

Van Gelder and Topor [13, 14] present a translation from a decidable class of domain-
independent RC queries, called evaluable, to RA expressions. Their translation of the evaluable
Qsusp query would yield different generators, replacing both highlighted parts by πuser(S)×
πscore(S). That one can avoid this Cartesian product as shown above is subtle: Replacing
only the first highlighted generator with the product results in an inequivalent RA expression.

Once we have identified suspicious brands, we may want to obtain the users whose scoring
made the brands suspicious. In RC, omitting u’s quantifier from Qsusp achieves just that:

Qsusp
user B B(b) ∧ ∃s. ∀p. P(b, p) −→ S(p, u, s).

In contrast, RA cannot express the same property as it is domain-dependent (hence also not
evaluable and thus out of scope for Van Gelder and Topor’s translation): Qsusp

user is satisfied
for every user if a brand has no products, i.e., it does not occur in P. Yet, Qsusp

user is satisfied
for finitely many users on every database instance where P contains at least one row for every
brand from the relation B, in other words Qsusp

user is relatively safe on such database instances.
How does one evaluate queries that are not evaluable or even domain-dependent? The

main approaches from the literature (Section 2) are either to use variants of the active domain
semantics [2, 5, 15] or to abandon finite relations entirely and evaluate queries using finite
representations of infinite (but well-behaved) relations such as systems of constraints [26] or
automatic structures [6]. These approaches favor expressiveness over efficiency. Unlike query
translations, they cannot benefit from decades of practical database research and engineering.

In this work, we translate arbitrary RC queries to RA expressions under the assumption
of an infinite domain. To deal with queries that are domain-dependent, our translation
produces two RA expressions, instead of a single equivalent one. The first RA expression
characterizes the original RC query’s relative safety, the decidable question of whether the
query evaluates to a finite relation for a given database, which can be the case even for
a domain-dependent query, e.g., Qsusp

user . If the original query is relatively safe on a given
database, i.e., produces some finite result, then the second RA expression evaluates to the
same finite result. Taken together, the two RA expressions solve the query capturability
problem [3]: they allow us to enumerate the original RC query’s finite evaluation result, or
to learn that it would be infinite using RA operations on the unmodified database.

Our translation of an RC query to two RA expressions proceeds in several steps via safe-
range queries and the relational algebra normal form (Section 3). We focus on the first step of
translating an RC query to two safe-range RC queries (Section 4), which fundamentally differs
from Van Gelder and Topor’s approach and produces better generators like πuser,score(S).
Our generators strictly improve the time complexity of query evaluation (Section 4.4).
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After the more standard transformations to relational algebra normal form and from there
to RA expressions, we translate the resulting RA expressions into SQL using the radb tool [30].
Along the way to SQL, we leverage various ideas from the literature to optimize the overall
result (Section 6). For example, we generalize Claußen et al. [9]’s approach to avoid evaluating
Cartesian products like πuser,score(S)×P in the above translation by using count aggregations.

The overall translation allows us to use standard database management systems to evaluate
RC queries. We implement our translation and use PostgreSQL to evaluate the translated
queries. Using a real Amazon review dataset [23] and our synthetic benchmark that generates
hard database instances for random RC queries (Section 5), we evaluate our translation’s
performance. The evaluation shows that our approach outperforms Van Gelder and Topor’s
translation (which also uses PostgreSQL for evaluation) and other approaches (Section 6).

In summary, the following are our three main contributions:
We devise a translation of an arbitrary RC query into a pair of RA expressions as
described above. The time complexity of evaluating our translation’s results improves
upon Van Gelder and Topor’s approach [14].
We implement our translation and extend it to produce SQL queries. The resulting tool
RC2SQL makes RC a viable input language for standard database management systems.
We evaluate our tool on synthetic and real data and confirm that our translation’s
improved asymptotic time complexity carries over into practice.
To challenge RC2SQL (and its competitors) in our evaluation, we devise the Data Golf
benchmark that generates hard database instances for randomly generated RC queries.

2 Related Work

We recall Trakhtenbrot’s theorem and the fundamental notions of capturability and data
complexity. Given an RC query over a finite domain, Trakhtenbrot [27] showed that it is
undecidable whether there exists a (finite) structure satisfying the query. In contrast, the
question of whether a fixed structure satisfies the given RC query is decidable [2].

Kifer [16] calls a query class capturable if there is an algorithm that, given a query in
the class and a database instance, enumerates the query’s evaluation result, i.e., all tuples
satisfying the query. Avron and Hirshfeld [3] observe that Kifer’s notion is restricted because
it requires every query in a capturable class to be domain independent. Hence, they propose
an alternative definition that we also use: A query class is capturable if there is an algorithm
that, given a query in the class, a (finite or infinite) domain, and a database instance,
determines whether the query’s evaluation result on the database instance over the domain
is finite and enumerates the result in this case. Our work solves Avron and Hirshfeld’s
capturability problem additionally assuming an infinite domain.

Data complexity [29] is the complexity of recognizing if a tuple satisfies a fixed query over
a database, as a function of the database size. Our capturability algorithm provides an upper
bound on the data complexity for RC queries over an infinite domain that have a finite evalu-
ation result (but it cannot decide if a tuple belongs to a query’s result if the result is infinite).

Next, we group related approaches to evaluating RC queries into three categories.
Structure reduction. The classical approach to handling arbitrary RC queries is to

evaluate them under a finite structure [18]. The core question here is whether the evaluation
produces the same result as defined by the natural semantics, which typically considers infinite
domains. Codd’s theorem [10] affirmatively answers this question for domain-independent
queries, restricting the structure to the active domain. Ailamazyan et al. [2] show that RC is a
capturable query class by extending the active domain with a few additional elements, whose
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11:4 Practical Relational Calculus Query Evaluation

number depends only on the query, and evaluating the query over this finite domain. Natural–
active collapse results [5] generalize Ailamazyan et al.’s [2] result to extensions of RC (e.g.,
with order relations) by combining the structure reduction with a translation-based approach.
Hull and Su [15] study several semantics of RC that guarantee the finiteness of the query’s
evaluation result. In particular, the “output-restricted unlimited interpretation” only restricts
the query’s evaluation result to tuples that only contain elements in the active domain, but
the quantified variables still range over the (finite or infinite) underlying domain. Our work
is inspired by all these theoretical landmarks, in particular Hull and Su’s work (Section 4.1).
Yet we avoid using (extended) active domains, which make query evaluation impractical.

Query translation. Another strategy is to translate a given query into one that can
be evaluated efficiently, for example as a sequence of RA operations. Van Gelder and Topor
pioneered this approach [13,14] for RC. A core component of their translation is the choice of
generators, which replace the active domain restrictions from structure reduction approaches
and thereby improve the time complexity. Extensions to scalar and complex function symbols
have also been studied [12, 19]. All these approaches focus on syntactic classes of RC, for
which domain-independence is given, e.g., the evaluable queries of Van Gelder and Topor
(Appendix A). Our approach is inspired by Van Gelder and Topor’s but generalizes it to handle
arbitrary RC queries at the cost of assuming an infinite domain. Also, we further improve
the time complexity of Van Gelder and Topor’s approach by choosing better generators.

Evaluation with infinite relations. Constraint databases [26] obviate the need for
using finite tables when evaluating RC queries. This yields significant expressiveness gains over
RC. Yet the efficiency of the quantifier elimination procedures employed cannot compare with
the simple evaluation of a projection operation in RA. Similarly, automatic structures [6] can
represent the results of arbitrary RC queries finitely, but struggle with large quantities of data.
We demonstrate this in our evaluation where we compare our translation to several modern
incarnations of the above approaches, all based on binary decision diagrams [4, 7, 17,20,21].

3 Preliminaries

We introduce the RC syntax and semantics and define relevant classes of RC queries.

3.1 Relational Calculus
A signature σ is a triple (C,R, ι), where C and R are disjoint finite sets of constant and
predicate symbols, and the function ι : R → N maps each predicate symbol r ∈ R to its
arity ι(r). Let σ = (C,R, ι) be a signature and V a countably infinite set of variables disjoint
from C ∪ R. The following grammar defines the syntax of RC queries:

Q ::= ⊥ | ⊤ | x ≈ t | r(t1, . . . , tι(r)) | ¬Q | Q ∨Q | Q ∧Q | ∃x. Q.

Here, r ∈ R is a predicate symbol, t, t1, . . . , tι(r) ∈ V∪C are terms, and x ∈ V is a variable. We
write ∃v⃗. Q for ∃v1. . . .∃vk. Q and ∀v⃗. Q for ¬∃v⃗.¬Q, where v⃗ is a variable sequence v1, . . . , vk.
If k = 0, then both ∃v⃗. Q and ∀v⃗. Q denote just Q. Quantifiers have lower precedence than
conjunctions and disjunctions, e.g., ∃x. Q1 ∧Q2 means ∃x. (Q1 ∧Q2). We use ≈ to denote
the equality of terms in RC to distinguish it from =, which denotes syntactic object identity.
We also write Q1 −→ Q2 for ¬Q1 ∨ Q2. However, defining Q1 ∨ Q2 as a shorthand for
¬(¬Q1 ∧ ¬Q2) would complicate later definitions, e.g., the safe-range queries (Section 3.2).

We define the subquery partial order ⊑ on queries inductively on the structure of RC
queries, e.g., Q1 is a subquery of the query Q1∧¬∃y. Q2. One can also view ⊑ as the (reflexive
and transitive) subterm relation on the datatype of RC queries. We denote by sub(Q) the
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(S, α) ̸|= ⊥; (S, α) |= ⊤; (S, α) |= (x ≈ t) iff α(x) = α(t);
(S, α) |= r(t1, . . . , tι(r)) iff (α(t1), . . . , α(tι(r))) ∈ rS ; (S, α) |= (¬Q) iff (S, α) ̸|= Q;
(S, α) |= (Q1 ∨ Q2) iff (S, α) |= Q1 or (S, α) |= Q2; (S, α) |= (∃x. Q) iff (S, α[x 7→ d]) |= Q,

(S, α) |= (Q1 ∧ Q2) iff (S, α) |= Q1 and (S, α) |= Q2; for some d ∈ D.

Figure 1 The semantics of RC.

set of subqueries of a query Q and by fv(Q) the set of free variables in Q. Furthermore, we
denote by f⃗v(Q) the sequence of free variables in Q based on some fixed ordering of variables.
We lift this notation to sets of queries in the standard way. A query Q with no free variables,
i.e., fv(Q) = ∅, is called closed. Queries of the form r(t1, . . . , tι(r)) and x ≈ c are called atomic
predicates. We define the predicate ap(·) characterizing atomic predicates, i.e., ap(Q) is true
iff Q is an atomic predicate. Queries of the form ∃v⃗. r(t1, . . . , tι(r)) and ∃v⃗. x ≈ c are called
quantified predicates. We denote by ∃̃x. Q the query obtained by existentially quantifying
a variable x from a query Q if x is free in Q, i.e., ∃̃x. Q B ∃x. Q if x ∈ fv(Q) and ∃̃x. Q B Q

otherwise. We lift this notation to sets of queries in the standard way. We use ∃̃x. Q (instead of
∃x. Q) when constructing a query to avoid introducing bound variables that never occur in Q.

A structure S over a signature (C,R, ι) consists of a non-empty domain D and interpret-
ations cS ∈ D and rS ⊆ Dι(r), for each c ∈ C and r ∈ R. We assume that all the relations
rS are finite. Note that this assumption does not yield a finite structure (as defined in finite
model theory [18]) since the domain D can still be infinite. A (variable) assignment is a map-
ping α : V → D. We additionally define α on constant symbols c ∈ C as α(c) = cS . We write
α[x 7→ d] for the assignment that maps x to d ∈ D and is otherwise identical to α. We lift this
notation to sequences x⃗ and d⃗ of pairwise distinct variables and arbitrary domain elements of
the same length. The semantics of RC queries for a structure S and an assignment α is defined
in Figure 1. We write α |= Q for (S, α) |= Q if the structure S is fixed in the given context.
For a fixed S, only the assignments to Q’s free variables influence α |= Q, i.e., α |= Q is
equivalent to α′ |= Q, for every variable assignment α′ that agrees with α on fv(Q). For closed
queries Q, we write |= Q and say that Q holds, since closed queries either hold for all variable
assignments or for none of them. We call a finite sequence d⃗ of domain elements d1, . . . dk ∈ D
a tuple. Given a query Q and a structure S, we denote the set of satisfying tuples for Q by

JQKS = {d⃗ ∈ D|f⃗v(Q)| | there exists an assignment α such that (S, α[f⃗v(Q) 7→ d⃗]) |= Q}.

We omit S from JQKS if S is fixed. We call the values from JQK assigned to x ∈ fv(Q) column x.
The active domain adomS(Q) of a query Q and a structure S is a subset of the domain

D containing the interpretations cS of all constant symbols that occur in Q and the values
in the relations rS interpreting all predicate symbols that occur in Q. Since C and R are
finite and all rS are finite relations of a finite arity ι(r), the active domain adomS(Q) is also
a finite set. We omit S from adomS(Q) if S is fixed in the given context.

Queries Q1 and Q2 over the same signature are equivalent, written Q1 ≡ Q2, if (S, α) |=
Q1 ⇐⇒ (S, α) |= Q2, for every S and α. Queries Q1 and Q2 over the same signature are
inf-equivalent, written Q1

∞≡ Q2, if (S, α) |= Q1 ⇐⇒ (S, α) |= Q2, for every S with an infinite
domain D and every α. Clearly, equivalent queries are also inf-equivalent.

A query Q is domain-independent if JQKS1 = JQKS2 holds for every two structures S1 and
S2 that agree on the interpretations of constants (cS1 = cS2) and predicates (rS1 = rS2), while
their domains D1 and D2 may differ. Agreement on the interpretations implies adomS1(Q) =
adomS2(Q) ⊆ D1∩D2. It is undecidable whether an RC query is domain-independent [24,28].

We denote by Q[x 7→ y] the query obtained from the query Q after replacing each free occur-
rence of the variable x by the variable y (possibly renaming bound variables to avoid capture)
and performing constant propagation (Appendix B), i.e., simplifications like (x ≈ x) ≡ ⊤, Q∧

ICDT 2022



11:6 Practical Relational Calculus Query Evaluation

gen(x, ⊥, ∅);
gen(x, Q, {Q}) if ap(Q) and x ∈ fv(Q);
gen(x, ¬¬Q, G) if gen(x, Q, G);
gen(x, ¬(Q1 ∨ Q2), G)

if gen(x, (¬Q1) ∧ (¬Q2), G);
gen(x, ¬(Q1 ∧ Q2), G)

if gen(x, (¬Q1) ∨ (¬Q2), G);
gen(x, Q1 ∨ Q2, G1 ∪ G2)

if gen(x, Q1, G1) and gen(x, Q2, G2);
gen(x, Q1 ∧ Q2, G)

if gen(x, Q1, G) or gen(x, Q2, G);
gen(x, Q ∧ x ≈ y, G[y 7→ x])

if gen(y, Q, G);
gen(x, Q ∧ y ≈ x, G[y 7→ x])

if gen(y, Q, G);
gen(x, ∃y. Qy, ∃̃y. G)

if x ̸= y and gen(x, Qy, G).

Figure 2 The generated relation.

cov(x, x ≈ x, ∅);
cov(x, Q, ∅) if x /∈ fv(Q);
cov(x, x ≈ y, {x ≈ y}) if x ̸= y;
cov(x, y ≈ x, {x ≈ y}) if x ̸= y;
cov(x, Q, {Q}) if ap(Q) and x ∈ fv(Q);
cov(x, ¬Q, G) if cov(x, Q, G);
cov(x, Q1 ∨ Q2, G1 ∪ G2) if cov(x, Q1, G1) and cov(x, Q2, G2);
cov(x, Q1 ∨ Q2, G) if cov(x, Q1, G) and Q1[x/⊥] = ⊤;
cov(x, Q1 ∨ Q2, G) if cov(x, Q2, G) and Q2[x/⊥] = ⊤;
cov(x, Q1 ∧ Q2, G1 ∪ G2) if cov(x, Q1, G1) and cov(x, Q2, G2);
cov(x, Q1 ∧ Q2, G) if cov(x, Q1, G) and Q1[x/⊥] = ⊥;
cov(x, Q1 ∧ Q2, G) if cov(x, Q2, G) and Q2[x/⊥] = ⊥;
cov(x, ∃y. Qy, ∃̃y. G)

if x ̸= y and cov(x, Qy, G) and (x ≈ y) /∈ G;
cov(x, ∃y. Qy, ∃̃y. G \ {x ≈ y} ∪ Gy[y 7→ x])

if x ̸= y and cov(x, Qy, G) and gen(y, Qy, Gy).

