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Abstract. SMT solvers have been recently applied to bounded model checking
and satisfiability checking of metric temporal logic. In this paper we consider
SOLOIST, an extension of metric temporal logic with aggregate temporal modal-
ities; it has been defined based on a field study on the use of specification pat-
terns in the context of the provisioning of service-based applications. We apply
bounded satisfiability checking to perform trace checking of service execution
traces against requirements expressed in SOLOIST. In particular, we focus on
sparse traces, i.e., traces in which the number of time instants when events occur
is very low with respect to the length of the trace.
The main contribution of this paper is an encoding of SOLOIST formulae into
formulae of the theory of quantifier-free integer difference logic with uninter-
preted function and predicate symbols. This encoding paves the way for efficient
checking of SOLOIST formulae over sparse traces using an SMT-based verifica-
tion toolkit. We report on the evaluation of the proposed encoding, commenting
on its scalability and its effectiveness.

1 Introduction

Bounded satisfiability checking [23] (BSC) is a verification technique that complements
bounded model checking [9] (BMC): instead of a customary operational model (e.g.,
a state-transition system) used in BMC, BSC supports the analysis of a descriptive
model, denoted by a set of temporal logic formulae. With BSC, verification tasks be-
come suitable instances of the satisfiability problem for quite large formulae (written
in a certain logic), which comprehend the model of the system to analyze as well as
the requirement(s) to verify. BSC has been successfully applied in the context of metric
temporal logics and implemented in ZOT [23], a verification toolset based on SAT- and
SMT-solvers, developed within our group.

In this paper we apply BSC to trace checking for the language SOLOIST (Specifi-
catiOn Language fOr servIce compoSitions inTeractions) [8], a metric temporal logic
with new, additional temporal modalities that support aggregate operations on events
occurring in a given time window. SOLOIST has been defined based on the results of
a field study [7] on the type of property specification patterns used to express require-
ments in the context of service-based applications. The study—performed by some of
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the authors in collaboration with an industrial partner—analyzed more than 900 require-
ments specifications, extracted both from research papers and industrial data, and led to
the identification of a new class of specification patterns, in addition to the ones already
known in literature [13, 17]. The new class of patterns is specific to the domain of ser-
vice provisioning and contains seven patterns, among which there are: average response
time (hereafter referred to as S1), count of the number of events (S2), average/maximum
number of events (S3/S4).

SOLOIST can be used to specify both functional and quality-of-service require-
ments of the interactions of a composite service with its partner services. As for the
verification of properties expressed in SOLOIST, in [8] we first presented a transla-
tion of SOLOIST into LTL that, under certain assumptions, guaranteed its decidability
based on well-known results in temporal logic. Nevertheless, this translation was only
a proof of concept and was not meant to be used for implementing efficient verification
procedures. In subsequent work [18], some of the authors described an approach for
performing trace checking3 of service execution traces against requirements expressed
in SOLOIST. The approach in [18] defined the trace checking problem in terms of the
BSC problem for metric temporal logic, where the descriptive model of system execu-
tions is represented by traces, while properties are expressed in SOLOIST; in particu-
lar, it translates SOLOIST into CLTLB(D) [4], an extension of PLTLB (Propositional
Linear Temporal Logic with both future and past modalities) augmented with atomic
formulae over a constraint system D ; the resulting CLTLB(D) formula is then checked
by ZOT. The main limitation of the approach presented in [18] is that it does not scale
well when the trace to check is sparse, i.e., when the number of time instants in which
events occur is very low with respect to the length of the trace. Notice that the case of
sparse traces is not rare in the logs of service-based applications. For example, the log
used for the Business Process Intelligence Challenge 2012 (BPIC 2012) [12] was taken
from a Dutch Financial Institute; it contains 13087 traces, whose average number of
time instants in which events occur is 20.0347: this represents (on average) the 0.003%
of the total number of time instants.

The main contribution of this paper is a new encoding of SOLOIST, targeting for-
mulae of quantifier-free difference logic with uninterpreted function and predicate sym-
bols (QF-EUFIDL), for which there exist efficient decision procedures to be used with
SMT solvers. As confirmed by the experimental evaluation we detail in the paper, this
new encoding targeting QF-EUFIDL proves to be scalable and effective for checking
SOLOIST formulae over sparse traces.

Related Work. There are only few approaches that deal with the verification of prop-
erties involving aggregate modalities. Basin et al. [2] define an extension of metric
first-order temporal logic that supports aggregation. The language can express aggre-
gate properties over the values of the parameters of relations (corresponding to sys-
tem events), while SOLOIST expresses aggregate properties on the occurrences of the
events. Finkbeiner et al. [15] describe an approach to collect statistics over run-time
executions. They use LTL extended with the capability to compute aggregate proper-
ties of the trace. However, this specification language provides only limited support for

3 Trace checking is also called trace validation [20] or history checking [14].
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timing information; unlike SOLOIST, it cannot express properties on a certain subset
of an execution trace. This work is also related to approaches for SAT/SMT-based trace
checking and bounded model checking, which is usually done over properties expressed
in conventional temporal logics. For example, the SAT-based approach for bounded
model checking proposed in [24] verifies Metric Temporal Logic (MTL) properties of
discrete timed automata. SMT-based techniques like those proposed in [5, 6, 16] deal
with verification of MTL over real-valued words.

