
SMT-based Checking of
SOLOIST over
Sparse Traces

Srđan Krstić
with

Marcello Bersani, Domenico Bianculli, Carlo Ghezzi and Pierluigi San Pietro

SMT-based Checking of
SOLOIST over
Sparse Traces

Srđan Krstić
with

Marcello Bersani, Domenico Bianculli, Carlo Ghezzi and Pierluigi San Pietro

SpecificationSystem

Execution Traces

 4

Execution Traces

 4

System

Execution Traces

 4

System

Monitor

Execution Traces

 4

System

Execution trace

…

Monitor

 5

Trace
Checking

Sparse Traces

 6

Sparse Traces

 6

p p p p p pq q q q q

Dense

Sparse Traces

 6

p p p p p pq q q q q

p pq

Dense

Sparse

Sparse Traces

 6

p p p p p pq q q q q

p pq

Dense

Sparse

WTEVWIRIWW = ��SJ�VIPIZERX�XMQI�MRWXERXW
��SJ�XMQI�MRWXERXW

Sparse Traces

 7

Business Process Intelligence Challenge 2012

Traces taken from a Dutch Financial Institute
Number of Traces:13087

Average Events per Trace: 20.03
Average Trace Duration: 8.62 Days

Sparse Traces

 7

Business Process Intelligence Challenge 2012

Traces taken from a Dutch Financial Institute
Number of Traces:13087

Average Events per Trace: 20.03
Average Trace Duration: 8.62 Days

Average sparseness: 0.003%

Bounded Satisfiability
Checking

 8

System Specification

�

Bounded Satisfiability
Checking

 8

System Specification

��() � ¬ Solver

Bounded Satisfiability
Checking

 8

System Specification

��() � ¬

Holds

Solver

UNSAT!

Bounded Satisfiability
Checking

 8

System Specification

��() � ¬

Violated

Solver

SAT!

Bounded Satisfiability
Checking

 8

�� ¬

Execution trace Temporal logic

SMT
solver…

Specification

 9

SOLOIST

 10

SOLOIST

 10

SpecificatiOn Language fOr
servIce compoSitions inTeractions

 11

SOLOIST

propositional

metric temporal logic

with additional
modalities

¬T

�U[�,��]�

C/
<��

 11

SOLOIST

propositional

metric temporal logic

with additional
modalities

¬T

�U[�,��]�

C/
<��

The Tale of SOLOIST: a Specification Language

for Service Compositions Interactions

Domenico Bianculli1 and Carlo Ghezzi2 and Pierluigi San Pietro2

1 University of Luxembourg - SnT Centre, Luxembourg
domenico.bianculli@uni.lu

2 Politecnico di Milano - DEI - DEEP-SE Group, Italy
{carlo.ghezzi,pierluigi.sanpietro}@polimi.it

Abstract. Service-based applications are a new class of software sys-
tems that provide the basis for enterprises to build their information sys-
tems by following the principles of service-oriented architectures. These
software systems are often realized by orchestrating remote, third-party
services, to provide added-values applications that are called service com-
positions. The distributed ownership and the evolving nature of the ser-
vices involved in a service composition make verification activities cru-
cial. On a par with verification is also the problem of formally specify-
ing the interactions—with third-party services—of service compositions,
with the related issue of balancing expressiveness and support for auto-
mated verification.
This paper showcases SOLOIST, a specification language for formalizing
the interactions of service compositions. SOLOIST has been designed
with the primary objective of expressing the most significant specification
patterns found in the specifications of service-based applications. The
language is based on a many-sorted first-order metric temporal logic,
extended with new temporal modalities that support aggregate operators
for events occurring in a certain time window. We also show how, under
certain assumptions, the language can be reduced to linear temporal
logic, paving the way for using SOLOIST with established verification
techniques, both at design time and at run time.

1 Introduction

Modern-age software engineering has to deal with novel kinds of software sys-
tems, which exhibit new features that often demand for rethinking and extending
the traditional methodologies and the accompanying methods and techniques.
One class of new software systems is constituted by open-world software [5],
characterized by a dynamic and decentralized nature; service-based applica-
tions (SBAs) represent an example of this class of systems. SBAs are often de-
fined as service compositions, obtained by orchestrating—with languages such
as BPEL [2]—existing services, possibly o�ered by third-parties. This kind of
applications has seen a wide adoption in enterprises, which nowadays develop
their information systems using the principles of service orientation [20].