Figure 3 The covered relation.

⊥ ≡ ⊥, Q∨⊥ ≡ Q, etc. We lift this notation to sets of queries in the standard way. Finally, we
denote by Q[x/⊥] the query obtained from Q after replacing every atomic predicate or equality
containing a free variable x by ⊥ (except for x ≈ x) and performing constant propagation.

The function flat⊕(Q), where ⊕ ∈ {∨,∧}, computes a set of queries by “flattening” the
operator ⊕: flat⊕(Q) B flat⊕(Q1)∪flat⊕(Q2) if Q = Q1⊕Q2 and flat⊕(Q) B {Q} otherwise.

3.2 Safe-Range Queries
The class of safe-range queries [1] is a decidable subset of domain-independent RC queries.
Its definition is based on the notion of range-restricted variables of a query. A variable is
called range-restricted if “its possible values all lie within the active domain of the query” [1].
Intuitively, atomic predicates restrict the possible values of a variable that occurs in them as
a term. An equality x ≈ y can extend the set of range-restricted variables in a conjunction
Q∧x ≈ y: If x or y is range-restricted in Q, then both x and y are range-restricted in Q∧x ≈ y.

We formalize range-restricted variables using the generated relation gen(x, Q,G), defined
in Figure 2. Specifically, gen(x, Q,G) holds if x is a range-restricted variable in Q and every
satisfying assignment for Q satisfies some quantified predicate, referred to as generator, from
G. Note that, unlike in a similar definition by Van Gelder and Topor [14, Figure 5] that
defines the rule genvgt(x, ∃y. Qy,G) if x ̸= y and genvgt(x, Qy,G) (Figure 9 in Appendix A),
we modify the rule’s conclusion to existentially quantify the bound variable y from all queries
in G where y occurs: gen(x, ∃y. Qy, ∃̃y.G). Hence, gen(x, Q,G) implies fv(G) ⊆ fv(Q). We
now formalize these relationships.

▶ Lemma 1. Let Q be a query, x ∈ fv(Q), and G be a set of quantified predicates such that
gen(x, Q,G). Then (i) for every Qqp ∈ G, we have x ∈ fv(Qqp) and fv(Qqp) ⊆ fv(Q), (ii) for
every α such that α |= Q, there exists Qqp ∈ G such that α |= Qqp, and (iii) Q[x/⊥] = ⊥.

▶ Definition 2. We define gen(x, Q) to hold iff there exists a set G such that gen(x, Q,G). Let
nongens(Q) B {x ∈ fv(Q) | gen(x, Q) does not hold} be the set of free variables in a query Q

that are not range-restricted. A query Q has range-restricted free variables if every free variable
of Q is range-restricted, i.e., nongens(Q) = ∅. A query Q has range-restricted bound variables
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if the bound variable y in every subquery ∃y. Qy of Q is range-restricted, i.e., gen(y, Qy) holds.
A query is safe-range if it has range-restricted free and range-restricted bound variables.

Relational algebra normal form (RANF) is a class of safe-range queries that can be easily
mapped to RA [1, Section 5.4] and evaluated using the RA operations for projection, column
duplication, selection, set union, binary join, and anti-join. In Appendix C, we define the
predicate ranf(·) characterizing RANF queries and the translation sr2ranf(·) of a safe-range
query into an equivalent RANF query.

3.3 Query Cost
To assess the time complexity of evaluating a RANF query Q, we define the cost of Q over
a structure S, denoted costS(Q), to be the sum of intermediate result sizes over all RANF
subqueries of Q. Formally, costS(Q) B

∑
Q′⊑Q, ranf(Q′)

∣∣∣JQ′KS
∣∣∣ · |fv(Q′)|. This corresponds to

evaluating Q following its RANF structure (Appendix C, Figure 12) using the RA operations.
The complexity of these operations is linear in the combined input and output size (ignoring
logarithmic factors due to set operations). The output size (the number of tuples times
the number of variables) is counted in

∣∣∣JQ′KS
∣∣∣ · |fv(Q′)| and the input size is counted as the

output size for the input subqueries. Repeated subqueries are only considered once, which
does not affect the asymptotics of query cost. In practice, the evaluation results for common
subqueries can be reused.

4 Query Translation
Our approach to evaluating an arbitrary RC query Q over a fixed structure S with an infinite
domain D proceeds by translating Q into a pair of safe-range queries (Qfin, Qinf ) such that

(fv) fv(Qfin) = fv(Q) unless Qfin is syntactically equal to ⊥; fv(Qinf ) = ∅;
(eval) JQK is an infinite set if Qinf holds; otherwise JQK = JQfinK is a finite set.
Since the queries Qfin and Qinf are safe-range, they are domain-independent and thus JQfinK is
a finite set of tuples. In particular, JQK is a finite set of tuples if Qinf does not hold. Our trans-
lation generalizes Hull and Su’s case distinction that restricts bound variables [15] to restrict
all variables. Moreover, we use Van Gelder and Topor’s idea to replace the active domain by
a smaller set (generator) specific to each variable [14] while further improving the generators.

4.1 Restricting One Variable
Let x be a free variable in a query Q̃ with range-restricted bound variables. This assumption
on Q̃ will be established by translating an arbitrary query Q bottom-up (Section 4.2). In this
section, we develop a translation of Q̃ into an equivalent query Q̃′ that satisfies the following:

Q̃′ has range-restricted bound variables;
Q̃′ is a disjunction and x is range-restricted in all but the last disjunct.

The disjunct in which x is not range-restricted has a special form that is central to our
translation: it is the conjunction of a query in which x does not occur and a query that is
satisfied by infinitely many values of x. From the case distinction “for the corresponding
variable: in or out of adom, and equality or inequality to other ‘previous’ variables if out
of adom” [15], we translate Q̃ into the following equivalent query:

Q̃ ≡ (Q̃ ∧ x ∈ adom(Q̃)) ∨
∨

y∈fv(Q̃)\{x}(Q̃[x 7→ y] ∧ x ≈ y) ∨
(Q̃[x/⊥] ∧ ¬(x ∈ adom(Q̃) ∨

∨
y∈fv(Q̃)\{x}x ≈ y)).
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Here, x ∈ adom(Q̃) stands for an RC query with a single free variable x that is satisfied by
an assignment α if and only if α(x) ∈ adomS(Q̃). The translation distinguishes the following
three cases for a fixed assignment α:

if α(x) ∈ adomS(Q̃) holds, then we do not alter the query Q̃;
if x ≈ y holds for some free variable y ∈ fv(Q̃) \ {x}, then x can be replaced by y in Q̃;
otherwise, Q̃ is equivalent to Q̃[x/⊥], i.e., all atomic predicates with a free occurrence of x

can be replaced by ⊥ (because α(x) /∈ adomS(Q̃)), all equalities x ≈ y and y ≈ x for y ∈
fv(Q̃)\{x} can be replaced by⊥ (because α(x) ̸= α(y)), and all equalities x ≈ z for a bound
variable z can be replaced by ⊥ (because α(x) /∈ adomS(Q̃) and z is range-restricted in its
subquery ∃z. Qz, by assumption, i.e., gen(z, Qz) holds and thus, for all α′, we have α′ |=
∃z. Qz if and only if there exists d ∈ adomS(Qz) ⊆ adomS(Q̃) such that α′[z 7→ d] |= Qz).

Note that ∃f⃗v(Q)\{x}. Q is the query in which all free variables of Q except x are existentially
quantified. Given a set of quantified predicates G, we write ∃α⃗.G for

∨
Qqp∈G∃α⃗. Qqp. To avoid

enumerating the entire active domain adomS(Q) of the query Q and a structure S, Van Gelder
and Topor [14] replace the condition x ∈ adom(Q) in their translation by ∃f⃗v(G) \ {x}.G,
where generator set G is a subset of atomic predicates. Because their translation [14] must
yield an equivalent query (for every finite or infinite domain), G must satisfy, for all α,

α |= ¬∃f⃗v(G) \ {x}.G =⇒ (α |= Q⇐⇒ α |= Q[x/⊥]) (vgt1) and
α |= Q[x/⊥] =⇒ α |= ∀x. Q (vgt2).

Note that (vgt2) does not hold for the query Q B ¬B(x) and thus a generator set G of atomic
predicates satisfying (vgt2) only exists for a proper subset of all RC queries. In contrast, we
only require that G satisfies (vgt1) in our translation. To this end, we define a covered relation
cov(x, Q,G) (in contrast to Van Gelder and Topor’s constrained relation convgt(x, Q,G) defined
in Appendix A, Figure 9) such that, for every variable x and query Q̃ with range-restricted
bound variables, there exists at least one set G such that cov(x, Q̃,G) and (vgt1) holds. Fig-
ure 3 shows the definition of this relation. Unlike the generator set G in gen(x, Q,G), the cover
set G in cov(x, Q,G) may also contain equalities between two variables. Hence, we define a func-
tion qps(G) that collects all generators, i.e., quantified predicates and a function eqs(x,G) that
collects all variables y distinct from x occurring in equalities of the form x ≈ y. We use qps∨(G)
to denote the query

∨
Qqp∈qps(G)Qqp. We state the soundness and completeness of the relation

cov(x, Q,G) in the next lemma, which follows by induction on the derivation of cov(x, Q̃,G).

▶ Lemma 3. Let Q̃ be a query with range-restricted bound variables, x ∈ fv(Q̃). Then there
exists a set G of quantified predicates and equalities such that cov(x, Q̃,G) holds and, for any
such G and all α,

α |= ¬(qps∨(G) ∨
∨

y∈eqs(x,G)x ≈ y) =⇒ (α |= Q̃⇐⇒ α |= Q̃[x/⊥]).

Finally, to preserve the dependencies between the variable x and the remaining free variables
of Q occurring in the quantified predicates from qps(G), we do not project qps(G) on the
single variable x, i.e., we restrict x by qps∨(G) instead of ∃f⃗v(Q)\{x}. qps(G). From Lemma 3,
we derive our optimized translation characterized by the following lemma.

▶ Lemma 4. Let Q̃ be a query with range-restricted bound variables, x ∈ fv(Q̃), and G be such
that cov(x, Q̃,G) holds. Then x ∈ fv(Qqp) and fv(Qqp) ⊆ fv(Q̃), for every Qqp ∈ qps(G), and

Q̃ ≡ (Q̃ ∧ qps∨(G)) ∨
∨

y∈eqs(x,G)(Q̃[x 7→ y] ∧ x ≈ y) ∨
(Q̃[x/⊥] ∧ ¬(qps∨(G) ∨

∨
y∈eqs(x,G)x ≈ y)). (⋆)
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Note that x is not guaranteed to be range-restricted in (⋆)’s last disjunct. However, it
occurs only in the negation of a disjunction of quantified predicates with a free occurrence of
x and equalities of the form x ≈ c or x ≈ y. We will show how to handle such occurrences in
Sections 4.2 and 4.3. Moreover, the negation of the disjunction can be omitted if (vgt2) holds.

4.2 Restricting Bound Variables
Let x be a free variable in a query Q̃ with range-restricted bound variables. Suppose that the
variable x is not range-restricted, i.e., gen(x, Q̃) does not hold. To translate ∃x. Q̃ into an inf-
equivalent query with range-restricted bound variables (∃x. Q̃ does not have range-restricted
bound variables precisely because x is not range-restricted in Q̃), we first apply (⋆) to Q̃

and distribute the existential quantifier binding x over disjunction. Next we observe that

∃x. (Q̃[x 7→ y] ∧ x ≈ y) ≡ Q̃[x 7→ y] ∧ ∃x. (x ≈ y) ≡ Q̃[x 7→ y],

where the first equivalence follows because x does not occur free in Q̃[x 7→ y] and the second
equivalence follows from the straightforward validity of ∃x. (x ≈ y). Moreover, we observe that

∃x. (Q̃[x/⊥] ∧ ¬(qps∨(G) ∨
∨

y∈eqs(x,G)x ≈ y)) ∞≡ Q̃[x/⊥]

because x is not free in Q̃[x/⊥] and there exists a value d for x in the infinite domain D such
that x ̸= y holds for all finitely many y ∈ eqs(x,G) and d is not among the finitely many values
interpreting the quantified predicates in qps(G). Altogether, we obtain the following lemma.

▶ Lemma 5. Let Q̃ be a query with range-restricted bound variables, x ∈ fv(Q̃), and G be a
set of quantified predicates and equalities such that cov(x, Q̃,G) holds. Then

∃x. Q̃
∞≡ (∃x. Q̃ ∧ qps∨(G)) ∨

∨
y∈eqs(x,G)(Q̃[x 7→ y]) ∨ Q̃[x/⊥]. (⋆∃)

Our approach for restricting all bound variables recursively applies Lemma 5. Because
the set G such that cov(x, Q,G) holds is not necessarily unique, we introduce the following
(general) notation. We denote the non-deterministic choice of an object X from a non-empty
set X as X ← X . We define the recursive function rb(Q) in Figure 4, where rb stands for
range-restrict bound (variables). The function converts an arbitrary RC query Q into an
inf-equivalent query with range-restricted bound variables. We proceed by describing the
case ∃x. Qx. First, rb(Qx) is recursively applied on Line 8 to establish the precondition of
Lemma 5 that the translated query has range-restricted bound variables. Because existential
quantification distributes over disjunction, we flatten disjunction in rb(Qx) and process the
individual disjuncts independently. We apply (⋆∃) to every disjunct Qfix in which the
variable x is not already range-restricted. For every Q′

fix added to Q after applying (⋆∃) to
Qfix the variable x is either range-restricted or does not occur in Q′

fix , i.e., x /∈ nongens(Q′
fix).

This entails the termination of the loop on Lines 9–12.

▶ Example 6. Consider the query Qsusp
user B B(b)∧∃s. ∀p. P(b, p) −→ S(p, u, s) from Section 1.

Restricting its bound variables yields the query

rb(Qsusp
user) = B(b) ∧ ((∃s. (¬∃p. P(b, p) ∧ ¬S(p, u, s)) ∧ (∃p. S(p, u, s))) ∨ (¬∃p. P(b, p))).

The bound variable p is already range-restricted in Qsusp
user and thus only s must be restric-

ted. Applying (⋆) to restrict s in ¬∃p. P(b, p) ∧ ¬S(p, u, s), then existentially quantifying
s, and distributing the existential over disjunction yields the first disjunct in rb(Qsusp

user)
above and ∃s. (¬∃p. P(b, p)) ∧ ¬(∃p. S(p, u, s)) as the second disjunct. Because there exists
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input: An RC query Q.
output: A query Q̃ with

range-restricted bound
variables such that Q

∞≡ Q̃.

1 function fixbound(Q, x) =
{Qfix ∈ Q | x ∈ nongens(Qfix)};

2 function rb(Q) =
3 switch Q do
4 case ¬Q′ do return ¬rb(Q′);
5 case Q′

1 ∨Q′
2 do return

rb(Q′
1) ∨ rb(Q′

2);
6 case Q′

1 ∧Q′
2 do return

rb(Q′
1) ∧ rb(Q′

2);
7 case ∃x. Qx do
8 Q B flat∨(rb(Qx));
9 while fixbound(Q, x) ̸= ∅ do

10 Qfix ← fixbound(Q, x);
11 G ← {G | cov(x, Qfix ,G)};
12 Q B (Q \ {Qfix}) ∪

{Qfix ∧ qps∨(G)} ∪⋃
y∈eqs(x,G){Qfix [x 7→ y]} ∪
{Qfix [x/⊥]};

13 return
∨

Q̃∈Q∃̃x. Q̃;
14 otherwise do return Q;

Figure 4 Restricting bound variables.

input: An RC query Q.
output: Safe-range query pair (Qfin, Qinf )

for which (fv) and (eval) hold.