The rest of the paper is structured as follows. Section 2 provides a brief introduc-
tion to SOLOIST and QF-EUFIDL. The main contribution of the paper is presented
in Sect. 3, where we present the encoding of SOLOIST into QF-EUFIDL over a fi-
nite temporal structure and assess its complexity. Section 4 reports on the evaluation
of an implementation of the proposed encoding, performed to assess its scalability and
effectiveness. Section 5 gives some concluding remarks.

2 Background

2.1 SOLOIST at a glance

In this section we provide a brief overview of SOLOIST; for the rationale behind the
language and a detailed explanation of its semantics see [8].

The syntax of SOLOIST is defined by the following grammar:
φ ::= p | ¬φ | φ ∧φ | φUIφ | φSIφ | CK

./n(φ) | UK,h
./n (φ) |MK,h

./n (φ) |DK
./n(φ ,φ)

where p ∈ Π , with Π being a finite set of atoms; I is a nonempty interval over N;
n,K,h range over N; ./ ∈ {<,≤,≥,>,=}. We restrict the arguments φ of modalities
C,U,M,D to atoms in Π .

The UI and SI modalities are, respectively, the metric “Until” and “Since” opera-
tors. Additional temporal modalities can be derived using the usual conventions; for
example “Always” is defined as GIφ ≡ ¬(>UI¬φ) and “Eventually in the Past” as
PIφ ≡ >SIφ , where > means “true”. The remaining modalities are called aggregate
modalities and are used to express the specification patterns S1–S4 mentioned above.
The CK

./n(φ) modality states a bound (represented by ./ n) on the number of occurrences
of an event φ in the previous K time instants: it expresses pattern S2. The UK,h

./n (φ) (re-
spectively, MK,h

./n (φ)) modality expresses a bound on the average (respectively, maxi-
mum) number of occurrences of an event φ , aggregated over the set of right-aligned
adjacent non-overlapping subintervals within a time window K; it corresponds to pat-
tern S3 (respectively, S4), as in “the average/maximum number of events per hour in
the last ten hours”. A subtle difference in the semantics of the U and M modalities is
that M considers events in the (possibly empty) tail interval, i.e., the leftmost observa-
tion subinterval whose length is less than h, while the U modality ignores them. The
DK

./n(φ ,ψ) modality expresses a bound on the average time elapsed between a pair of
specific adjacent events φ and ψ occurring in the previous K time instants; it can be
used to express pattern S1.

The formal semantics of SOLOIST is defined on timed ω-words [1] over 2Π ×N.
A timed sequence τ = τ0τ1 . . . is an infinite sequence of values τi ∈ N with τi > 0
satisfying τi < τi+1, for all i ≥ 0, i.e., the sequence increases strictly monotonically.
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(w, i) |= p iff p ∈ σi
(w, i) |= ¬φ iff (w, i) 6|= φ
(w, i) |= φ ∧ψ iff (w, i) |= φ ∧ (w, i) |= ψ
(w, i) |= φSI ψ iff for some j < i,τi− τ j ∈ I,(w, j) |= ψ and for all k, j < k < i,(w,k) |= φ
(w, i) |= φUI ψ iff for some j > i,τ j− τi ∈ I,(w, j) |= ψ and for all k, i < k < j,(w,k) |= φ
(w, i) |= CK

./n(φ) iff c(τi−K,τi,φ) ./ n and τi ≥ K

(w, i) |=UK,h
./n (φ) iff

c(τi−b K
h ch,τi,φ)
b K

h c
./ n and τi ≥ K

(w, i) |=MK,h
./n (φ) iff max

{⋃⌊ K
h

⌋
m=0 {c(lb(m),rb(m),φ)}

}
./ n and τi ≥ K

(w, i) |=DK
./n(φ ,ψ) iff

∑(s,t)∈d(φ ,ψ,τi ,K)(τt − τs)

|d(φ ,ψ,τi,K)| ./ n and τi ≥ K

where c(τa,τb,φ) = |{s | τa < τs ≤ τb and (w,s) |= φ}|, lb(m) = max{τi−K,τi− (m+1)h}, rb(m) = τi−mh, and
d(φ ,ψ,τi,K) = {(s, t) | τi−K < τs ≤ τi and (w,s) |= φ , t = min{u | τs < τu ≤ τi,(w,u) |= ψ}}

Fig. 1: Formal semantics of SOLOIST

A timed ω-word over alphabet 2Π is a pair (σ ,τ) where σ = σ0σ1 . . . is an infinite
word over 2Π and τ is a timed sequence. A timed language over 2Π is a set of timed
words over the same alphabet. Notice that there is a distinction between the integer
position i in the timed ω-word and the corresponding timestamp τi. Figure 1 defines
the satisfiability relation (w, i) |= φ for every timed ω-word w, every position i≥ 0 and
for every SOLOIST formula φ . For the sake of simplicity, hereafter we express the U

modality in terms of the C one, based on this definition: UK,h
./n (φ)≡ C

bK
h c·h

./n·bK
h c
(φ), which

can be derived from the semantics in Fig. 1.
We remark that the version of SOLOIST presented here is a restriction of the orig-

inal one in [8]: to simplify the presentation in the next sections, we dropped first-order
quantification on finite domains and limited the argument of the D modality to only one
pair of events; as detailed in [8], these assumptions do not affect the expressiveness of
the language.