FACS 2012

 12

Specification Patterns from Research to Industry:
A Case Study in Service-Based Applications

Domenico Bianculli
Faculty of Informatics

University of Lugano

Lugano, Switzerland

domenico.bianculli@usi.ch

Carlo Ghezzi
DEEPSE group - DEI

Politecnico di Milano

Milano, Italy

ghezzi@elet.polimi.it

Cesare Pautasso
Faculty of Informatics

University of Lugano

Lugano, Switzerland

cesare.pautasso@usi.ch

Patrick Senti
Information Technology

Credit Suisse AG

Zürich, Switzerland

patrick.senti@credit-suisse.com

Abstract—Specification patterns have proven to help devel-
opers to state precise system requirements, as well as formalize
them by means of dedicated specification languages. Most of the
past work has focused its applicability area to the specification
of concurrent and real-time systems, and has been limited to
a research setting. In this paper we present the results of our
study on specification patterns for service-based applications
(SBAs). The study focuses on industrial SBAs in the banking
domain. We started by performing an extensive analysis of
the usage of specification patterns in published research case
studies — representing almost ten years of research in the area
of specification, verification, and validation of SBAs. We then
compared these patterns with a large body of specifications
written by our industrial partner over a similar time period.
The paper discusses the outcome of this comparison, indicating
that some needs of the industry, especially in the area of
requirements specification languages, are not fully met by
current software engineering research.

Keywords-specification patterns; specification languages; re-
quirements specifications; services

I. INTRODUCTION

The concept of pattern has been initially proposed in the
domain of architecture by C. Alexander [1], to represent
“the description of a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice”.

This idea of pattern has then been adopted in software
engineering with the concept of design patterns [2], as
reusable solutions for recurring problems in software de-
sign. Subsequently, the concept of design patterns has been
embraced in different sub-domains of software engineering,
from architectural patterns to reengineering patterns, includ-
ing property specification patterns.

Property specification patterns [3] have been proposed in
the late ‘90s in the context of finite-state verification, as
a means to express recurring properties in a generalized
form, which could be formalized in different specification
languages, such as temporal logic. Specification patterns
aimed at bridging the gap between finite-state verification

tools (e.g., model checkers) and practitioners, by providing
the latter with a powerful instrument for writing down
properties to be fed to a formal verification tool.

Given the origin of property specification patterns, most
of past work has focused its applicability area to the spec-
ification (and the verification) of concurrent and real-time
systems (see, for example, [4]), with limited applications
outside the research setting.

In the last years, open software [5] systems such as
service-based applications (SBAs) have emerged, introduc-
ing new engineering challenges due to their dynamic and
decentralized nature. One of these research challenges is
related to the specification, verification and validation of
SBAs [6]. At the same time, service-oriented architectures
(SOAs) have gained a lot of attention in enterprises, which
started to adopt them for the integration of their information
systems [7]. However, to the best of our knowledge, the re-
search literature on specification, verification and validation
of SBAs has presented limited evidence of its applicability
to and suitability for industrial-level case studies.

One of the questions that we asked ourselves during
our research is whether existing requirements specification
languages are expressive enough to formalize common re-
quirements specifications used in industry. In particular, we
are interested in evaluating the use of specification patterns
for expressing properties of industrial SBAs, to assess if
existing and well-known specification patterns are adequate
or not. If this is not the case, our goal is to gather substantial
evidence for new specification patterns and/or language
constructs required to support their practical use in industrial
settings.

In this paper we present the results of our study on the
use of specification patterns in SBAs. The study has been
performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case
studies extracted from research papers in the area of specifi-
cation, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and
service-oriented computing within the last 10 years. The
other set was composed of case studies corresponding to

ICSE 2012

Service Provisioning Patterns

 12

625 Industrial requirements
specification

Specification Patterns from Research to Industry:
A Case Study in Service-Based Applications

Domenico Bianculli
Faculty of Informatics

University of Lugano

Lugano, Switzerland

domenico.bianculli@usi.ch

Carlo Ghezzi
DEEPSE group - DEI

Politecnico di Milano

Milano, Italy

ghezzi@elet.polimi.it

Cesare Pautasso
Faculty of Informatics

University of Lugano

Lugano, Switzerland

cesare.pautasso@usi.ch

Patrick Senti
Information Technology

Credit Suisse AG

Zürich, Switzerland

patrick.senti@credit-suisse.com

Abstract—Specification patterns have proven to help devel-
opers to state precise system requirements, as well as formalize
them by means of dedicated specification languages. Most of the
past work has focused its applicability area to the specification
of concurrent and real-time systems, and has been limited to
a research setting. In this paper we present the results of our
study on specification patterns for service-based applications
(SBAs). The study focuses on industrial SBAs in the banking
domain. We started by performing an extensive analysis of
the usage of specification patterns in published research case
studies — representing almost ten years of research in the area
of specification, verification, and validation of SBAs. We then
compared these patterns with a large body of specifications
written by our industrial partner over a similar time period.
The paper discusses the outcome of this comparison, indicating
that some needs of the industry, especially in the area of
requirements specification languages, are not fully met by
current software engineering research.

Keywords-specification patterns; specification languages; re-
quirements specifications; services

I. INTRODUCTION

The concept of pattern has been initially proposed in the
domain of architecture by C. Alexander [1], to represent
“the description of a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice”.

This idea of pattern has then been adopted in software
engineering with the concept of design patterns [2], as
reusable solutions for recurring problems in software de-
sign. Subsequently, the concept of design patterns has been
embraced in different sub-domains of software engineering,
from architectural patterns to reengineering patterns, includ-
ing property specification patterns.