1 function fixfree(Qfin) =
{(Qfix , Q=) ∈ Qfin | nongens(Qfix) ̸= ∅};

2 function inf(Qfin, Q) = {(Q̸∞, Q=) ∈
Qfin | disjointvars(Q̸∞, Q=) ̸= ∅ ∨
fv(Q̸∞ ∧Q=) ̸= fv(Q)};

3 function split(Q) =
4 Qfin B {(rb(Q),⊤)};Qinf B ∅;
5 while fixfree(Qfin) ̸= ∅ do
6 (Qfix , Q=)← fixfree(Qfin);
7 x← nongens(Qfix);
8 G ← {G | cov(x, Qfix ,G)};
9 Qfin B (Qfin \ {(Qfix , Q=)}) ∪

{(Qfix ∧ qps∨(G), Q=)} ∪⋃
y∈eqs(x,G){(Qfix [x 7→ y], Q= ∧x ≈ y)};

10 Qinf B Qinf ∪ {Qfix [x/⊥]};
11 while inf(Qfin, Q) ̸= ∅ do
12 (Q̸∞, Q=)← inf(Qfin, Q);
13 Qfin B Qfin \ {(Q̸∞, Q=)};
14 Qinf B Qinf ∪ {Q̸∞ ∧Q=};
15 return (

∨
(Q̸∞,Q=)∈Qfin

(Q̸∞ ∧Q=),
rb(

∨
Q∞∈Qinf

∃f⃗v(Q∞). Q∞));

Figure 5 Restricting free variables.

some value in the infinite domain D that does not belong to the finite interpretation of
the atomic predicate S(p, u, s), the query ∃s.¬(∃p. S(p, u, s)) is a tautology over D. Hence,
∃s. (¬∃p. P(b, p))∧¬(∃p. S(p, u, s)) is inf-equivalent to ¬∃p. P(b, p), i.e., the second disjunct in
rb(Qsusp

user). This reasoning justifies applying (⋆∃) to restrict s in ∃s.¬∃p. P(b, p)∧¬S(p, u, s).

4.3 Restricting Free Variables
Given an arbitrary query Q, we translate the inf-equivalent query rb(Q) with range-restricted
bound variables into a pair of safe-range queries (Qfin, Qinf ) such that our translation’s main
properties fv and eval hold. Our translation is based on the following lemma.

▶ Lemma 7. Let a structure S with an infinite domain D be fixed. Let x be a free variable
in a query Q̃ with range-restricted bound variables and let cov(x, Q̃,G) for a set of quantified
predicates and equalities G. If Q̃[x/⊥] is not satisfied by any tuple, then

q
Q̃

y
=

r
(Q̃ ∧ qps∨(G)) ∨

∨
y∈eqs(x,G)(Q̃[x 7→ y] ∧ x ≈ y)

z
. (⋆)

If Q̃[x/⊥] is satisfied by some tuple, then
q
Q̃

y
is an infinite set.

Proof. If Q̃[x/⊥] is not satisfied by any tuple, then (⋆) follows from (⋆). If Q̃[x/⊥] is
satisfied by some tuple, then the last disjunct in (⋆) applied to Q̃ is satisfied by infinitely
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many tuples obtained by assigning x some value from the infinite domain D such that x ̸= y

holds for all finitely many y ∈ eqs(x,G) and x does not appear among the finitely many
values interpreting the quantified predicates from qps(G). ◀

We remark that
q
Q̃

y
might be an infinite set of tuples even if Q̃[x/⊥] is never satisfied,

for some x. This is because Q̃[y/⊥] might be satisfied by some tuple, for some y, in which
case Lemma 7 (for y) implies that

q
Q̃

y
is an infinite set of tuples. Still, (⋆) can be applied

to Q̃ for x resulting in an equivalent query that is also satisfied by an infinite set of tuples.
Our approach is implemented by the function split(Q) defined in Figure 5. In the fol-

lowing, we describe this function and informally justify its correctness, formalized by the
input/output specification. In split(Q), we represent the queries Qfin and Qinf using a set
Qfin of query pairs and a set Qinf of queries such that

Qfin B
∨

(Q ̸∞,Q=)∈Qfin
(Q̸∞ ∧Q=), Qinf B

∨
Q∞∈Qinf

∃f⃗v(Q∞). Q∞,

and, for every (Q̸∞, Q=) ∈ Qfin, Q= is a conjunction of equalities. As long as there exists
some (Qfix , Q=) ∈ Qfin such that nongens(Qfix) ̸= ∅, we apply (⋆) to Qfix and add the query
Qfix [x/⊥] to Qinf . We remark that if we applied (⋆) to the entire disjunct Qfix∧Q=, the loop
on Lines 5–10 might not terminate. Note that, for every (Q′

fix , Q′=) added to Qfin after apply-
ing (⋆) to Qfix , nongens(Q′

fix) is a proper subset of nongens(Qfix). This entails the termination
of the loop on Lines 5–10. Finally, if JQfixK is an infinite set of tuples, then JQfix ∧Q=K is
an infinite set of tuples, too. This is because the equalities in Q= merely duplicate columns
of the query Qfix . Hence, it indeed suffices to apply (⋆) to Qfix instead of Qfix ∧Q=.

After the loop on Lines 5–10 in Figure 5 terminates, for every (Q̸∞, Q=) ∈ Qfin , Q̸∞ is a
safe-range query and Q= is a conjunction of equalities such that fv(Q̸∞ ∧Q=) = fv(Q). How-
ever, the query Q̸∞∧Q= need not be safe-range, e.g., if Q̸∞ B B(x) and Q= B (x ≈ y∧u ≈ v).
Given a set of equalities Q=, let classes(Q=) be the set of equivalence classes of free variables
fv(Q=) with respect to Q=. For instance, classes({x ≈ y, y ≈ z, u ≈ v}) = {{x, y, z}, {u, v}}.
Let disjointvars(Q̸∞, Q=) B

⋃
V ∈classes(flat∧(Q=)),V ∩fv(Q̸∞)=∅ V be the set of all variables in equi-

valence classes from classes(flat∧(Q=)) that are disjoint from Q̸∞’s free variables. Then, Q̸∞∧
Q= is safe-range if and only if disjointvars(Q̸∞, Q=) = ∅ (recall the definition of safe-range).

Now if disjointvars(Q̸∞, Q=) ̸= ∅ and Q̸∞∧Q= is satisfied by some tuple, then JQ̸∞ ∧Q=K
is an infinite set of tuples because all equivalence classes of variables in disjointvars(Q̸∞, Q=) ̸=
∅ can be assigned arbitrary values from the infinite domain D. In our example with
Q̸∞ B B(x) and Q= B (x ≈ y ∧ u ≈ v), we have disjointvars(Q̸∞, Q=) = {u, v} ̸= ∅.
Moreover, if fv(Q̸∞ ∧Q=) ̸= fv(Q) and Q̸∞ ∧Q= is satisfied by some tuple, then this tuple
can be extended to infinitely many tuples over fv(Q) by choosing arbitrary values from the
infinite domain D for the variables in the non-empty set fv(Q) \ fv(Q̸∞ ∧Q=). Hence, for
every (Q̸∞, Q=) ∈ Qfin with disjointvars(Q̸∞, Q=) ̸= ∅ or fv(Q̸∞ ∧Q=) ̸= fv(Q), we remove
(Q̸∞, Q=) from Qfin and add Q̸∞ ∧Q= to Qinf . Note that we only remove pairs from Qfin,
hence, the loop on Lines 11–14 terminates. Afterwards, the query Qfin is safe-range. However,
the query Qinf need not be safe-range. Indeed, every query Q∞ ∈ Qinf has range-restricted
bound variables, but not all the free variables of Q∞ need be range-restricted and thus
the query ∃f⃗v(Q∞). Q∞ need not be safe-range. But the query Qinf is closed and thus the
inf-equivalent query rb(Qinf ) with range-restricted bound variables is safe-range.

▶ Lemma 8. Let Q be an RC query and split(Q) = (Qfin, Qinf ). Then the queries Qfin and
Qinf are safe-range; fv(Qfin) = fv(Q) unless Qfin is syntactically equal to ⊥; and fv(Qinf ) = ∅.
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▶ Lemma 9. Let a structure S with an infinite domain D be fixed. Let Q be an RC query
and split(Q) = (Qfin, Qinf ). If |= Qinf , then JQK is an infinite set. Otherwise, JQK = JQfinK
is a finite set.

By Lemma 8, Qfin is a safe-range (and thus also domain-independent) query. Hence, for a
fixed structure S, the tuples in JQfinK only contain elements in the active domain adom(Qfin),
i.e., JQfinK = JQfinK∩adom(Qfin)|fv(Qfin)|. Our translation does not introduce new constants in
Qfin and thus adom(Qfin) ⊆ adom(Q). Hence, by Lemma 9, if ̸|= Qinf , then JQfinK is equal to
the “output-restricted unlimited interpretation” [15] of Q, i.e., JQfinK = JQK∩ adom(Q)|fv(Q)|.
In contrast, if |= Qinf , then JQfinK = JQK ∩ adom(Q)|fv(Q)| does not necessarily hold. For
instance, for Q B ¬B(x), our translation yields split(Q) = (⊥,⊤). In this case, we have Qinf =
⊤ and thus |= Qinf because ¬B(x) is satisfied by infinitely many tuples over an infinite domain.
However, if B(x) is never satisfied, then JQfinK = ∅ is not equal to JQK ∩ adom(Q)|fv(Q)|.

▶ Example 10. Consider the query Q B B(x) ∨ P(x, y). The variable y is not range-
restricted in Q and thus split(Q) restricts y by a conjunction of Q with P(x, y). However,
if Q[y/⊥] = B(x) is satisfied by some tuple, then JQK contains infinitely many tuples. Hence,
split(Q) = ((B(x) ∨ P(x, y)) ∧ P(x, y),∃x. B(x)). Because Qfin = (B(x) ∨ P(x, y)) ∧ P(x, y) is
only used if ̸|= Qinf , i.e., if B(x) is never satisfied, we could simplify Qfin to P(x, y). However,
our translation does not implement such heuristic simplifications.

▶ Example 11. Consider the query Q B B(x) ∧ u ≈ v. The variables u and v are not
range-restricted in Q and thus split(Q) chooses one of these variables (e.g., u) and restricts
it by splitting Q into Q̸∞ = B(x) and Q= = u ≈ v. Now, all variables are range-restricted
in Q̸∞, but the variables in Q̸∞ and Q= are disjoint. Hence, JQK contains infinitely many
tuples whenever Q̸∞ is satisfied by some tuple. In contrast, JQK = ∅ if Q̸∞ is never satisfied.
Hence, we have split(Q) = (⊥,∃x. B(x)).

▶ Example 12. Consider the query Qsusp
user B B(b) ∧ ∃s. ∀p. P(b, p) −→ S(p, u, s) from Sec-

tion 1. Restricting its bound variables yields the query rb(Qsusp
user) = B(b)∧((∃s. (¬∃p. P(b, p)∧

¬S(p, u, s)) ∧ (∃p. S(p, u, s))) ∨ (¬∃p. P(b, p))) derived in Example 6. Splitting Qsusp
user yields

split(Qsusp
user) = (rb(Qsusp

user) ∧ (∃s, p. S(p, u, s)),∃b. B(b) ∧ ¬∃p. P(b, p)).

To understand split(Qsusp
user), we apply (⋆) to rb(Qsusp

user) for the free variable u:

rb(Qsusp
user) ≡ (rb(Qsusp

user) ∧ (∃s, p. S(p, u, s))) ∨ (B(b) ∧ (¬∃p. P(b, p)) ∧ ¬∃s, p. S(p, u, s)).

If the subquery B(b) ∧ (¬∃p. P(b, p)) from the second disjunct is satisfied for some b, then
Qsusp

user is satisfied by infinitely many values for u from the infinite domain D that do not belong
to the finite interpretation of S(p, u, s) and thus satisfy the subquery ¬∃s, p. S(p, u, s). Hence,
JQsusp

userK
S = Jrb(Qsusp

user)KS is an infinite set of tuples whenever B(b)∧¬∃p. P(b, p) is satisfied for
some b. In contrast, if B(b)∧¬∃p. P(b, p) is not satisfied for any b, then Qsusp

user is equivalent to
rb(Qsusp

user) ∧ (∃s, p. S(p, u, s)) obtained also by applying (⋆) to Qsusp
user for the free variable u.

▶ Definition 13. Let Q be an RC query and split(Q) = (Qfin, Qinf ). Let Q̂fin B sr2ranf(Qfin)
and Q̂inf B sr2ranf(Qinf ) be the equivalent RANF queries. We define rw(Q) B (Q̂fin, Q̂inf ).

4.4 Complexity Analysis
In this section, we analyze the time complexity of capturing Q, i.e., checking if JQK is finite and
enumerating JQK if it is finite. To bound the asymptotic time complexity of capturing a fixed Q,
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we ignore the (constant) time complexity of computing rw(Q) = (Q̂fin, Q̂inf ) and focus on the
time complexity of evaluating the RANF queries Q̂fin and Q̂inf , i.e., the query cost of Q̂fin
and Q̂inf . Without loss of generality, we assume that the input query Q has pairwise distinct
(free and bound) variables to derive a set of quantified predicates from Q’s atomic predicates
and formulate our time complexity bound. Nevertheless, the RANF queries Q̂fin and Q̂inf
computed by our translation need not have pairwise distinct (free and bound) variables.

Let av(Q) be the set of all (free and bound) variables in a query Q. We define the relation
≲Q on av(Q) such that x ≲Q y iff the scope of an occurrence of x ∈ av(Q) is contained in the
scope of an occurrence of y ∈ av(Q). Formally, we define x ≲Q y iff y ∈ fv(Q) or ∃x. Qx ⊑
∃y. Qy ⊑ Q for some Qx and Qy. Note that ≲Q is a preorder on all variables and a partial
order on the bound variables for every query with pairwise distinct (free and bound) variables.

Let aps(Q) be the set of all atomic predicates in a query Q. We denote by qps(Q) the set
of quantified predicates obtained from aps(Q) by performing the variable substitution x 7→ y,
where x and y are related by equalities in Q and x ≲Q y, and existentially quantifying from
a quantified predicate Qqp the innermost bound variable x in Q that is free in Qqp. Let
eqs∗(Q) be the transitive closure of equalities occurring in Q. Formally, we define qps(Q) by:

Qap ∈ qps(Q) if Qap ∈ aps(Q);
Qqp[x 7→ y] ∈ qps(Q) if Qqp ∈ qps(Q), (x, y) ∈ eqs∗(Q), and x ≲Q y;
∃x. Qqp ∈ qps(Q) if Qqp ∈ qps(Q), x ∈ fv(Qqp) \ fv(Q), and x ≲Q y for all y ∈ fv(Qqp).

We bound the complexity of capturing Q by considering subsets Qqps of quantified
predicates qps(Q) that are minimal in the sense that every quantified predicate in Qqps
contains a unique free variable that is not free in any other quantified predicate in Qqps.
Formally, we define minimal(Qqps) B ∀Qqp ∈ Qqps. fv(Qqps \ {Qqp}) ̸= fv(Qqps). Every
minimal subset Qqps of quantified predicates qps(Q) contributes the product of the numbers of
tuples satisfying each quantified predicate Qqp ∈ Qqps to the overall bound (that product is an
upper bound on the number of tuples satisfying the join over all Qqp ∈ Qqps). Similarly to Ngo
et al. [22], we use the notation Õ (·) to hide logarithmic factors incurred by set operations.