2.2 QF-EUFIDL

The target language of our encoding is a quantifier free integer difference logic formula
with uninterpreted function and predicate symbols (QF-EUFIDL). Since trace check-
ing only deals with finite traces, we require the outcome of the encoding to be a QF-
EUFIDL formula that is satisfiable if and only if there exists a finite timed word that
satisfies the translated SOLOIST formula. Such a logic combines decision procedures
from two theories, namely theory of equality and uninterpreted functions (EUF) and
theory of integer difference logic (IDL). This combination is shown to be decidable, and
the satisfiability problem is NP-complete, according to Nelson-Oppen Theorem [21].
Well-formed EUF formulae conform to the following grammar: φ ::= p | t = t | ¬φ |
φ ∨φ , with t ::= v | f (t, . . . , t), where p is an atomic proposition, v is a variable and f is
a function. An example is f (x) = y∧ x = g(y)∧ (¬p∨ q), where x and y are variables
while p and q are atomic propositions. The decision procedure for this logic combines
SAT solving (for the propositional formulae) with an algorithm that checks equalities
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by building a tree representation of their equivalence classes. Integer difference Logic is
a restriction of the theory of linear arithmetic and can be represented with the structure
(Z,=,(<d)d∈Z), for which decidability has been proven in [11]; each <d is a binary
relation defined as x <d y↔ x < y+d, and notations like x < y, x≤ y, x≥ y, x > y and
x = y+d are abbreviations for x <0 y, x <0 y∨ x = y, ¬(x <0 y), ¬(x <0 y∨ x = y) and
y <1−d x∧ x <d+1 y, respectively.

Although LTL with arithmetical constraints is proved [11] undecidable over infinite
words, and QF-EUFIDL involves variables over discrete infinite domains, our particular
use is bounded, because we deal with finite words; hence, the decidability is retained.

3 Encoding SOLOIST into QF-EUFIDL

SOLOIST can be seen as MTL over discrete time, enriched with aggregate modalities.
MTL satisfiability checking over discrete time [23] can be efficiently performed by re-
ducing semantics of UI and SI to suitable propositional formulae which take advantage
from the information about the metric over time defined by I. In [23], however, authors
consider ω-words as models for MTL formulae without timestamps. Therefore, the
temporal structure required to translate the semantics of a formula such as >U[10,10]φ
is at least as long as ten discrete positions, because no timing information is available
from the model. In this paper, we devise a new way to represent information about tim-
ing constraints defined in metric temporal modalities (including the aggregate ones);
this is an improvement on the method proposed in [23]. The encoding presented af-
terwards is an extension of the one defined in [3], which allows one to capture timed
ω-words. As a consequence, models do not require as many discrete positions as needed
to build the discrete temporal structure in [23], because the measure of time distances is
realized through arithmetical variables that store how much time elapses among consec-
utive discrete positions. Intuitively, by adding an arithmetical variable τ ∈N measuring
the elapsed time, formula>U[10,10]φ holds at position i if, for instance, at position i+1,
φ holds and the time τ elapsed between position i and position i+1 is equal to 10. To
realize this counting mechanism with variables and arithmetical operators, we require
a language that incorporates arithmetics, hence our choice of QF-EUFIDL as the target
language of our encoding.

We use the following QF-EUFIDL structure (Z,F,P,V,=,<) where F contains
functions of the form f : Z+

0 → Z. Each function represents arithmetical variable used
in the encoding. Set P contains boolean functions of the form p : Z+

0 →{>,⊥}; each of
them represents a predicate whose value is defined over a nonnegative integer domain.
Set V is a subset of F containing nullary functions returning a value from Z. Using this
structure we can define a finite representation of models of SOLOIST formulae. Since
our structure is ordered, let 0,1,2, . . . ,H be a finite linear order, with H corresponding
to the length of the finite prefix of the timed ω-word satisfying a SOLOIST formula.
The linear order represents a temporal structure and since it is a subset of the domain of
both the predicates from P and the functions from F , we can interpret them as having
“time dependent” values. On the other hand, we can interpret elements of V as being
time invariant, i.e., have constant value over the linear order.



6 M. M. Bersani, D. Bianculli, C. Ghezzi, S. Krstić, P. San Pietro

In the encoding, we use the notation JXK to denote any additional predicate in-
troduced in P to represent an entity X . We denote with |X | an additional arithmetical
variable in F representing an arithmetical entity X . We use JXKi and |X |i as a shorthand
for JXK(i) and |X |(i), respectively. The truth of JXKi is interpreted as entity X holding
at time instant i in an execution trace (or, equivalently, a timed word).