▶ Theorem 14. Let Q be a fixed RC query with pairwise distinct (free and bound) variables.
The time complexity of capturing Q, i.e., checking if JQK is finite and enumerating JQK if it
is finite, is in Õ

(∑
Qqps⊆qps(Q),minimal(Qqps)

∏
Qqp∈Qqps

|JQqpK|
)

.

We prove Theorem 14 in Appendix D. Examples 15 and 16 show that the time complexity
from Theorem 14 cannot be achieved by the translation of Van Gelder and Topor [14] or
over finite domains. Example 17 shows how equalities affect the bound in Theorem 14.

▶ Example 15. Consider the query Q B B(b) ∧ ∃u, s.¬∃p. P(b, p) ∧ ¬S(p, u, s), equivalent
to Qsusp from Section 1. Then aps(Q) = {B(b), P(b, p), S(p, u, s)} and qps(Q) = {B(b),
P(b, p),∃p. P(b, p), S(p, u, s),∃p. S(p, u, s),∃s, p. S(p, u, s),∃u, s, p. S(p, u, s)}. The translated
query Qvgt by Van Gelder and Topor [14] restricts the variables r and s by ∃s, p. S(p, u, s)
and ∃u, p. S(p, u, s), respectively. For an interpretation of B by {(c′) | c′ ∈ {1, . . . , n}}, P by
{(c′, c′) | c′ ∈ {1, . . . , n}}, and S by {(c, c′, c′) | c ∈ {1, . . . , n}, c′ ∈ {1, . . . , m}}, n, m ∈ N,
computing the join of P(b, p), ∃s, p. S(p, u, s), and ∃u, p. S(p, u, s), which is a Cartesian
product, results in a time complexity in Ω(n ·m2) for Qvgt . In contrast, Theorem 14 yields
an asymptotically better time complexity in Õ (n + m + n ·m) for our translation:

Õ (|JB(b)K|+ |JP(b, p)K|+ |JS(p, u, s)K|+ (|JB(b)K|+ |JP(b, p)K|) · |JS(p, u, s)K|) .
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▶ Example 16. The query ¬S(x, y, z) is satisfied by a finite set of tuples over a finite
domain D (as is every other query over a finite domain). For an interpretation of S by
{(c, c, c) | c ∈ D}, the equality |D| = |JS(x, y, z)K| holds and the number of satisfying tuples is

|J¬S(x, y, z)K| = |D|3 − |JS(x, y, z)K| = |JS(x, y, z)K|3 − |JS(x, y, z)K| ∈ Ω(|JS(x, y, z)K|3),

which exceeds the bound Õ (|JS(x, y, z)K|) of Theorem 14. Hence, our infinite domain as-
sumption is crucial for achieving the better complexity bound.

▶ Example 17. Consider the following query over the domain D = N of natural numbers:

Q B ∀u. (u ≈ 0 ∨ u ≈ 1 ∨ u ≈ 2) −→
(∃v. B(v) ∧ (u ≈ 0 −→ x ≈ v) ∧ (u ≈ 1 −→ y ≈ v) ∧ (u ≈ 2 −→ z ≈ v)).

Note that this query is equivalent to Q ≡ B(x) ∧ B(y) ∧ B(z) and thus it is satisfied by a
finite set of tuples of size |JB(x)K| · |JB(y)K| · |JB(z)K| = |JB(x)K|3. The set of atomic predicates
of Q is aps(Q) = {B(v)} and it must be closed under the equalities occurring in Q to yield
a valid bound in Theorem 14. In this case, qps(Q) = {B(v),∃v. B(v), B(x), B(y), B(z)} and
the bound in Theorem 14 is |JB(v)K| · |JB(x)K| · |JB(y)K| · |JB(z)K| = |JB(x)K|4. In particular,
this bound is not tight, but it still reflects the complexity of evaluating the RANF queries
produced by our translation as it does not derive the equivalence Q ≡ B(x) ∧ B(y) ∧ B(z).

5 Data Golf Benchmark

In this section, we devise the Data Golf benchmark for generating structures for given RC
queries. We will use the benchmark in our empirical evaluation (Section 6). Given an
RC query, we seek a structure that results in a nontrivial evaluation result for the overall
query and for all its subqueries. Intuitively, the resulting structure makes query evaluation
potentially more challenging compared to the case where some subquery results in a trivial
(e.g., empty) evaluation result. More specifically, Data Golf has two objectives. The first
resembles the regex golf game’s objective [11] (hence the name) and aims to find a structure
on which the result of a given query contains a given positive set of tuples and does not
contain any tuples from another given negative set. The second objective is to ensure that
all the query’s subqueries evaluate to a non-trivial result.

Formally, given a query Q and two sets of tuples T + and T − over a fixed domain D,
representing assignments of fv(Q), Data Golf produces a structure S (represented as a partial
mapping from predicate symbols to their interpretations), such that T + ⊆ JQK, T −∩JQK = ∅,
and |JQ′K| and |J¬Q′K| contain at least min{|T +| , |T −|} tuples, for every Q′ ⊑ Q. To be
able to produce such a structure S, we make the following assumptions on Q:
con the bound variable y in every subquery ∃y. Qy of Q satisfies convgt(y, Qy,G) (Figure 9)

for some set G such that eqs(y,G) = ∅ and, for every Qqp ∈ G, {y} ⊊ fv(Qqp) holds;
this avoids subqueries like ∃y.¬P2(x, y) and ∃y. (P2(x, y) ∨ P1(y));

cst Q contains no subquery of the form x ≈ c, which is satisfied by exactly one tuple;
var Q contains no closed subqueries, e.g., P1(42), because a closed subquery is either

satisfied by all possible tuples or no tuple at all; and
rep Q contains no repeated predicate symbols; this avoids subqueries like P1(x) ∧ ¬P1(x).

Given a sequence of pairwise distinct variables v⃗ and a tuple d⃗ of the same length, we may
interpret the tuple d⃗ as a tuple over v⃗, denoted as d⃗(v⃗). Given a sequence t1, . . . , tk ∈ v⃗ ∪ C
of terms, we denote by d⃗(v⃗)[t1, . . . , tk] the tuple obtained by evaluating the terms t1, . . . , tk
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input: An RC query Q with pairwise distinct (free and bound) variables satisfying
con, cst, var, rep, a sequence of distinct variables v⃗, fv(Q) ⊆ v⃗, sets of
tuples T +

v⃗ and T −
v⃗ over v⃗ such that

∣∣T +
v⃗ [x]

∣∣ =
∣∣T +

v⃗

∣∣, ∣∣T −
v⃗ [x]

∣∣ =
∣∣T −

v⃗

∣∣, and
T +

v⃗ [x] ∩ T −
v⃗ [x] = ∅, for every x ∈ v⃗, a parameter γ ∈ {0, 1}.

output: A structure S such that T +
v⃗ [f⃗v(Q)] ⊆ JQK, T −

v⃗ [f⃗v(Q)] ∩ JQK = ∅, and |JQ′K|
and |J¬Q′K| contain at least min{

∣∣T +
v⃗

∣∣ ,
∣∣T −

v⃗

∣∣} tuples, for every Q′ ⊑ Q.

1 function dg(Q, v⃗, T +
v⃗ , T −

v⃗ , γ) =
2 switch Q do
3 case r(t1, . . . , tι(r)) do return {rS 7→ T +

v⃗ [t1, . . . , tι(r)]};
4 case x ≈ y do
5 if there exist d, d′ such that d ̸= d′ and (d, d′) ∈ T +

v⃗ [x, y], or
d = d′ and (d, d′) ∈ T −

v⃗ [x, y] then fail;
6 case ¬Q′ do return dg(Q′, v⃗, T −

v⃗ , T +
v⃗ , γ);

7 case Q1 ∨Q2 or Q1 ∧Q2 do
8 (T 1

v⃗ , T 2
v⃗ )← {(T 1

v⃗ , T 2
v⃗ ) |

∣∣T 1
v⃗ [x]

∣∣ =
∣∣T 2

v⃗ [x]
∣∣ =

∣∣T 1
v⃗

∣∣ =
∣∣T 2

v⃗

∣∣ = min{
∣∣T +

v⃗

∣∣ ,
∣∣T −

v⃗

∣∣},
T 1

v⃗ [x] ∩ T 2
v⃗ [x] = ∅, (T 1

v⃗ [x] ∪ T 2
v⃗ [x]) ∩ (T +

v⃗ [x] ∪ T −
v⃗ [x]) = ∅, for all x ∈ v⃗};

9 if γ = 0 then
10 return dg(Q1, v⃗, T +

v⃗ ∪ T 1
v⃗ , T −

v⃗ ∪ T 2
v⃗ , γ) ∪ dg(Q2, v⃗, T +

v⃗ ∪ T 2
v⃗ , T −

v⃗ ∪ T 1
v⃗ , γ);

11 else
12 switch Q do
13 case Q1 ∨Q2 do
14 return dg(Q1, v⃗, T +

v⃗ ∪ T 1
v⃗ , T −

v⃗ ∪ T 2
v⃗ , γ) ∪ dg(Q2, v⃗, T 1

v⃗ ∪ T 2
v⃗ , T −

v⃗ ∪ T
+

v⃗ , γ);
15 case Q1 ∧Q2 do
16 return dg(Q1, v⃗, T +

v⃗ ∪ T
−

v⃗ , T 1
v⃗ ∪ T 2

v⃗ , γ) ∪ dg(Q2, v⃗, T +
v⃗ ∪ T 2

v⃗ , T −
v⃗ ∪ T 1

v⃗ , γ);
17 case ∃y. Qy do
18 (T 1

v⃗·y, T 2
v⃗·y)← {(T 1

v⃗·y, T 2
v⃗·y) | T 1

v⃗·y[v⃗] = T +
v⃗ , T 2

v⃗·y[v⃗] = T −
v⃗ ,∣∣∣T 1

v⃗·y[y]
∣∣∣ =

∣∣∣T 1
v⃗·y

∣∣∣ =
∣∣T +

v⃗

∣∣ ,
∣∣∣T 2

v⃗·y[y]
∣∣∣ =

∣∣∣T 2
v⃗·y

∣∣∣ =
∣∣T −

v⃗

∣∣ , T 1
v⃗·y[y] ∩ T 2

v⃗·y[y] = ∅};
19 return dg(Qy, v⃗ · y, T 1

v⃗·y, T 2
v⃗·y, γ);

Figure 6 Computing the Data Golf structure.

over d⃗(v⃗). Formally, we define d⃗(v⃗)[t1, . . . , tk] B (d′
i)k

i=1, where d′
i = d⃗j if ti = v⃗j and d′

i = ti

if ti ∈ C. We lift this notion to sets of tuples over v⃗ in the standard way.
Data Golf is formalized by the function dg(Q, v⃗, T +

v⃗ , T −
v⃗ , γ), defined in Figure 6, where

v⃗ is a sequence of distinct variables such that fv(Q) ⊆ v⃗, T +
v⃗ and T −

v⃗ are sets of tuples
over v⃗, and γ ∈ {0, 1} is a strategy. The function dg(Q, v⃗, T +

v⃗ , T −
v⃗ , γ) can fail on an equality

between two variables x ≈ y. In this case, the function dg(Q, v⃗, T +
v⃗ , T −

v⃗ , γ) does not compute
a Data Golf structure. We define the not-depth of a subquery x ≈ y in Q as the number of
subqueries that have the form of a negation among the queries x ≈ y ⊑ · · · ⊑ Q, i.e., the
number of negations on the path between the subquery x ≈ y and Q’s main connective. To
prevent failure, we generate the sets T +

v⃗ , T −
v⃗ to only contain tuples with equal values for all

variables in equalities with even (odd, respectively) not-depth and pairwise distinct values
for all variables in equalities with odd (even, respectively) not-depth. This is not always
possible, e.g., for x ≈ y ∧ ¬x ≈ y, in which case no Data Golf structure can be computed.
In the case of a conjunction or a disjunction, we add disjoint sets T 1

v⃗ , T 2
v⃗ of tuples over v⃗

to T +
v⃗ , T −

v⃗ so that the intermediate results for the subqueries are neither equal nor disjoint.
We implement two strategies (parameter γ) to choose these sets T 1

v⃗ , T 2
v⃗ .

Finally, we justify why a Data Golf structure S computed by dg(Q, v⃗, T +
v⃗ , T −

v⃗ , γ) satisfies
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T +
v⃗ [f⃗v(Q)] ⊆ JQK and T −

v⃗ [f⃗v(Q)] ∩ JQK = ∅. We proceed by induction on the query Q.
Because of rep, the Data Golf structures for the subqueries Q1, Q2 of a binary query Q1∨Q2
or Q1 ∧Q2 can be combined using the union operator. The only case that does not follow
immediately is that T −

v⃗ [f⃗v(Q)] ∩ JQK = ∅ for a query Q of the form ∃y. Qy. We prove this
case by contradiction. Without loss of generality we assume that f⃗v(Qy) = f⃗v(Q) · y. Suppose
that d⃗ ∈ T −

v⃗ [f⃗v(Q)] and d⃗ ∈ JQK. Because d⃗ ∈ T −
v⃗ [f⃗v(Q)], there exists some d such that

d⃗ · d ∈ T 2
v⃗·y[f⃗v(Qy)]. Because d⃗ ∈ JQK, there exists some d′ such that d⃗ · d′ ∈ JQyK. By the

induction hypothesis, d⃗ · d /∈ JQyK and d⃗ · d′ /∈ T 2
v⃗·y[f⃗v(Qy)]. Because convgt(y, Qy,G) holds for

some G satisfying con, the query Qy is equivalent to (Qy ∧ qps∨(G)) ∨Qy[y/⊥]. We have
d⃗ · d′ ∈ JQyK. If the tuple d⃗ · d′ satisfies Qy[y/⊥], then d⃗ · d ∈ JQyK (contradiction) because
the variable y does not occur in the query Qy[y/⊥] and thus its assignment in d⃗ · d′ can be
arbitrarily changed. Otherwise, the tuple d⃗·d′ satisfies some quantified predicate Qqp ∈ qps(G)
and (con) implies {y} ⊊ fv(Qqp). Hence, the tuples d⃗·d and d⃗·d′ agree on the assignment of a
variable x ∈ fv(Qqp)\{y}. Let T +

v⃗′ and T −
v⃗′ be the sets in the recursive call of dg on the atomic

predicate from Qqp. Because d⃗ · d ∈ T 2
v⃗·y[f⃗v(Qy)] and T 2

v⃗·y[f⃗v(Qy)] ⊆ T +
v⃗′ [f⃗v(Qy)]∪T −

v⃗′ [f⃗v(Qy)],
the tuple d⃗ · d is in T +

v⃗′ [f⃗v(Qy)] ∪ T −
v⃗′ [f⃗v(Qy)]. Because d⃗ · d′ satisfies the quantified predicate

Qqp, the tuple d⃗ · d′ is in T +
v⃗′ [f⃗v(Qy)]. Next we observe that the assignments of every variable

(in particular, x) in the tuples from the sets T +
v⃗′ , T −

v⃗′ are pairwise distinct (the conditions
T +

v⃗′ [x]∩ T −
v⃗′ [x] = ∅,

∣∣T +
v⃗′ [x]

∣∣ =
∣∣T +

v⃗′

∣∣, and
∣∣T −

v⃗′ [x]
∣∣ =

∣∣T −
v⃗′

∣∣). Because the tuples d⃗ · d and d⃗ · d′

agree on the assignment of x, they must be equal, i.e., d⃗ · d = d⃗ · d′ (contradiction).
The sets T +

v⃗ , T −
v⃗ only grow in dg’s recursion and the properties con, cst, var, rep

imply that Q has no closed subquery. Hence, T +
v⃗ [f⃗v(Q)] ⊆ JQK and T −

v⃗ [f⃗v(Q)] ∩ JQK = ∅
imply that |JQ′K| and |J¬Q′K| contain at least min{

∣∣T +
v⃗

∣∣ ,
∣∣T −

v⃗

∣∣} tuples, for every Q′ ⊑ Q.