We assume SOLOIST formulae to be in positive normal form (PNF). The PNF of a
formula is an equivalent formula where negation may only occur on atoms, i.e., atomic
propositions (see [22]). PNF can be obtained by propagating the negation towards the
atoms, by means of converting a negated operator into its dual version and negating its
operand(s). To do so, we introduce the connective ∨, dual of ∧, as well as the dual ver-
sions of all temporal modalities. The dual of UI is “Release” RI : φRIψ ≡¬(¬φUI¬ψ);
the dual of SI is “Trigger” TI : φTIψ ≡¬(¬φSI¬ψ)4. A negation in front of one of the
CK
./n,U

K,h
./n ,M

K,h
./n ,D

K
./n modalities becomes a negation of the relation denoted by the ./

symbol, hence no dual version is needed for them.
Let Φ be a SOLOIST formula in PNF. Its encoding is a set of QF-EUFIDL con-

straints over the predicates from P and functions from F . We introduce a predicate JϕK
for each subformula ϕ of Φ .

We first define the constraints for timing information. As defined in Sect. 2, the
temporal structure contains an integer timestamp. An arithmetical variable |τ| denotes
the absolute time at positions i = 0 . . .H. Let Ctime be the conjunction of the following
constraints:

Position i Timing information Description
0 . . .H−1 |τ|i < |τ|i+1 strict monotonicity

(1)

Next, we define constraints for atomic propositions and propositional operators;
their conjunction is denoted as Cprop (where↔ stands for a double implication):

Position i Propositional operators Description

0 . . .H JpKi↔ p(i) atomic propositions

0 . . .H J¬pKi↔¬p(i) negation

0 . . .H Jφ ∧ψKi↔ JφKi∧ JψKi conjunction

(2)

Notice that for any sub-formula of the form φ ∧ψ in a SOLOIST formula Φ we add in
the resulting encoding, instances of formulae from the third row of (2). This encoding
completely conforms to the one in [9].

As for the modality UI , we add to the encoding, for any subformula of the form5

φU(a,b)ψ in Φ , the following formulae, denoted as Ctemp−until:

Position i Temporal operator Description

0 . . .H−1 JφU(a,b)ψKi↔
∨H

k=i+1(JψKk∧ “Until”
a < |τ|k−|τ|i∧|τ|k−|τ|i < b∧∧k−1

p=i+1JφKp)

H JφU(a,b)ψKH ↔⊥ “Until” at position H

(3)

4 Note that the strict semantics of UI and SI preserve the duality of RI and TI also on finite
words.

5 A closed interval [a,b] over N can be expressed as an open one of the form (a−1,b+1).
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This is a straightforward encoding of the semantics of the “Until” operator. The dis-
junction in the first row represents a case split on all possible future time instants with
respect to i. For each such time instant k a conjunction is created with JψKk stating
that ψ subformula has to hold at time instant k; moreover, φ needs to hold in all in-
stants from i+1 to k−1, i.e.,

∧k−1
p=i+1JφKp. Formula (a < |τ|k−|τ|i)∧ (|τ|k−|τ|i < b)

enforces the timing constraint of the U(a,b) modality, i.e., if τk− τi ∈ (a,b).
The case for the SI modality is similar to the above. For any sub-formula of the form

SI in Φ we add to the encoding the following formulae, denoted as Ctemp−since:

Position i Temporal operator Description

0 JφS(a,b)ψK0↔⊥ “Since” at position 0

1 . . .H JφS(a,b)ψKi↔
∨i−1

k=0(JψKk∧ “Since”
a < |τ|i−|τ|k ∧|τ|i−|τ|k < b∧∧i−1

p=k+1JφKp)

(4)

The conjunction of all formulae from Ctemp−until and Ctemp−since is denoted as Ctemp.
The C modality expresses a bound on the number of occurrences of a certain event

in a given time window; in the encoding, it comes natural to use arithmetical variables as
counters of the events. For each subformula of the form CK

./n(φ), we add an arithmetical
variable |cφ | to F , constrained with the following formulae:

Position i C modality constraints Description

0 |cφ |0 = 0 initialization

0 . . .H−1 JφKi→ (|cφ |i+1 = (|cφ |i +1)) φ occurs at i

0 . . .H−1 ¬JφKi→ (|cφ |i+1 = |cφ |i) φ does not occur at i

(5)

The constraint in the first row initializes the arithmetical variable to zero at time in-
stant 0. The following H constraints (in the second row) force |cφ | to increase by 1 at
time instant i+ 1, if φ occurs at time instant i. The last H constraints from the third
row refer to the opposite situation: when there is no occurrence of the event φ at time
instant i, the value of |cφ |i+1 is constrained to have the same value as |cφ |i. Let us de-
note, for a C modality that has φ as a sub-formula, the conjunction of these constraints
as Cc−cons(φ). Besides Cc−cons(φ), we add to the encoding, for each i = 0 . . .H, the
following constraints, denoted as Cc−form(φ):