▶ Example 18. Consider the query Q B ¬∃y. P2(x, y) ∧ ¬P3(x, y, z). This query Q satisfies
the assumptions con, cst, var, rep. In particular, convgt(y, P2(x, y) ∧ ¬P3(x, y, z),G) holds
for G = {P2(x, y)} with {y} ⊊ fv(P2(x, y)). We choose v⃗ = (x, z), T +

v⃗ = {(0, 4), (2, 6)}, and
T −

v⃗ = {(8, 12), (10, 14)}. The function dg(Q, v⃗, T +
v⃗ , T −

v⃗ , γ) first flips T +
v⃗ and T −

v⃗ (because Q’s
main connective is negation) and then extends the tuples in the sets T −

v⃗ and T +
v⃗ with a value

for the bound variable y: T 1
v⃗·y = {(8, 12, 16), (10, 14, 18)} and T 2

v⃗·y = {(0, 4, 20), (2, 6, 22)}.
For conjunction (a binary operator), two additional sets of tuples are computed: T 1

v⃗·y =
{(24, 28, 32), (26, 30, 34)} and T 2

v⃗·y = {(36, 40, 44), (38, 42, 46)}. Depending on the strategy
(γ = 0 or γ = 1), one of the following structures is computed: S0 = {P2 7→ {(8, 16), (10, 18),
(24, 32), (26, 34)}, P3 7→ T +

xyz}, or S1 = {P2 7→ {(8, 16), (10, 18), (0, 20), (2, 22)}, P3 7→ T +
xyz},

where T +
xyz = {(0, 20, 4), (2, 22, 6), (24, 32, 28), (26, 34, 30)}.

The query P1(x) ∧ Q is satisfied by the finite set of tuples T +
v⃗ under the structure

S1 ∪ {P1 7→ {(0), (2)}} obtained by extending S1 (γ = 1). In contrast, the same query
P1(x) ∧Q is satisfied by an infinite set of tuples including T +

v⃗ and disjoint from T −
v⃗ under

the structure S0 ∪ {P1 7→ {(0), (2)}} obtained by extending S0 (γ = 0).

6 Implementation and Empirical Evaluation
We have implemented our translation RC2SQL consisting of roughly 1000 lines of OCaml
code [25]. Although our translation satisfies the worst-case complexity bound (Theorem 14),
we further improve its average-case complexity by implementing the following optimizations,
described in more detail in Appendix E.

We use a sample structure of constant size, called a training database, to estimate the
query cost when resolving the nondeterministic choices in our algorithms (Appendix E.1).
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A good training database should preserve the relative ordering of queries by their cost
over the actual database as much as possible. Nevertheless, our translation satisfies the
correctness and worst-case complexity claims (Section 4.3 and 4.4) for every choice of the
training database. All our experiments used a Data Golf structure with |T +| = |T −| = 2
as the training database.
We use the function optcnt optimizing RANF subqueries of the form ∃y⃗. Q+ ∧

∧k
i=1 ¬Q−

i

using the count aggregation operator (Appendix E.2). Inspired by Claußen et al. [9], we
compare the number of assignments of y⃗ that satisfy Q+ and

∨k
i=1(Q+∧Q−

i ), respectively.
To compute an SQL query from a RANF query, we define the function ranf2sql(·) (Ap-
pendix E.3). We first obtain an equivalent RA expression using the standard approach [1]
but adjusting the case of closed queries [8]. To translate RA expressions into SQL, we reuse
a publicly available RA interpreter radb [30]. We modify its implementation to improve the
performance of the resulting SQL query. We map the anti-join operator Q̂1 ▷Q̂2 to a more
efficient LEFT JOIN, if fv(Q̂2) ⊊ fv(Q̂1), and we perform common subquery elimination.

To validate our translation’s improved asymptotic time complexity, we compare it with
the translation by Van Gelder and Topor [14] (VGT), an implementation of the algorithm
by Ailamazyan et al. [2] that uses an extended active domain as the generators, and the
DDD [20,21], LDD [7], and MonPolyREG [4] tools that support direct RC query evaluation using
binary decision diagrams. We could not find a publicly available implementation of Van Gelder
and Topor’s translation. Therefore, the tool VGT for evaluable RC queries is derived from our
implementation by modifying the function rb(·) in Figure 4 to use the relation convgt(x, Q,G)
(Appendix A, Figure 9) instead of cov(x, Q,G) (Figure 3) and to use the generator ∃f⃗v(Q) \
{x}. qps∨(G) instead of qps∨(G). Evaluable queries Q are always translated into (Qfin,⊥)
by rw(·) because all of Q’s free variables are range-restricted. We also consider translation
variants that omit the count aggregation optimization optcnt(·), marked with a minus (−).

SQL queries computed by the translations are evaluated using the PostgreSQL database
engine. We have also used the MySQL database engine but omit its timings from our eval-
uation after discovering that it computed incorrect results for some queries. This issue was
reported and subsequently confirmed by MySQL developers. We run our experiments on
an Intel Core i5-4200U CPU computer with 8 GB RAM. The relations in PostgreSQL are
recreated before each invocation to prevent optimizations based on caching recent query
evaluation results. We provide all our experiments in an easily reproducible artifact [25].

In the Small, Medium, and Large experiments, we generate ten pseudorandom queries
with a fixed size 14 and Data Golf structures S. The queries satisfy the Data Golf assumptions
along with a few additional ones: the queries are not safe-range, have no repeated equalities,
disjunction only appears at the top-level, every bound variable actually occurs in its scope, and
only pairwise distinct variables appear as terms in predicates. The queries have 2 free variables
and every subquery has at most 4 free variables. We control the size of the Data Golf structure
S in our experiments using a parameter n = |T +| = |T −|. Because the sets T + and T − grow
in the recursion on subqueries, relations in a Data Golf structure typically have more than n

tuples. The values of the parameter n for Data Golf structures are summarized in Figure 7.
The Infinite experiment consists of five pseudorandom queries Q that are not evalu-

able and rw(Q) = (Qfin, Qinf ), where Qinf ≠ ⊥. Specifically, the queries are of the form
Q1 ∧ ∀x, y. Q2 −→ Q3, where Q1, Q2, and Q3 are either atomic predicates or equalities. For
each query Q, we compare the performance of our tool to tools that directly evaluate Q on
structures generated by the two Data Golf strategies (parameter γ), which trigger infinite
or finite evaluation results on the considered queries. For infinite results, our tool outputs
this fact (by evaluating Qinf ), whereas the other tools also output a finite representation
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Experiment Small, Evaluable pseudorandom queries Q, |sub(Q)| = 14, n = 500:
RC2SQL 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.3
RC2SQL− 0.3 0.2 150.3 0.3 0.2 0.3 0.3 0.3 5.9 0.2
VGT 31.5 6.7 4.2 2.5 37.5 9.3 2.4 2.3 11.3 2.7
VGT− 33.7 4.8 119.9 6.3 11.2 21.9 31.4 11.3 12.3 21.9
DDD 9.1 2.5 RE 7.1 5.9 RE 5.1 RE 2.2 5.1
LDD 59.2 24.1 169.1 38.8 53.3 37.4 64.0 TO 16.0 61.6
MonPolyREG 64.2 31.4 143.0 57.6 67.8 54.4 72.4 174.6 33.6 71.3

Experiment Medium, Evaluable pseudorandom queries Q, |sub(Q)| = 14, n = 20000:
RC2SQL 2.6 1.4 3.9 2.1 1.5 2.8 3.3 1.6 1.2 2.6
RC2SQL− 2.0 1.0 TO 2.0 1.7 2.5 2.3 1.8 TO 1.8
VGT TO TO 7.8 3.9 TO TO 5.2 4.7 TO 4.8
VGT− TO TO TO TO TO TO TO TO TO TO

Experiment Large, Evaluable pseudorandom queries Q, |sub(Q)| = 14, tool = RC2SQL:
n = 40000 3.5 2.7 8.1 4.0 3.2 5.5 6.7 4.1 1.9 5.8
n = 80000 7.5 5.4 16.1 8.0 6.1 11.5 14.0 8.1 4.2 11.7
n = 120000 13.2 8.2 24.6 11.5 8.9 16.3 20.9 11.0 7.2 16.7

Experiment Infinite, Non-evaluable pseudorandom queries Q, |sub(Q)| = 7, n = 4000:
Infinite results (γ = 0) Finite results (γ = 1)

RC2SQL 0.8 0.8 0.8 0.8 0.8 1.0 1.1 0.9 2.4 1.1
RC2SQL− 0.5 0.5 0.4 0.5 0.5 0.6 0.7 0.6 TO 2.0
DDD 89.5 49.1 46.9 116.3 50.4 81.7 44.1 45.8 89.8 44.6
LDD TO TO TO TO TO TO TO TO TO TO
MonPolyREG TO TO TO TO TO TO TO TO TO TO

Figure 7 Experiments Small, Medium, Large, and Infinite. We use the following abbreviations:
TO = Timeout of 300s, RE = Runtime Error.

of the infinite result. For finite results, all tools produce the same output.
Figure 7 shows the empirical evaluation results for the experiments Small, Medium,

Large, and Infinite. All entries are execution times in seconds, TO is a timeout, and RE is
a runtime error. Each column shows evaluation times for a unique pseudorandom query. The
lowest time for a query is typeset in bold. We do not report the translation time because it
does not contribute to the time complexity for a fixed query. Still, RC2SQL’s translation time
is at most 0.6 seconds on every query in our experiments. We also omit the rows for tools that
time out or crash on all queries of an experiment, e.g., Ailamazyan et al. [2]. We conclude
that our translation RC2SQL significantly outperforms all other tools on all queries and scales
well to higher values of n, i.e., larger relations in the Data Golf structures, on all queries.

We also evaluate the tools on the queries Qsusp and Qsusp
user from the introduction and on

the more challenging query Qsusp
text B B(b) ∧ ∃u, s, t. ∀p. P(b, p) −→ S(p, u, s) ∨ T(p, u, t) with

an additional relation T that relates user’s review text (variable t) to a product. The query
Qsusp

text computes all brands for which there is a user, a score, and a review text such that all
the brand’s products were reviewed by that user with that score or by that user with that
text. We use both Data Golf structures (strategy γ = 1) and real-world structures obtained
from the Amazon review dataset [23]. The real-world relations P, S, and T are obtained by
projecting the respective tables from the Amazon review dataset for some chosen product
categories (abbreviated GC and MI in Figure 8) and the relation B contains all brands from
P that have at least three products. Because the tool by Ailamazyan et al., DDD, LDD, and
MonPolyREG only support integer data, we injectively remap the string and floating-point
values from the Amazon review dataset to integers.
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Query Qsusp Qsusp
user Qsusp

text Query Qsusp Qsusp
user Qsusp

text
Param. n 103 104 103 104 103 104 Dataset GC MI GC MI GC MI

RC2SQL 2.0 2.2 3.0 3.5 6.2 7.1 RC2SQL 2.9 16.2 4.2 21.4 8.9 91.3
RC2SQL− 61.7 TO 63.4 TO 484.9 TO RC2SQL− 273.9 TO 270.1 TO TO TO
VGT 3.9 2.9 − − 213.2 TO VGT 3.5 18.9 − − TO TO
VGT− 433.8 TO − − 495.4 TO VGT− TO TO − − TO TO
DDD 7.1 TO 6.3 TO 28.8 TO DDD 93.3 TO 90.1 TO 178.5 TO
LDD 36.3 TO 34.0 TO 213.9 TO LDD TO TO TO TO TO TO
MonPolyREG 49.9 TO 47.3 TO 181.2 TO MonPolyREG TO TO TO TO TO TO

Figure 8 Experiment with the queries Qsusp, Qsusp
user , and Qsusp

text . We use the following abbreviations:
GC = Gift Cards dataset, MI = Musical Instruments dataset, TO = Timeout of 600s.

Figure 8 shows the empirical evaluation results: execution times on Data Golf structures
(left) and execution times on structures derived from the real-world dataset for two specific
product categories (right). We remark that VGT cannot handle the query Qsusp

user as it is not
evaluable [14]. Our translation RC2SQL significantly outperforms all other tools (except VGT
on Qsusp, but RC2SQL still outperforms VGT) on both Data Golf and real-world structures.
VGT− translates Qsusp into a RANF query with a higher query cost than RC2SQL−. How-
ever, the optimization optcnt(·) manages to rectify this inefficiency and thus VGT exhibits
a comparable performance as RC2SQL. Specifically, the factor of 80× in query cost between
VGT− and RC2SQL− improves to 1.1× in query cost between VGT and RC2SQL on a Data
Golf structure with n = 20 [25]. Nevertheless, VGT does not finish evaluating the query
Qsusp

text on GC and MI datasets within 10 minutes, unlike RC2SQL.

7 Conclusion

We presented a translation-based approach to evaluating arbitrary relational calculus queries
over an infinite domain with improved time complexity over existing approaches. This
contribution is an important milestone towards making the relational calculus a viable query
language for practical databases. In future work, we plan to integrate into our base language
features that database practitioners love, such as inequalities, bag semantics, or aggregations.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 Alfred K. Ailamazyan, Mikhail M. Gilula, Alexei P. Stolboushkin, and Grigorii F. Schwartz.

Reduction of a relational model with infinite domains to the case of finite domains. Doklady
Akademii Nauk SSSR, 286(2):308–311, 1986. URL: http://mi.mathnet.ru/dan47310.

3 Arnon Avron and Yoram Hirshfeld. On first order database query languages. In LICS, July
15-18, 1991, Amsterdam, The Netherlands, pages 226–231. IEEE Computer Society, 1991.
doi:10.1109/LICS.1991.151647.

4 David A. Basin, Felix Klaedtke, Samuel Müller, and Eugen Zalinescu. Monitoring metric
first-order temporal properties. J. ACM, 62(2):15:1–15:45, 2015. doi:10.1145/2699444.

5 Michael Benedikt and Leonid Libkin. Relational queries over interpreted structures. J. ACM,
47(4):644–680, 2000. doi:10.1145/347476.347477.

6 Achim Blumensath and Erich Grädel. Finite presentations of infinite structures: Auto-
mata and interpretations. Theory Comput. Syst., 37(6):641–674, 2004. doi:10.1007/
s00224-004-1133-y.

ICDT 2022

http://webdam.inria.fr/Alice/
http://mi.mathnet.ru/dan47310
https://doi.org/10.1109/LICS.1991.151647
https://doi.org/10.1145/2699444
https://doi.org/10.1145/347476.347477
https://doi.org/10.1007/s00224-004-1133-y
https://doi.org/10.1007/s00224-004-1133-y


11:20 Practical Relational Calculus Query Evaluation

7 Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. Decision diagrams for linear arithmetic.
In FMCAD, 15-18 November 2009, Austin, Texas, USA, pages 53–60. IEEE, 2009. doi:
10.1109/FMCAD.2009.5351143.

8 Jan Chomicki and David Toman. Implementing temporal integrity constraints using an active
DBMS. IEEE Trans. Knowl. Data Eng., 7(4):566–582, 1995. doi:10.1109/69.404030.

9 Jens Claußen, Alfons Kemper, Guido Moerkotte, and Klaus Peithner. Optimizing queries
with universal quantification in object-oriented and object-relational databases. In Matthias
Jarke, Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Pericles Loucopoulos,
and Manfred A. Jeusfeld, editors, VLDB, August 25-29, 1997, Athens, Greece, pages 286–295.
Morgan Kaufmann, 1997. URL: http://www.vldb.org/conf/1997/P286.PDF.

10 E. F. Codd. Relational completeness of data base sublanguages. Research Report / RJ / IBM
/ San Jose, California, RJ987, 1972.

11 Erling Ellingsen. Regex golf, 2013. https://alf.nu/RegexGolf.
12 Martha Escobar-Molano, Richard Hull, and Dean Jacobs. Safety and translation of calculus

queries with scalar functions. In Catriel Beeri, editor, PODS, May 25-28, 1993, Washington,
DC, USA, pages 253–264. ACM Press, 1993. doi:10.1145/153850.153909.

13 Allen Van Gelder and Rodney W. Topor. Safety and correct translation of relational calculus
formulas. In Moshe Y. Vardi, editor, PODS, March 23-25, 1987, San Diego, California, USA,
pages 313–327. ACM, 1987. doi:10.1145/28659.28693.