JCK
./n(φ)Ki↔

min{i,K}∨
z=0

|cφ |i+1−|cφ |i−z ./ n∧|τ|i−|τ|i−z−1 > K∧|τ|i−|τ|i−z ≤ K

This formula characterizes each time instant i of the temporal structure in which the
C modality is true. The disjunction is a case split for each position z in the past with
respect to the current position i. Notice that, if K > i we need to consider all previous
positions in the temporal structure; otherwise, it is enough to consider K previous time
instants, since in the worst case all timestamps can increase by at least one. Each case is
a conjunction where sub-formula |τ|i−|τ|i−z−1 > K∧ |τ|i−|τ|i−z ≤ K determines the
correct position on the left side of the time window, while |cφ |i+1−|cφ |i−z ./ n checks
that the C modality holds in the considered time window.
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As for the M modality, for each subformula of the form MK,h
./n (φ), we introduce the

same arithmetical variable |cφ | and the constraint Cc−cons(φ) (now denoted Cm−cons(φ))
as for the C modality. Additionally, we add arithmetical variables |p0| . . . |pbK

h c+1| to the
set F for each M modality sub-formula of Φ . The encoding of the M modality depends
on the operator ./; for example, when the comparison operator is “<” we have the
following constraints, denoted Cm−form(φ):

JMK,h
<n (φ)Ki↔

bK
h c∧

y=0

(min{i,h·(y+1)}∨
z=0

(|py+1|i = |cφ |i+1−|cφ |i−z∧|py+1|i−|py|i < n∧

|τ|i−|τ|i−z−1 > (y+1) ·h∧|τ|i−|τ|i−z ≤ (y+1) ·h)
)
∧|p0|i = 0

In this formula, in each conjunct y we perform a case split, similar to the case of the C
modality, but with a different time window: (y+ 1) · h. We assign the result of count-
ing to the variable |py+1| in each conjunct. Therefore, values |p0|i . . . |pbK

h c+1|i contain

the number of occurrences of φ in time windows 0,h,2h, . . . ,bK
h c ·h,K with respect to

position i, respectively. With subformula |py+1|i−|py|i < n, we check that in each ob-
servation subinterval with respect to i there is a bounded number of occurrences. The
other cases of ./ can be defined in a similar way.

The D modality expresses a bound on the average distance between the occurrences
of a pair of events in a given time window. Since events can occur multiple times in the
temporal structure, a pair of events (φ ,ψ) may have multiple instances. We call a pair
of the form (JφKi,JψK j) an instance if there is an occurrence of event φ at time instant
i and an occurrence of event ψ at time instant j, with i < j. We call such instance
open at time instant q if i ≤ q < j. Otherwise, the instance is closed at time instant q.
The distance of a closed pair instance is j− i; for an open pair at time instant q, the
distance is q− i. A time window defined for a DK

./n(φ ,ψ) (sub-)formula evaluated at
time instant q is bounded by the time instants q+ 1 and q−K + 1. It has a left-open
(respectively, right-open) pair in position q of a temporal structure, if there is an open
instance of (φ ,ψ) at time instant q−K+1 (respectively, q+1). Depending on whether
a D modality (sub-)formula contains either (left- and/ or right-) open pairs or none,
there are four distinct cases to take into account for the encoding.

For each subformula of the form DK
./n(φ ,ψ), we add to F five arithmetical variables:

– |gφ ,ψ |: it assumes value 1 in the time instants following an occurrence of φ and is
reset to 0 after an occurrence of ψ . It acts as a flag denoting the time instants during
which the event pair instance is open.

– |hφ ,ψ |: in each time instant, it contains the number of previously seen closed pair
instances. It is increased after every occurrence of ψ .

– |sφ ,ψ |: At each time instant, its value corresponds to the sum of distances of all
previously occurred pair instances. It is increased after every time instant when
either |gφ ,ψ | is 1 or φ holds.

– |aφ ,ψ |: it keeps track of the sum of the distances of all previously occurred closed
pair instances.

– |bφ ,ψ |: it has the values that will be assumed by variable |sφ ,ψ | at the next occur-
rence of ψ (more details below).
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τ

gφ ,ψ
hφ ,ψ
sφ ,ψ
aφ ,ψ
bφ ,ψ

0

0
0
0
0
3

0

0
0
0
0
3

φ
2

0
0
0
0
3

0

1
0
1
0
3

0

1
0
2
0
3

ψ
5

1
0
3
0
3

0

0
1
3
3
8

0

0
1
3
3
8

0

0
1
3
3
8

φ
9

0
1
3
3
8

0

1
1
4
3
8

0

1
1
5
3
8

ϕ
12

1
1
6
3
8

0

1
1
7
3
8

ψ
14

1
1
8
3
8

0

0
2
8
8
10

0

0
2
8
8

10

φ
17

0
2
8
8
10

0

1
2
9
8

10

ψ
19

1
2

10
8

10

0

0
3
10
10

Fig. 2: Example of trace for the D modality, with the corresponding arithmetical vari-
ables used in the encoding