14 Allen Van Gelder and Rodney W. Topor. Safety and translation of relational calculus queries.
ACM Trans. Database Syst., 16(2):235–278, 1991. doi:10.1145/114325.103712.

15 Richard Hull and Jianwen Su. Domain independence and the relational calculus. Acta
Informatica, 31(6):513–524, 1994. doi:10.1007/BF01213204.

16 Michael Kifer. On safety, domain independence, and capturability of database queries (prelim-
inary report). In Catriel Beeri, Joachim W. Schmidt, and Umeshwar Dayal, editors, Proceedings
of the Third International Conference on Data and Knowledge Bases: Improving Usability and
Responsiveness, June 28-30, 1988, Jerusalem, Israel, pages 405–415. Morgan Kaufmann, 1988.
doi:10.1016/b978-1-4832-1313-2.50037-8.

17 Nils Klarlund and Anders Møller. MONA v1.4 User Manual. BRICS, Department of Computer
Science, University of Aarhus, January 2001. URL: http://www.brics.dk/mona/.

18 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004. URL: http://www.cs.toronto.edu/%7Elibkin/fmt, doi:
10.1007/978-3-662-07003-1.

19 Hong-Cheu Liu, Jeffrey Xu Yu, and Weifa Liang. Safety, domain independence and translation
of complex value database queries. Inf. Sci., 178(12):2507–2533, 2008. doi:10.1016/j.ins.
2008.02.005.

20 Jesper B. Møller. DDDLIB: A library for solving quantified difference inequalities. In Andrei
Voronkov, editor, CADE, July 27-30, 2002, Copenhagen, Denmark, volume 2392 of Lecture
Notes in Computer Science, pages 129–133. Springer, 2002. doi:10.1007/3-540-45620-1\_9.

21 Jesper B. Møller, Jakob Lichtenberg, Henrik Reif Andersen, and Henrik Hulgaard. Difference
decision diagrams. In Jörg Flum and Mario Rodríguez-Artalejo, editors, CSL, September
20-25, 1999, Madrid, Spain, volume 1683 of Lecture Notes in Computer Science, pages 111–125.
Springer, 1999. doi:10.1007/3-540-48168-0\_9.

22 Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new developments in the
theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013. doi:10.1145/2590989.2590991.

23 Jianmo Ni, Jiacheng Li, and Julian J. McAuley. Justifying recommendations using distantly-
labeled reviews and fine-grained aspects. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan, editors, EMNLP, November 3-7, 2019, Hong Kong, China, pages 188–197. Association
for Computational Linguistics, 2019. doi:10.18653/v1/D19-1018.

24 Robert A. Di Paola. The recursive unsolvability of the decision problem for the class of definite
formulas. J. ACM, 16(2):324–327, 1969. doi:10.1145/321510.321524.

https://doi.org/10.1109/FMCAD.2009.5351143
https://doi.org/10.1109/FMCAD.2009.5351143
https://doi.org/10.1109/69.404030
http://www.vldb.org/conf/1997/P286.PDF
https://alf.nu/RegexGolf
https://doi.org/10.1145/153850.153909
https://doi.org/10.1145/28659.28693
https://doi.org/10.1145/114325.103712
https://doi.org/10.1007/BF01213204
https://doi.org/10.1016/b978-1-4832-1313-2.50037-8
http://www.brics.dk/mona/
http://www.cs.toronto.edu/%7Elibkin/fmt
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1016/j.ins.2008.02.005
https://doi.org/10.1016/j.ins.2008.02.005
https://doi.org/10.1007/3-540-45620-1_9
https://doi.org/10.1007/3-540-48168-0_9
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.1145/321510.321524


M. Raszyk, D. Basin, S. Krstić, and D. Traytel 11:21

genvgt(x, Q, {Q}) if ap(Q) and x ∈ fv(Q);
genvgt(x,¬¬Q,G) if genvgt(x, Q,G);
genvgt(x,¬(Q1 ∨Q2),G) if genvgt(x, (¬Q1) ∧ (¬Q2),G);
genvgt(x,¬(Q1 ∧Q2),G) if genvgt(x, (¬Q1) ∨ (¬Q2),G);
genvgt(x,¬∃y. Qy,G) if x ̸= y and genvgt(x,¬Qy,G);
genvgt(x, Q1 ∨Q2,G1 ∪ G2) if genvgt(x, Q1,G1) and genvgt(x, Q2,G2);
genvgt(x, Q1 ∧Q2,G) if genvgt(x, Q1,G);
genvgt(x, Q1 ∧Q2,G) if genvgt(x, Q2,G);
genvgt(x,∃y. Qy,G) if x ̸= y and genvgt(x, Qy,G);

convgt(x, Q, ∅) if x /∈ fv(Q);
convgt(x, Q, {Q}) if ap(Q) and x ∈ fv(Q);
convgt(x,¬¬Q,G) if convgt(x, Q,G);
convgt(x,¬(Q1 ∨Q2),G) if convgt(x, (¬Q1) and (¬Q2),G);
convgt(x,¬(Q1 ∧Q2),G) if convgt(x, (¬Q1) ∨ (¬Q2),G);
convgt(x,¬∃y. Qy,G) if x ̸= y and convgt(x,¬Qy,G);
convgt(x, Q1 ∨Q2,G1 ∪ G2) if convgt(x, Q1,G1) and convgt(x, Q2,G2);
convgt(x, Q1 ∧Q2,G) if genvgt(x, Q1,G);
convgt(x, Q1 ∧Q2,G) if genvgt(x, Q2,G);
convgt(x, Q1 ∧Q2,G1 ∪ G2) if convgt(x, Q1,G1) and convgt(x, Q2,G2);
convgt(x, ∃y. Qy,G) if x ̸= y and convgt(x, Qy,G).

Figure 9 The relations genvgt(x, Q, G) and convgt(x, Q, G) [14].
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A Evaluable Queries

The classes of evaluable queries [14, Definition 5.2] and allowed queries [14, Definition 5.3] are
decidable subsets of domain-independent RC queries. The evaluable queries characterize ex-
actly the domain-independent queries with no repeated predicate symbols [14, Theorem 10.5].
Every evaluable query can be translated to an equivalent allowed query [14, Theorem 8.6]
and every allowed query can be translated to an equivalent RANF query [14, Theorem 9.6].

▶ Definition 19. A query Q is called evaluable if
every variable x ∈ fv(Q) satisfies genvgt(x, Q) and
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measure(⊥) = measure(⊤) = measure(x ≈ t) = 1
measure(r(t1, . . . , tι(r))) = 1
measure(¬Q) = 2 ·measure(Q)
measure(Q1 ∨Q2) = 2 ·measure(Q1) + 2 ·measure(Q2) + 2
measure(Q1 ∧Q2) = measure(Q1) + measure(Q2) + 1
measure(∃x. Qx) = 2 ·measure(Qx)

Figure 10 The measure measure(Q) on RC queries.

the bound variable y in every subquery ∃y. Qy of Q satisfies convgt(y, Qy).
A query Q is called allowed if

every variable x ∈ fv(Q) satisfies genvgt(x, Q) and
the bound variable y in every subquery ∃y. Qy of Q satisfies genvgt(y, Qy),

where the relation genvgt(x, Q) is defined to hold iff there exists a set G such that genvgt(x, Q,G)
and the relation convgt(x, Q) is defined to hold iff there exists a set G such that convgt(x, Q,G),
respectively. The relations genvgt(x, Q,G) and convgt(x, Q,G) are defined in Figure 9.

In Figure 10 we introduce a measure measure(Q) on queries, that decreases for proper
subqueries, after pushing negation, and after distributing existential quantification over
disjunction. Hence, the termination of the rules in Figures 2, 3, and 9 and the termination
of the functions in Figures 14 and 15 follow using the measure measure(Q).

We relate the definitions from Figure 2 and Figure 9 with the following lemmas.

▶ Lemma 20. Let x and y be free variables in a query Q such that genvgt(x,¬Q) and
genvgt(y, Q) hold. Then we get a contradiction.

Proof. The lemma is proved by induction on the query Q using the measure measure(Q) on
queries defined in Figure 10, which decreases in every case of the definition in Figure 9. ◀

▶ Lemma 21. Let Q be a query such that genvgt(y, Qy) holds for the bound variable y in
every subquery ∃y. Qy of Q. Suppose that genvgt(x, Q) holds for a free variable x ∈ fv(Q).
Then gen(x, Q) holds.

Proof. The lemma is proved by induction on the query Q using the measure measure(Q) on
queries defined in Figure 10, which decreases in every case of the definition in Figure 9.

Lemma 20 and the assumption that genvgt(y, Qy) holds for the bound variable y in
every subquery ∃y. Qy of Q imply that genvgt(x, Q) cannot be derived using the rule
genvgt(x,¬∃y. Qy), i.e., Q cannot be of the form ¬∃y. Qy. Every other case in the definition
of genvgt(x, Q) has a corresponding case in the definition of gen(x, Q). ◀

▶ Lemma 22. Let Q be an allowed query, i.e., genvgt(x, Q) holds for every free variable
x ∈ fv(Q) and genvgt(y, Qy) holds for the bound variable y in every subquery ∃y. Qy of Q.
Then Q is a safe-range query, i.e., gen(x, Q) holds for every free variable x ∈ fv(Q) and
gen(y, Qy) holds for the bound variable y in every subquery ∃y. Qy of Q.

Proof. The lemma is proved by applying Lemma 21 to every free variable of Q and to the
bound variable y in every subquery of Q of the form ∃y. Qy. ◀

Lemma 22 shows that every allowed query is safe-range. But there exist safe-range queries
that are not allowed, e.g., B(x) ∧ x ≈ y.
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x ≈ x ≡ ⊤, ¬⊥ ≡ ⊤, ¬⊤ ≡ ⊥,

Q ∧ ⊥ ≡ ⊥, ⊥ ∧Q ≡ ⊥, Q ∧ ⊤ ≡ Q, ⊤ ∧Q ≡ Q,

Q ∨ ⊥ ≡ Q, ⊥ ∨Q ≡ Q, Q ∨ ⊤ ≡ ⊤, ⊤ ∨Q ≡ ⊤,

∃x.⊥ ≡ ⊥, ∃x.⊤ ≡ ⊤.

Figure 11 Constant propagation rules.

ranf(⊥); ranf(⊤);
ranf(Q) if ap(Q);
ranf(¬Q) if ranf(Q) and fv(Q) = ∅;
ranf(Q1 ∨Q2) if ranf(Q1) and ranf(Q2) and fv(Q1) = fv(Q2);
ranf(Q1 ∧Q2) if ranf(Q1) and ranf(Q2);
ranf(Q1 ∧ ¬Q2) if ranf(Q1) and ranf(Q2) and fv(Q2) ⊆ fv(Q1);
ranf(Q ∧ (x ≈ y)) if ranf(Q) and {x, y} ∩ fv(Q) ̸= ∅;
ranf(Q ∧ ¬(x ≈ y)) if ranf(Q) and {x, y} ⊆ fv(Q);
ranf(∃x. Qx) if ranf(Qx) and x ∈ fv(Qx).

Figure 12 Characterization of RANF queries.

B Constant Propagation

We introduce constant propagation rules in Figure 11. We denote by cp(Q) the query
obtained from a query Q by exhaustively applying the rules in Figure 11. Note that cp(Q) is
either of the form ⊥ or ⊤ or contains neither ⊥ nor ⊤ as a subquery.

The following definitions introduce substitution of a variable by another variable and
removing all free occurrences of a free variable.

▶ Definition 23. The substitution of the form Q[x 7→ y] is the query cp(Q′) where Q′ is
obtained from a query Q by replacing all occurrences of the free variable x by the variable y,
potentially also renaming bound variables to avoid capture.

▶ Definition 24. The substitution of the form Q[x/⊥] is the query cp(Q′) where Q′ is
obtained from a query Q by replacing with ⊥ every atomic predicate or equality containing
the free variable x, except for (x ≈ x) ≡ ⊤.

C Query Normal Forms

In this section, we introduce relational algebra normal form (RANF), which is a syntactic class
of safe-range RC queries that admit a simple construction of an equivalent RA expression.
We also introduce other normal forms useful for translating safe-range queries to RANF
queries. Note that a query normal form concerns the structure of the query rather than
functional dependencies between attributes in relations (e.g., as in 1NF, 2NF, 3NF).

Figure 12 defines the predicate ranf(·) characterizing RANF queries. The translation of
safe-range queries (Section 3.2) to equivalent RANF queries proceeds via safe-range normal
form (SRNF) introduced in [1, Section 5.4] and summarized here in Appendix C.1. A
safe-range query in SRNF can be translated to an equivalent RANF query by subquery

ICDT 2022
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Safe-range RC

SRNF ENF

RANF

SQL

srnf(Q)

sr2ranf(Qsrnf , ∅)

enf(Q)

[12]

ranf2sql(Q̂)
sr2ranf(Q)

Figure 13 Overview of query normal forms.

rewriting using the following rules [1, Algorithm 5.4.7]:

Q ∧ (Q1 ∨Q2) ≡ (Q ∧Q1) ∨ (Q ∧Q2), (R1)
Q ∧ (∃x. Qx) ≡ (∃x. Q ∧Qx), (R2)
Q ∧ ¬Q′ ≡ Q ∧ ¬(Q ∧Q′). (R3)

Subquery rewriting is a nondeterministic process (as the rewrite rules can be applied in an
arbitrary order) that impacts the performance of evaluating the resulting RANF query. We
translate a safe-range query in SRNF to an equivalent RANF query by a recursive function
sr2ranf inspired by the rules (R1)–(R3).

Existential normal form (ENF) was introduced by Van Gelder and Topor [14] to translate
an allowed query [14] into an equivalent RANF query. Given a safe-range query in ENF, the
rules (R1)–(R3) can be applied to obtain an equivalent RANF query [12, Lemma 7.8]. We
remark that the rules (R1)–(R3) are not sufficient to yield an equivalent RANF query for the
original definition of ENF [14]. This issue has been identified and fixed by Escobar-Molano
et al. [12]. Unlike SRNF, a query in ENF can have a subquery of the form ¬(Q1 ∧Q2), but
no subquery of the form ¬Q1∨Q2 or Q1∨¬Q2. A function enf(Q) that yields an ENF query
equivalent to Q can be defined in terms of subquery rewriting using the rules in [12, Figure 2].
Although applying the rules (R1)–(R3) to enf(Q) instead of srnf(Q) may result in a RANF
query with fewer subqueries, the query cost, i.e., the time complexity of query evaluation,
can be arbitrarily larger. We illustrate this in the following example that is also included
in our artifact [25]. We thus opt for using SRNF instead of ENF for translating safe-range
queries into RANF.

▶ Example 25. The safe-range query Qenf B P2(x, y) ∧ ¬(P1(x) ∧ P1(y)) is in ENF and
RANF, but not SRNF. Applying the rule (R1) to srnf(Qenf ) yields the RANF query Qsrnf B

(P2(x, y) ∧ ¬P1(x)) ∨ (P2(x, y) ∧ ¬P1(y)) that is equivalent to Qenf . The costs of the
two queries over a structure S are costS(Qenf ) = 2 · |JP2(x, y)K| + |JP1(x)K| + |JP1(y)K| +
2·|JP1(x) ∧ P1(y)K|+2·|JQenf K| and costS(Qsrnf ) = 2·|JP2(x, y)K|+|JP1(x)K|+2·|JP2(x, y)K|+
|JP1(y)K|+2 · |JP2(x, y) ∧ ¬P1(x)K|+2 · |JP2(x, y) ∧ ¬P1(y)K|+2 · |JQsrnf K|, respectively. Note
that the cost of Qenf can be arbitrarily larger if P1(x)∧P1(y) evaluates to a large intermediate
result, i.e., |JP1(x) ∧ P1(y)K| ≫ |JP2(x, y)K|. In contrast, the cost of Qsrnf can only be larger
by a constant factor.

Figure 13 shows an overview of the RC fragments and query normal forms (nodes) and
the functions we use to translate between them and to SQL (edges). The dashed edge shows
the translation of a safe-range query to RANF we opt for in this paper. It is the composition
of the two translations from safe-range RC to SRNF and from SRNF to RANF, respectively.
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input: An RC query Q.
output: A SRNF query Qsrnf such that Q ≡ Qsrnf , fv(Q) = fv(Qsrnf ).

1 function srnf(Q) =
2 switch Q do
3 case ¬Q′ do
4 switch Q′ do
5 case ¬Q′′ do return srnf(Q′′);
6 case Q1 ∨Q2 do return srnf((¬Q1) ∧ (¬Q2));
7 case Q1 ∧Q2 do return srnf((¬Q1) ∨ (¬Q2));
8 case ∃v⃗. Qv⃗ do
9 if v⃗ ∩ fv(Qv⃗) = ∅ then return srnf(¬Qv⃗);

10 else
11 switch srnf(Qv⃗) do
12 case Q1 ∨Q2 do return srnf((¬∃v⃗. Q1) ∧ (¬∃v⃗. Q2));
13 otherwise do return ¬∃v⃗ ∩ fv(Qv⃗). srnf(Qv⃗);
14 otherwise do return ¬srnf(Q′);
15 case Q1 ∨Q2 do return srnf(Q1) ∨ srnf(Q2);
16 case Q1 ∧Q2 do return srnf(Q1) ∧ srnf(Q2);
17 case ∃v⃗. Qv⃗ do
18 switch srnf(Qv⃗) do
19 case Q1 ∨Q2 do return srnf((∃v⃗. Q1) ∨ (∃v⃗. Q2));
20 otherwise do return ∃v⃗ ∩ fv(Qv⃗). srnf(Qv⃗);
21 otherwise do return Q;

Figure 14 Translation to SRNF.

In the rest of this section we introduce the normal forms and translations. Appendix E.3
shows how we translate RANF queries to SQL.

C.1 Safe-Range Normal Form
A query Q is in safe-range normal form (SRNF) if the query Q′ in every subquery ¬Q′

of Q is an atomic predicate, equality, or an existentially quantified query [1]. Figure 14
defines the function srnf(Q) that yields a SRNF query equivalent to a query Q. The function
srnf(Q) proceeds by pushing negation [1, Section 5.4], distributing existential quantifiers over
disjunction [14, Rule (T9)], and dropping bound variables that never occur [14, Definition 9.2].
We include the last two rules to optimize the time complexity of evaluating the resulting
RANF query. The termination of the function srnf(Q) follows using the measure measure(Q),
defined in Figure 10.

Using Figure 2, if a query Q is safe-range, then srnf(Q) is also safe-range. Next we prove
the following lemma that we use as a precondition for translating safe-range SRNF queries
to RANF queries.

▶ Lemma 26. Let Qsrnf be a query in SRNF. Then gen(x,¬Q′) does not hold for any
variable x and subquery ¬Q′ of Qsrnf .

Proof. Using Figure 2, gen(x,¬Q′) can only hold if ¬Q′ has the form ¬¬Q, ¬(Q1 ∨Q2), or
¬(Q1∧Q2). The SRNF query Qsrnf cannot have a subquery ¬Q′ that has any such form. ◀
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input: A safe-range query Q ∧
∧

Q∈Q Q such that for all subqueries of the form
¬Q′, gen(x,¬Q′) does not hold for any variable x.

output: A RANF query Q̂ and a subset of queries Q ⊆ Q such that
Q ∧

∧
Q∈Q Q ≡ Q̂ ∧

∧
Q∈Q Q; for all S and α,

(S, α) |= Q̂ =⇒ (S, α) |=
∧

Q∈Q Q holds; Q̂ = cp(Q̂); and
fv(Q) ⊆ fv(Q̂) ⊆ fv(Q) ∪ fv(Q), unless Q̂ = ⊥.

1 function sr2ranf(Q,Q) =
2 if ranf(Q) then return (cp(Q), ∅);
3 switch Q do
4 case x ≈ y do return sr2ranf(x ≈ y ∧

∧
Q∈Q Q, ∅);

5 case ¬Q′ do
6 Q ← {Q ⊆ Q | (¬Q′) ∧

∧
Q∈Q Q is safe-range};

7 if Q = ∅ then
8 (Q̂′, _) B sr2ranf(Q′, ∅);
9 return (cp(¬Q̂′), ∅);

10 else return sr2ranf((¬Q′) ∧
∧

Q∈Q Q, ∅);
11 case Q1 ∨Q2 do
12 Q ← {Q ⊆ Q |

∨
Q′∈flat∨(Q)(Q′ ∧

∧
Q∈Q Q) is safe-range};

13 foreach Q′ ∈ flat∨(Q) do (Q̂′, _) B sr2ranf(Q′ ∧
∧

Q∈Q Q, ∅);
14 return (cp(

∨
Q′∈flat∨(Q) Q̂′),Q);

15 case Q1 ∧Q2 do
16 Q− B {Q′ ∈ flat∧(Q) ∪Q | neg(Q′)}; Q+ B (flat∧(Q) ∪Q) \ Q−;
17 Q= B {Q′ ∈ Q+ | eq(Q′)}; Q+ B Q+ \ Q=;
18 Q ̸≈ B {¬Q′ ∈ Q− | eq(Q′)}; Q− B Q− \ Q ̸≈;
19 foreach Q′ ∈ Q+ do (Q̂′,QQ′) B sr2ranf(Q′, (Q+ ∪Q=) \ {Q′}) ;
20 foreach ¬Q′ ∈ Q− do (Q̂′, _) B sr2ranf(Q′,Q+ ∪Q=) ;
21 Q ← {Q ⊆ Q+ | Q+ ⊆

⋃
Q′∈Q(QQ′ ∪ {Q′})};

22 return (cp(sort∧(
⋃

Q′∈Q{Q̂
′} ∪Q= ∪

⋃
¬Q′∈Q−{¬Q̂′} ∪ Q̸≈)),

⋃
Q′∈Q(QQ′ ∩Q));

23 case ∃v⃗. Qv⃗ do
24 if fv(Q) ∩ v⃗ ̸= ∅ then w⃗ ← {w⃗ | |w⃗| = |v⃗| and ((fv(Qv⃗) \ v⃗) ∪ fv(Q)) ∩ w⃗ = ∅};
25 else w⃗ := v⃗;
26 Qw⃗ B Qv⃗[v⃗ 7→ w⃗];
27 Q ← {Q ⊆ Q | Qw⃗ ∧

∧
Q∈Q Q is safe-range};

28 (Q̂w⃗, _) B sr2ranf(Qw⃗ ∧
∧

Q∈Q Q, ∅);
29 return (cp(∃w⃗. Q̂w⃗),Q);
30 otherwise do return (cp(Q), ∅);

Figure 15 Translation of safe-range SRNF to RANF.

C.2 Relational Algebra Normal Form

The function sr2ranf(Q,Q) = (Q̂,Q), defined in Figure 15, where sr2ranf stands for safe-range
to relational algebra normal form, takes a safe-range query Q∧

∧
Q∈Q Q in SRNF and returns

a RANF query Q̂ such that Q ∧
∧

Q∈Q Q ≡ Q̂ ∧
∧

Q∈Q Q. To restrict variables in Q, the
function sr2ranf(Q,Q) conjoins a subset of queries Q ⊆ Q to Q. Given a safe-range query



M. Raszyk, D. Basin, S. Krstić, and D. Traytel 11:27

Q, we first convert Q into SRNF and set Q = ∅. Then we define sr2ranf(Q) B Q̂, where
(Q̂, _) B sr2ranf(srnf(Q), ∅), to be a RANF query Q̂ equivalent to Q. The termination
of sr2ranf(Q,Q) follows from the lexicographic measure (2 · measure(Q) + eqneg(Q) + 2 ·∑

Q∈Q measure(Q) + 2 · |Q| , measure(Q) +
∑

Q∈Q measure(Q)), where measure(Q) is defined
in Figure 10, eqneg(Q) B 1 if Q is an equality between two variables or the negation of a
query, and eqneg(Q) B 0 otherwise.

Next we describe the definition of sr2ranf(Q,Q) that follows [1, Algorithm 5.4.7]. Note that
no constant propagation (Appendix B) is needed in [1, Algorithm 5.4.7], because the constants
⊥ and ⊤ are not in the query syntax [1, Section 5.3]. Because gen(x,⊥) holds and x /∈ fv(⊥),
we need to perform constant propagation to guarantee that every disjunct has the same set of
free variables (e.g., the query ⊥∨B(x) must be translated to B(x) to be in RANF). We flatten
the disjunction and conjunction using flat∨(·) and flat∧(·), respectively. In the case of a con-
junction Q∧, we first split the queries from flat∧(Q∧) and Q into queries Q+ that do not have
the form of a negation and queries Q− that do. Then we take out equalities between two vari-
ables and negations of equalities between two variables from the sets Q+ and Q−, respectively.
To partition flat∧(Q∧)∪Q this way, we define the predicates neg(Q) and eq(Q) characterizing
equalities between two variables and negations, respectively, i.e., neg(Q) is true iff Q has the
form ¬Q′ and eq(Q) is true iff Q has the form x ≈ y. Finally, the function sort∧(Q) converts a
set of queries into a RANF conjunction, defined in Figure 12, i.e., a left-associative conjunction
in RANF. Note that the function sort∧(Q) must place the queries x ≈ y so that either x or y is
free in some preceding conjunct, e.g., B(x)∧x ≈ y∧y ≈ z is in RANF, but B(x)∧y ≈ z∧x ≈ y

is not. In the case of an existentially quantified query ∃v⃗. Qv⃗, we rename the variables v⃗ to
avoid clash of the free variables in the set of queries Q with the bound variables v⃗.

Finally, the nondeterministic choices in the function sr2ranf(Q,Q) are resolved by minimiz-
ing the cost of the resulting RANF query with respect to a training database (Appendix E.1).

D Complexity Analysis

For an atomic predicate Qap ∈ aps(Q), let BQ(Qap) be the set of sequences of bound variables
for all occurrences of Qap in Q. For example, let Qex B ((∃z. (∃y, z. P3(x, y, z)) ∧ P2(y, z)) ∧
P1(z)) ∨ P3(x, y, z). Then aps(Qex) = {P1(z), P2(y, z), P3(x, y, z)} and BQex (P3(x, y, z)) =
{yz, []}, where [] denotes the empty sequence corresponding to the occurrence of P3(x, y, z)
in Qex for which the variables x, y, z are all free in Qex . Note that the variable z in
the other occurrence of P3(x, y, z) in Qex is bound to the innermost quantifier. Hence,
neither zy nor zyz is in BQex (P3(x, y, z)). Furthermore, let qps(Q) be the set of the
quantified predicates obtained by existentially quantifying sequences of bound variables
in BQ′(Qap) from the atomic predicates Qap ∈ aps(Q′) in all subqueries Q′ of Q. Form-
ally, qps(Q) B

⋃
Q′⊑Q,Qap∈aps(Q′){∃v⃗. Qap | v⃗ ∈ BQ′(Qap)}. For instance, qps(Qex) =

{P3(x, y, z),∃z. P3(x, y, z),∃yz. P3(x, y, z), P2(y, z),∃z. P2(y, z), P1(z)}.
A crucial property of our translation that is central for the complexity analysis (The-

orem 14) is formalized in the following lemma.

▶ Lemma 27. Let Q be an RC query with pairwise distinct (free and bound) variables and
let rw(Q) = (Q̂fin, Q̂inf ). Let Q̂ ∈ {Q̂fin, Q̂inf }. Then qps(Q̂) ⊆ qps(Q).

Proof. Let split(Q) = (Qfin, Qinf ). We observe that aps(Qfin) ⊆ qps(Q), eqs∗(Qfin) ⊆
eqs∗(Q), ≲Qfin⊆≲Q, aps(Qinf ) ⊆ qps(Q), eqs∗(Qinf ) ⊆ eqs∗(Q), and ≲Qinf⊆≲Q. Hence,
qps(Qfin) ⊆ qps(Q) and qps(Qinf ) ⊆ qps(Q).

Next we observe that qps(Q′) ⊆ qps(Q′) for every query Q′. Finally, we show that
qps(Q̂fin) ⊆ qps(Qfin) and qps(Q̂inf ) ⊆ qps(Qinf ). We observe that Bcp(Q′)(Qap) ⊆ BQ′(Qap),

ICDT 2022



11:28 Practical Relational Calculus Query Evaluation

Bsrnf(Q′)(Qap) ⊆ BQ′(Qap), and then qps(cp(Q′)) ⊆ qps(Q′), qps(srnf(Q′)) ⊆ qps(Q′), for
every query Q′.

Suppose that Q′∧
∧

Q∈Q Q is a safe-range query in which no variable occurs both free and
bound, no bound variables shadow each other, i.e., there are no subqueries ∃x. Qx ⊑ Q′

x and
∃x. Q′

x ⊑ Q′ ∧
∧

Q∈Q Q, and every two subqueries ∃x. Qx ⊑ Q1 and ∃x. Q′
x ⊑ Q2 such that

Q1 ∧Q2 ⊑ Q′ ∧
∧

Q∈Q Q have the property that ∃x. Qx or ∃x. Q′
x is a quantified predicate.

Then the free variables in
∧

Q∈Q Q never clash with the bound variables in Q′, i.e., Line 24
in Figure 15 is never executed. Next we observe that Bsr2ranf(Q′,Q)(Qap) ⊆ BQ′∧

∧
Q∈Q

Q(Qap)

and then qps(sr2ranf(Q′,Q)) ⊆ qps(Q′ ∧
∧

Q∈Q Q). Because Qfin, Qinf have the properties
from the beginning of this paragraph and qps(srnf(Q′)) ⊆ qps(Q′), for every query Q′,
we get qps(Q̂fin) = qps(sr2ranf(Qfin)) ⊆ qps(Qfin) and qps(Q̂inf ) = qps(sr2ranf(Qinf )) ⊆
qps(Qinf ). ◀

Recall Example 15. The query ∃u, p. S(p, u, s) is in qps(Qvgt), but not in qps(Q). Hence,
qps(Qvgt) ⊆ qps(Q), i.e., an analogue of Lemma 27 for Van Gelder and Topor’s translation,
does not hold.

Let a structure S be fixed. We observe that every tuple satisfying a RANF query Q̂

belongs to the set of tuples satisfying the join over some minimal subset Qqps ⊆ qps(Q̂)
of quantified predicates and also satisfying equalities duplicating some columns from Qqps.
Note that {x ≈ y | x ∈ V ∧ y ∈ V ′} denotes the set of all equalities x ≈ y between variables
x ∈ V and y ∈ V ′.

▶ Lemma 28. Let Q̂ be a RANF query. Then
r

Q̂
z

satisfies

r
Q̂

z
⊆

⋃
Qqps⊆qps(Q̂),minimal(Qqps),

Q=⊆{x≈y|x∈fv(Qqps)∧y∈fv(Q̂)},

fv(Qqps)∪fv(Q=)=fv(Q̂)

u

v
∧

Qqp∈Qqps

Qqp ∧
∧

Q=∈Q=

Q=

}

~ .

Proof. The statement is proved by well-founded induction over the inductive definition of
ranf(Q̂). ◀

We now derive a bound on
∣∣∣rQ̂′

z∣∣∣, for an arbitrary RANF subquery Q̂′ ⊑ Q̂, Q̂ ∈
{Q̂fin, Q̂inf }.

▶ Lemma 29. Let Q be an RC query with pairwise distinct (free and bound) variables and
let rw(Q) = (Q̂fin, Q̂inf ). Let Q̂′ ⊑ Q̂ be a RANF subquery of Q̂ ∈ {Q̂fin, Q̂inf }. Then∣∣∣rQ̂′

z∣∣∣ ≤∑
Qqps⊆qps(Q),minimal(Qqps) 2|av(Q̂)| ·

∏
Qqp∈Qqps

|JQqpK| .