Variables |aφ ,ψ |, |bφ ,ψ |, and |hφ ,ψ | are directly used in the encoding of the D modality
(sub-)formulae, while variables |gφ ,ψ | and |sφ ,ψ | are helper variables, used to determine
the values of the other variables. Figure 2 shows a portion of a trace and the values
assumed by these variables: the uppermost row shows instants where atoms φ ,ψ , and
ϕ hold; the second row shows the value of |τ| at each time instant; the other rows show
the values of the variables at each time instant.
For each DK

./n(φ ,ψ) modality sub-formula we define the set of constraints Cd−cons(φ ,ψ):

Position i D modality constraints Description

0 |gφ ,ψ |0 = 0∧|hφ ,ψ |0 = 0∧|aφ ,ψ |0 = 0∧|sφ ,ψ |0 = 0 variable
initialization

0 JBeqK0 |bφ ,ψ |
initialization

0 . . .H−1
JφKi→ (|gφ ,ψ |i+1 = 1∧|sφ ,ψ |i+1 = |sφ ,ψ |i +(|τ|i+1−|τ|i)∧

|hφ ,ψ |i+1 = |hφ ,ψ |i∧|aφ ,ψ |i+1 = |aφ ,ψ |i)
φ occurs at i

0 . . .H−1
JψKi→ (|gφ ,ψ |i+1 = 0∧|hφ ,ψ |i+1 = |hφ ,ψ |i +1∧

|aφ ,ψ |i+1 = |sφ ,ψ |i∧|sφ ,ψ |i+1 = |sφ ,ψ |i∧
|bφ ,ψ |i = |sφ ,ψ |i∧ JBeqKi+1)

ψ occurs at i

0 . . .H−1

¬JφKi∧¬JψKi→ (|gφ ,ψ |i+1 = |gφ ,ψ |i∧|hφ ,ψ |i+1 = |hφ ,ψ |i∧
|aφ ,ψ |i+1 = |aφ ,ψ |i∧
(|gφ ,ψ |i = 1→|sφ ,ψ |i+1 =

|sφ ,ψ |i +(|τ|i+1−|τ|i))∧
|gφ ,ψ |i = 0→|sφ ,ψ |i+1 = |sφ ,ψ |i))

neither φ nor
ψ occurs at i

(6)
The formula in the first row of (6) initializes all variables at time instant 0 except |bφ ,ψ |.
In the second row we introduce a new predicate JBeqK; it has the following constraints:

Position i JBeqK predicate constraints Description

0 . . .H−1 JBeqKi↔ JψKi∨ ((|bφ ,ψ |i+1 = |bφ ,ψ |i)∧ JBeqKi+1) propagation of
value of |bφ ,ψ |

H JBeqKH ↔> last state constraint

(7)
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These constraints force the values of the variables |bφ ,ψ |i to stay the same in all the
consecutive time instants until the first occurrence of ψ or until the end of the trace; the
second constraint in (7) deals with traces without occurrences of ψ .

The third constraint in (6) determines the value of variables in the next time instant,
upon occurrence of an event φ at time instant i. Variable |gφ ,ψ |i+1 is set to 1; variable
|sφ ,ψ |i+1 is incremented by |τ|i+1− |τ|i with respect to value of the variable |sφ ,ψ |i;
variables |hφ ,ψ |i+1 and |aφ ,ψ |i+1 are constrained not to change with respect to value of
their counterparts at time instant i. The fourth constraint determines how the variables
are updated when an event ψ occurs at time instant i: variable |gφ ,ψ |i+1 is set to 0; vari-
ables |bφ ,ψ |i, |aφ ,ψ |i+1, and |sφ ,ψ |i+1 are set to be equal to |sφ ,ψ |i. Moreover, JBeqKi+1
is constrained to hold, forcing values of |bφ ,ψ | j to stay the same in all the consecutive
time instants j > i, until the next occurrence of ψ . The constraints in the fifth row of (6)
cover the cases when neither φ nor ψ occur at time instant i. In these cases the values of
variables |gφ ,ψ |i+1, |hφ ,ψ |i+1, and |aφ ,ψ |i+1 are constrained to have the same value as in
their counterparts at i, variable |bφ ,ψ |i+1 is unconstrained, while for |sφ ,ψ |i+1 we need to
distinguish two separate cases. If the last event of the pair is φ (denoted by |gφ ,ψ |i = 1),
then value of |sφ ,ψ |i+1 is |sφ ,ψ |i incremented by |τ|i+1−|τ|i, otherwise it is just |sφ ,ψ |i.