Proof. Applying Lemma 28 to the RANF query Q̂′ yields

r
Q̂′

z
⊆

⋃
Qqps⊆qps(Q̂′),minimal(Qqps),

Q=⊆{x≈y|x∈fv(Qqps)∧y∈fv(Q̂′)},

fv(Qqps)∪fv(Q=)=fv(Q̂′)

u

v
∧

Qqp∈Qqps

Qqp ∧
∧

Q=∈Q=

Q=

}

~ .

We observe that
∣∣∣r∧

Qqp∈Qqps
Qqp ∧

∧
Q=∈Q= Q=

z∣∣∣ ≤ ∣∣∣r∧
Qqp∈Qqps

Qqp

z∣∣∣ ≤∏
Qqp∈Qqps

|JQqpK|
where the first inequality follows from the fact that equalities Q= ∈ Q= can only restrict
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a set of tuples and duplicate columns. Because Q̂′ is a subquery of Q̂, it follows that
qps(Q̂′) ⊆ qps(Q̂). Lemma 27 yields qps(Q̂) ⊆ qps(Q). Hence, we derive qps(Q̂′) ⊆ qps(Q).

The number of equalities in {x ≈ y | x ∈ fv(Qqps) ∧ y ∈ fv(Q̂′)} is at most

|fv(Qqps)| ·
∣∣∣fv(Q̂′)

∣∣∣ ≤ ∣∣∣fv(Q̂′)
∣∣∣2
≤

∣∣∣av(Q̂)
∣∣∣2

,

where the first inequality holds because fv(Qqps)∪fv(Q=) = fv(Q̂′) and thus fv(Qqps) ⊆ fv(Q̂′)
and the second inequality holds because the variables in a subquery Q̂′ of Q̂ are included in
the set of all variables in Q̂. Hence, the number of subsets Q= ⊆ {x ≈ y | x ∈ fv(Qqps) ∧ y ∈
fv(Q̂′)} is at most 2|av(Q̂)|2 . ◀

Next we bound the query cost of a RANF query Q̂ ∈ {Q̂fin, Q̂inf } over the structure S.

▶ Lemma 30. Let Q be an RC query with pairwise distinct (free and bound) variables and
let rw(Q) = (Q̂fin, Q̂inf ). Let Q̂ ∈ {Q̂fin, Q̂inf }. Then

costS(Q̂) ≤
∣∣∣sub(Q̂)

∣∣∣ · ∣∣∣av(Q̂)
∣∣∣ · 2|av(Q̂)| ·

∑
Qqps⊆qps(Q),minimal(Qqps)

∏
Qqp∈Qqps

|JQqpK| .

Proof. Recall that
∣∣∣sub(Q̂)

∣∣∣ denotes the number of subqueries of the query Q̂ and thus
bounds the number of RANF subqueries Q̂′ of the query Q̂. For every subquery Q̂′ of Q̂, we
first use the fact that

∣∣∣fv(Q̂′)
∣∣∣ ≤ ∣∣∣av(Q̂)

∣∣∣ to bound
∣∣∣rQ̂′

z∣∣∣ · ∣∣∣fv(Q̂′)
∣∣∣ ≤ ∣∣∣rQ̂′

z∣∣∣ · ∣∣∣av(Q̂)
∣∣∣. Then

we use the estimation of
∣∣∣rQ̂′

z∣∣∣ by Lemma 29. ◀

Finally, we prove Theorem 14.

Proof of Theorem 14. We derive Theorem 14 from Lemma 30 and the fact that the quant-
ities

∣∣∣sub(Q̂)
∣∣∣, ∣∣∣av(Q̂)

∣∣∣, and 2|av(Q̂)|2 only depend on the query Q and thus they do not
contribute to the asymptotic time complexity of capturing a fixed query Q. ◀

E Implementation Details

In this section, we provide a detailed description of our translation’s implementation RC2SQL.
Overall, the translation is defined as

RC2SQL(Q) B (Q′
fin, Q′

inf )

where

Q′
fin B ranf2sql(optcnt(Qfin)),

Q′
inf B ranf2sql(optcnt(Qinf )),

(Qfin, Qinf ) B rw(Q).

Function rw(·) is defined in Section 4.4 as a composition of the split(·) and sr2ranf(·)
functions, which are defined in Section 4.3 and Appendix C, respectively. Below we first
describe how we resolve the nondeterministic choices in all our algorithms. Then we define
functions optcnt(·) and ranf2sql(·).
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E.1 Instantiating Our Translation
To resolve the nondeterministic choices in our algorithms, we suppose that the algorithms have
access to a training database T of constant size. The training database is used to compare
the cost of queries over the actual database and thus it should preserve the relative ordering
of queries by their cost over the actual database as much as possible. Nevertheless, our
translation satisfies the correctness and worst-case complexity claims (Section 4.3 and 4.4) for
every choice of the training database. The training databases used in our empirical evaluation
are obtained using the function dg (Section 5) with |T +| = |T −| = 2. Because of its constant
size, the complexity of evaluating a query over the training database is constant and does
not impact the asymptotic time complexity of evaluating the query over the actual database
using our translation. There are two types of nondeterministic choices in our algorithms:

Choosing some X ∈ X in a while-loop. As the while-loops always update X with X B (X \
{X})∪f(X) for some f , the order in which the elements of X are chosen does not matter.
Choosing a variable x ∈ V and a set G such that cov(x, Q̃,G), where Q̃ is a query with
range-restricted bound variables and V ⊆ fv(Q̃) is a subset of its free variables. Observe
that the measure measure(Q) on queries, defined in Figure 10, decreases for the queries
in the premises of the rules for gen(x, Q̃,G) and cov(x, Q̃,G), defined in Figure 2 and 3.
Hence, deriving gen(x, Q̃,G) and cov(x, Q̃,G) either succeeds or gets stuck after at most
measure(Q̃) steps. In particular, we can enumerate all sets G such that cov(x, Q̃,G)
holds. Because we derive one additional query Q̃[x 7→ y] for every y ∈ eqs(x,G) and
a single query Q̃ ∧ qps∨(G), we choose x ∈ V and G minimizing |eqs(x,G)| as the first
objective and

∑
Qqp∈qps(G) costT (Qqp) as the second objective. Our particular choice of

G with cov(x, Q̃,G) is merely a heuristic and does not provide any additional guarantees
compared to every other choice of G with cov(x, Q̃,G).

E.2 Optimization using Count Aggregations
In this section, we introduce count aggregations and describe a generalization of Claußen et
al. [9]’s approach to evaluate RANF queries using count aggregations. Consider the query

Qx ∧ ¬∃y. (Qx ∧Qy ∧ ¬Qxy),

where fv(Qx) = {x}, fv(Qy) = {y}, and fv(Qxy) = {x, y}. This query is obtained by
applying our translation to the query Qx ∧ ∀y. (Qy −→ Qxy). The cost of the translated
query is dominated by the cost of the Cartesian product Qx ∧Qy. Consider the subquery
Q′ B ∃y. (Qx ∧Qy ∧ ¬Qxy). A assignment α satisfies Q′ iff α satisfies Qx and there exists a
value d such that α[y 7→ d] satisfies Qy, but not Qxy, i.e., the number of values d such that
α[y 7→ d] satisfies Qy is not equal to the number of values d such that α[y 7→ d] satisfies both
Qy and Qxy. An alternative evaluation of Q′ evaluates the queries Qx, Qy, Qy ∧Qxy and
computes the numbers of values d such that α[y 7→ d] satisfies Qy and Qy ∧Qxy, respectively,
i.e., computes count aggregations. These count aggregations are then used to filter assignments
α satisfying Qx to get assignments α satisfying Q′. The asymptotic time complexity of
the alternative evaluation never exceeds that of the evaluation computing the Cartesian
product Qx ∧ Qy and asymptotically improves if |JQxK| + |JQyK| + |JQxyK| ≪ |JQx ∧QyK|.
Furthermore, we observe that a assignment α satisfies Qx ∧¬Q′ if α satisfies Qx, but not Q′,
i.e., the number of values d such that α[y 7→ d] satisfies Qy is equal to the number of values
d such that α[y 7→ d] satisfies Qy ∧Qxy.

Next we introduce the syntax and semantics of count aggregations. We extend RC’s
syntax by [CNT v⃗. Qv⃗](c), where Q is a query, c is a variable representing the result of
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the count aggregation, and v⃗ is a sequence of variables that are bound by the aggregation
operator. The semantics of the count aggregation is defined as follows:

(S, α) |= [CNT v⃗. Qv⃗](c) iff (M = ∅ −→ fv(Q) ⊆ v⃗) and α(c) = |M | ,

where M = {d⃗ ∈ D|v⃗| | (S, α[v⃗ 7→ d⃗]) |= Q}. We use the condition M = ∅ −→ fv(Q) ⊆ v⃗

instead of M ̸= ∅ to set c to a zero count if the group M is empty and there are
no group-by variables (like in SQL). The set of free variables in a count aggregation is
fv([CNT v⃗. Qv⃗](c)) = (fv(Q) \ v⃗) ∪ {c}. Finally, we extend the definition of ranf(Q) with the
case of a count aggregation:

ranf([CNT v⃗. Qv⃗](c)) iff ranf(Q) and v⃗ ⊆ fv(Q) and c /∈ fv(Q).

We formulate translations introducing count aggregations in the following two lemmas.

▶ Lemma 31. Let ∃v⃗. Qv⃗ ∧
∧

Q∈Q ¬Q, Q ≠ ∅, be a RANF query. Let c, c′ be fresh variables
that do not occur in fv(Qv⃗). Then

(∃v⃗. Qv⃗ ∧
∧

Q∈Q ¬Q)≡ ((∃v⃗. Qv⃗) ∧
∧

Q∈Q ¬(∃v⃗. Qv⃗ ∧Q)) ∨
(∃c, c′. [CNT v⃗. Qv⃗](c) ∧

[CNT v⃗.
∨

Q∈Q(Qv⃗ ∧Q)](c′) ∧ ¬(c = c′)).
(#)

Moreover, the right-hand side of (#) is in RANF.

▶ Lemma 32. Let Q̂ ∧ ¬∃v⃗. Qv⃗ ∧
∧

Q∈Q ¬Q, Q ̸= ∅, be a RANF query. Let c, c′ be fresh
variables that do not occur in fv(Q̂) ∪ fv(Qv⃗). Then

(Q̂ ∧ ¬∃v⃗. Qv⃗ ∧
∧

Q∈Q ¬Q)≡ (Q̂ ∧ ¬(∃v⃗. Qv⃗)) ∨
(∃c, c′. Q̂ ∧ [CNT v⃗. Qv⃗](c) ∧

[CNT v⃗.
∨

Q∈Q(Qv⃗ ∧Q)](c′) ∧ (c = c′)).
(##)

Moreover, the right-hand side of (##) is in RANF.

Note that the query cost does not decrease after applying the translation (#) or (##)
because of the subquery [CNT v⃗. Qv⃗](c) in which Qv⃗ is evaluated before the count aggreg-
ation is computed. For the query ∃y. ((Qx ∧Qy) ∧ ¬Qxy) from before, we would compute
[CNT y. Qx∧Qy](c), i.e., we would not (yet) avoid computing the Cartesian product Qx∧Qy.
However, we could reduce the scope of the bound variable y by further translating

[CNT y. Qx ∧Qy](c) ≡ Qx ∧ [CNT y. Qy](c).

This technique called mini-scoping can be applied to a count aggregation [CNT v⃗. Qv⃗](c) if
the aggregated query Qv⃗ is a conjunction that can be split into two RANF conjuncts and the
variables v⃗ do not occur free in one of the conjuncts (that conjunct can be pulled out of the
count aggregation). Mini-scoping can be analogously applied to queries of the form ∃v⃗. Qv⃗.

Moreover, we can split a count aggregation over a conjunction Qv⃗ ∧Q′
v⃗ into a product of

count aggregations if the conjunction can be split into two RANF conjuncts with disjoint
sets of bound variables, i.e., v⃗ ∩ fv(Qv⃗) ∩ fv(Q′

v⃗) = ∅:

[CNT v⃗. Qv⃗∧Q′
v⃗](c) ≡ (∃c1, c2. [CNT v⃗∩fv(Qv⃗). Qv⃗](c1)∧[CNT v⃗∩fv(Q′

v⃗). Q′
v⃗](c2)∧c = c1 ·c2).

Here c1, c2 are fresh variables that do not occur in fv(Qv⃗) ∪ fv(Q′
v⃗) ∪ {c}. Note that mini-

scoping is only a heuristic and it can both improve and harm the time complexity of query
evaluation. We implement the translations from Lemmas 31 and 32 and mini-scoping in a
function called optcnt(·). Given a RANF query Q̂, optcnt(Q̂) is an equivalent RANF query
after introducing count aggregations and performing mini-scoping.
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▶ Example 33. We show how we introduce count aggregations into the RANF query

Q̂ B Qx ∧ ¬∃y. (Qx ∧Qy ∧ ¬Qxy).

After applying the translation (##) and mini-scoping to this query, we obtain the following
equivalent RANF query:

optcnt(Q̂)B (Qx ∧ ¬(Qx ∧ ∃y. Qy)) ∨
(∃c, c′. Qx ∧ [CNT y. Qy](c) ∧

[CNT y. Qy ∧Qxy](c′) ∧ (c = c′)).

E.3 Translating RANF to SQL
Our translation of a RANF query into SQL has two steps: we first translate the query to an
equivalent RA expression, which we then translate to SQL using a publicly available RA
interpreter radb [30].

We define the function ranf2ra(Q̂) translating RANF queries Q̂ into equivalent RA
expressions ranf2ra(Q̂). The translation is based on Algorithm 5.4.8 by Abiteboul et al. [1],
which we modify as follows. We adjust the way closed RC queries are handled. Chomicki
and Toman [8] observed that closed RC queries cannot be handled by SQL, since SQL
allows neither empty projections nor 0-ary relations. They propose to use a unary auxiliary
predicate A ∈ R whose interpretation AS = {t} always contains exactly one tuple t. Every
closed query ∃x. Qx is then translated into ∃x. A(t) ∧ Qx with an auxiliary free variable
t. Every other closed query Q̂ is translated into A(t) ∧ Q̂, e.g., B(42) is translated into
A(t) ∧ B(42). We also use the auxiliary predicate A to translate queries of the form x ≈ c
and c ≈ x because the single tuple (t) in AS can be mapped to any constant c. Finally, we
extend [1, Algorithm 5.4.8] with queries of the form [CNT v⃗. Qv⃗](c).

The radb interpreter, abbreviated here by the function ra2sql(·), translates a RA ex-
pression into SQL, by simply mapping the RA connectives into their SQL counterparts.
The function ra2sql(·) is primitive recursive on RA expressions. We modify radb to further
improve performance of the query evaluation as follows.

A RANF query Q1 ∧ ¬Q2, where ranf(Q1), ranf(Q2), and fv(Q2) ⊊ fv(Q1) is translated
into RA expression ranf2ra(Q1) ▷ ranf2ra(Q2), where ▷ denotes the anti-join operator and
ranf2ra(Q1), ranf2ra(Q2) are the equivalent relational algebra expressions for Q1, Q2, respect-
ively. The radb interpreter only supports the anti-join operator ranf2ra(Q1) ▷ ranf2ra(Q2)
expressed as ranf2ra(Q1)− (ranf2ra(Q1) ▷◁ ranf2ra(Q2)), where − denotes the set difference
operator and ▷◁ denotes the natural join. Alternatively, the anti-join operator can be directly
mapped to LEFT JOIN in SQL. We generalize radb to use LEFT JOIN since it performs better
in our empirical evaluation [25].

The radb interpreter introduces a separate SQL subquery in a WITH clause for every
subexpression in the RA expression. We extend radb to additionally perform common
subquery elimination, i.e., to merge syntactically equal subqueries. Common subquery
elimination is also assumed in our query cost (Section 3.3).

Finally, the function ranf2sql(Q̂) (Figure 13) is defined as ranf2sql(Q̂) B ra2sql(ranf2ra(Q̂)),
i.e., as a composition of the two translations from RANF to RA and from RA to SQL.
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