For any sub-formula of the form DK
./n{(φ ,ψ)} evaluated at time instant i, we add to

the encoding the constraint Cd− f orm(φ ,ψ):

JDK
./n(φ ,ψ)Ki↔

∨min{i,K}
z=0

(
(if6 (|gφ ,ψ |i−z = 1) then (

|aφ ,ψ |i+1−|bφ ,ψ |i−z
|hφ ,ψ |i+1−|hφ ,ψ |i−z−1 ./ n)

else (
|aφ ,ψ |i+1−|aφ ,ψ |i−z
|hφ ,ψ |i+1−|hφ ,ψ |i−z

./ n))

∧|τ|i−|τ|i−z−1 > K∧|τ|i−|τ|i−z ≤ K
)

In the above formula, the outer disjunction considers all positions that are z time
instants in the past with respect to i (i.e., i− z) and checks, for each of them, if they
fit into the time window using the |τ|i− |τ|i−z−1 > K ∧ |τ|i− |τ|i−z ≤ K formula. If
one position does, the rest of the formula considers whether there is an open (φ ,ψ)
pair instance at that position which is captured by the |gφ ,ψ |i−z = 1 formula. In such a
case, we compute the total delay between all pair instances within the time window by
subtracting variable |bφ ,ψ | from |aφ ,ψ | at the appropriate positions. Since the value of
|bφ ,ψ | at each position contains the value of |sφ ,ψ | at the position of the next occurrence
of ψ , we effectively ignore the delay of the left-open pair. Otherwise, we use variable
|aφ ,ψ |, since it contains the delay from the last closed pair instance. Fractions in this
formula are used for the sake of clarity, however the actual formula conforms to IDL
due to the fact that n is a constant and A

B = n can be written as A = B+B+ . . .+B︸ ︷︷ ︸
n times

.

The final QF-EUFIDL formula obtained from the encoding of the input SOLOIST
formula Φ is the following conjunction of (possibly empty) formulae, which is supplied
to the SMT solver: JΦK0∧Ctime∧Cprop∧Ctemp∧Cc∧Cm∧Cd , where Cc↔ Cc−cons∧
Cc−form, Cm↔ Cm−cons∧Cm−form and Cd ↔ Cd−cons∧Cd−form .

6 “if A then B else C” can be written as (A∧B)∨ (¬A∧C)
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Complexity. We provide an estimation of the size of the QF-EUFIDL formula corre-
sponding to a temporal or aggregating modality of SOLOIST. Although the syntactic
complexity of the translation is already known in the case of standard LTL temporal
modalities (e.g., [9]), we still provide a measure for UI and SI , since we rely on an
ad-hoc encoding.

Let us consider first φUIψ; the case for φSIψ is similar. At position 0≤ i≤ H, the
formula in (3) has size O(H− i)2. We have then ∑

H
i=0 O(H− i)2 < O(H3).

Let µ be the maximum constant occurring in the SOLOIST formula and in the
trace. One variable |cφ | is required for all formulae CK

./n(φ) with the same argument
φ . In the worst case, we introduce one variable for each one. At position 0 ≤ i ≤ H,
formula JCK

./n(φ)Ki has size O(i). We have then ∑
H
i=0 O(log(µ)i)< O(log(µ)H2). The

U modality is defined through C and, therefore, inherits the same syntactic complexity.
Encoding of formula MK,h

./n (φ) requires one variable |cφ |. We can reuse variable
cφ if in the original SOLOIST formula there are M formulae or C formulae with the
same argument φ . Moreover, for each M we need also bK

h c+ 2 arithmetical variables
|p0| . . . |pbK

h c+1|. In the worst case, we introduce bK
h c+ 3 variables for each formula

MK,h
./n (φ). At position 0≤ i≤ H, formula JMK,h

./n (φ)Ki has size O(log(µ)K
h · i). We have

then ∑
H
i=0 O(log(µ)K

h i)< O(log(µ)K
h H2).

The set of formulae translating D is defined by the conjunction of formulae in (6)
and (7) in addition to constraint Cd− f orm. For each formula D we introduce five vari-
ables related to the pair (φ ,ψ). The size of formulae in (6) and in (7) is O(H). Con-
straint Cd− f orm requires a more careful analysis; notice that its size depends on the
parameter n because of the way formula a

b < n is expanded. At position 0 ≤ i ≤ H,
formula JDK

./n(φ ,ψ)Ki has size O(log(µ)in). Then, the complexity for D is obtained by
∑

H
i=0 O(log(µ)in)< O(log(µ)nH2).

The size of the QF-EUFIDL encoding of a SOLOIST formula of length λ is O(λ
log(µ)(H3+ K

h H2+nH2)), as the number of sub-formulae is polynomial in λ , whereas
the size of the encoding of a trace is O(log(µ)H). In the worst-case, K = H,h = 1,
hence the overall size of the QF-EUFIDL formula encoding a trace checking problem
is O(λ log(µ)H3). Finally, we notice that the complexity of trace checking SOLOIST
formulae is NP-complete. In fact, since size is polynomial and satisfiability of QF-
EUFIDL is NP-complete, then the complexity of solving one instance of the problem
is NP; NP-hardness may easily obtained by reducing SAT to trace checking SOLOIST
formulae.

4 Evaluation

We implemented the encoding as a Common Lisp plugin for the ZOT verification
toolset7. Before reporting the results of the evaluation of the implementation of the
proposed encoding, we first define a metric to characterize the degree of sparseness for
the execution traces to be checked. Let ξ be the number of valid time instants in a trace,
i.e., the instants in which at least one event occurs. This number corresponds to the
number of positions in a timed word modeling the trace. Let ν denote the number of

7 http://code.google.com/p/zot/.
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non-valid time instants, i.e., those where no event occurs. Notice that, in timed words,
these events are abstracted away by using timestamps. We can use the total length of a
trace ξ +ν to compute the degree of sparseness as ς = ξ

ξ+ν .

Scalability. To show how scalable the proposed encoding is with respect to the parame-
ters mentioned in Sect. 3, we synthesized traces using the PLG (Process Log Generator)
tool [10]. This tool can generate traces that conform to the business logic of the process
given in input, varying the trace length and the number of valid time instants. We used
a variant of the ATMFrontEnd business process example from the JBoss jBPM distribu-
tion; this process provides customers with some operations to interact with their bank
account, such as query-balance, withdraw, and deposit. For space reasons we only
report the evaluation of checking properties expressed using the C and D modalities.
We considered the two properties P1: “The number of query-balance operations per-
formed in the last 10 minutes is less than 10” and P2: “The average response time of
the query-balance operation is less than n seconds in the last 6 hours”, which can be
expressed in SOLOIST as C600

<10(QBs) and D21600
<n (QBs,QBe), respectively. Notice that

we express time in seconds and use events QBs and QBe to denote, respectively, the
start and the end of operation query-balance.

For both modalities we consider as parameter the number of valid time instants
ξ , i.e., the length H of the temporal structure; for the D modality we also consider the
varying bound n. The plots in Fig. 3a show quadratic increase in memory usage and time
with respect to the number of valid time instants, as anticipated in Sect. 3. In addition,
the plots in Fig. 3b show that parameter n does not affect the computational time and
space. Although in the complexity analysis we theoretically determined that the size of
the encoding for the D modality linearly depends on n, the evaluation showed that in
the actual implementation this does not happen, because the SMT decision procedure
supports natively the use of multiplication of terms by a constant. This allows us to
write a more concise encoding for D modality in O(H2).

Application to a Realistic Example. We have applied our approach also to a realistic
example, a sample service composition called ACME BOT [19], whose monitoring
data are available8 as part of the “S-Cube Use Case Repository”. We reconstructed 9796
execution traces, based on the monitoring data of the corresponding service composition
instances. On each of these traces, we performed trace checking with respect to two
simple properties, one containing the C modality, and the other the D modality. In the
first case, trace checking took on average 0.672s with a standard deviation of 0.035s and
used on average 125.7MB of memory with 0.476MB standard deviation; for the checks
with the D modality, it took on average 0.813s with 0.032s standard deviation and used
on average 127.7MB of memory with 0.476MB standard deviation. On average, each
trace had 31.5 valid time instants and a total length of 39341.3; the average degree of
sparseness was then 0.08%. This example shows that our approach can efficiently check
properties of realistic service compositions.

8 http://scube-casestudies.ws.dei.polimi.it/index.php/.
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Fig. 3: Scalability of the encoding with respect to: (a) the number of valid time instants
ξ in the trace, in the case of the C and D modalities; (b) bound n, in the case of the D
modality

Discussion and trade-offs. As you can see from Fig. 3a, our approach can support
the checking of traces containing up to 300 valid time instants, using up to 2GB of
memory. The strength of the approach is that the number of non-valid time instants in
the trace does not affect its scalability. In principle, we can deal with traces of arbitrary
length, with varying degrees of sparseness, and still use up to 2GB of memory if the
trace contains at most 300 valid time instants. The realistic example described above
as well as the process log of the BPI challenge mentioned earlier show that execution
traces with a limited number of valid time instants and a low degree of sparseness can be
very common in enterprise service-based applications. We compared the performance
of the approach proposed in this paper with a previous, not-optimized implementa-
tion [18] based on CLTLB(D); for the evaluation, we varied the degree of sparseness in
the traces and their total length ξ +ν . The approach in [18] does not keep track of tim-
ing information and therefore has to enumerate both valid and non-valid time instants.
Figure 4 shows the results of this comparison, in terms of time and memory usage: the
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Fig. 4: Tradeoff between the trace checking approach based on CLTLB(D) [18] and the
one based on the QF-EUFIDL encoding, with respect to the degree of sparseness of the
trace

black line shows the scalability of the approach based on CLTLB(D) from [18], while
the seven gray lines correspond to the QF-EUFIDL-based approach presented in this
paper, applied to traces with different degrees of sparseness (100%, 50%, 33%, 25%,
20%, 16.6%, and 14.3%, from left to right, respectively). The results show that the ap-
proach presented in this paper is more efficient than the one presented in [18] when the
degree of sparseness of input traces is less than 25%.

5 Conclusions

We have shown how trace checking for SOLOIST can be reduced to an existential satis-
fiability problem for the QF-EUFIDL logic, which can be solved with efficient decision
procedures using SMT verifiers. We motivate our approach with two case studies and
provide complexity analysis as well as practical evaluation. In the future, we plan to
collaborate with an industrial partner, to apply our trace checking approach to more
examples of realistic execution traces.
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