Property specification patterns [3] have been proposed in
the late ‘90s in the context of finite-state verification, as
a means to express recurring properties in a generalized
form, which could be formalized in different specification
languages, such as temporal logic. Specification patterns
aimed at bridging the gap between finite-state verification

tools (e.g., model checkers) and practitioners, by providing
the latter with a powerful instrument for writing down
properties to be fed to a formal verification tool.

Given the origin of property specification patterns, most
of past work has focused its applicability area to the spec-
ification (and the verification) of concurrent and real-time
systems (see, for example, [4]), with limited applications
outside the research setting.

In the last years, open software [5] systems such as
service-based applications (SBAs) have emerged, introduc-
ing new engineering challenges due to their dynamic and
decentralized nature. One of these research challenges is
related to the specification, verification and validation of
SBAs [6]. At the same time, service-oriented architectures
(SOAs) have gained a lot of attention in enterprises, which
started to adopt them for the integration of their information
systems [7]. However, to the best of our knowledge, the re-
search literature on specification, verification and validation
of SBAs has presented limited evidence of its applicability
to and suitability for industrial-level case studies.

One of the questions that we asked ourselves during
our research is whether existing requirements specification
languages are expressive enough to formalize common re-
quirements specifications used in industry. In particular, we
are interested in evaluating the use of specification patterns
for expressing properties of industrial SBAs, to assess if
existing and well-known specification patterns are adequate
or not. If this is not the case, our goal is to gather substantial
evidence for new specification patterns and/or language
constructs required to support their practical use in industrial
settings.

In this paper we present the results of our study on the
use of specification patterns in SBAs. The study has been
performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case
studies extracted from research papers in the area of specifi-
cation, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and
service-oriented computing within the last 10 years. The
other set was composed of case studies corresponding to

ICSE 2012

Service Provisioning Patterns

 12

625 Industrial requirements
specification

290 Academic requirements
specification

Specification Patterns from Research to Industry:
A Case Study in Service-Based Applications

Domenico Bianculli
Faculty of Informatics

University of Lugano

Lugano, Switzerland

domenico.bianculli@usi.ch

Carlo Ghezzi
DEEPSE group - DEI

Politecnico di Milano

Milano, Italy

ghezzi@elet.polimi.it

Cesare Pautasso
Faculty of Informatics

University of Lugano

Lugano, Switzerland

cesare.pautasso@usi.ch

Patrick Senti
Information Technology

Credit Suisse AG

Zürich, Switzerland

patrick.senti@credit-suisse.com

Abstract—Specification patterns have proven to help devel-
opers to state precise system requirements, as well as formalize
them by means of dedicated specification languages. Most of the
past work has focused its applicability area to the specification
of concurrent and real-time systems, and has been limited to
a research setting. In this paper we present the results of our
study on specification patterns for service-based applications
(SBAs). The study focuses on industrial SBAs in the banking
domain. We started by performing an extensive analysis of
the usage of specification patterns in published research case
studies — representing almost ten years of research in the area
of specification, verification, and validation of SBAs. We then
compared these patterns with a large body of specifications
written by our industrial partner over a similar time period.
The paper discusses the outcome of this comparison, indicating
that some needs of the industry, especially in the area of
requirements specification languages, are not fully met by
current software engineering research.

Keywords-specification patterns; specification languages; re-
quirements specifications; services

I. INTRODUCTION

The concept of pattern has been initially proposed in the
domain of architecture by C. Alexander [1], to represent
“the description of a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice”.

This idea of pattern has then been adopted in software
engineering with the concept of design patterns [2], as
reusable solutions for recurring problems in software de-
sign. Subsequently, the concept of design patterns has been
embraced in different sub-domains of software engineering,
from architectural patterns to reengineering patterns, includ-
ing property specification patterns.

Property specification patterns [3] have been proposed in
the late ‘90s in the context of finite-state verification, as
a means to express recurring properties in a generalized
form, which could be formalized in different specification
languages, such as temporal logic. Specification patterns
aimed at bridging the gap between finite-state verification

tools (e.g., model checkers) and practitioners, by providing
the latter with a powerful instrument for writing down
properties to be fed to a formal verification tool.

Given the origin of property specification patterns, most
of past work has focused its applicability area to the spec-
ification (and the verification) of concurrent and real-time
systems (see, for example, [4]), with limited applications
outside the research setting.

In the last years, open software [5] systems such as
service-based applications (SBAs) have emerged, introduc-
ing new engineering challenges due to their dynamic and
decentralized nature. One of these research challenges is
related to the specification, verification and validation of
SBAs [6]. At the same time, service-oriented architectures
(SOAs) have gained a lot of attention in enterprises, which
started to adopt them for the integration of their information
systems [7]. However, to the best of our knowledge, the re-
search literature on specification, verification and validation
of SBAs has presented limited evidence of its applicability
to and suitability for industrial-level case studies.

One of the questions that we asked ourselves during
our research is whether existing requirements specification
languages are expressive enough to formalize common re-
quirements specifications used in industry. In particular, we
are interested in evaluating the use of specification patterns
for expressing properties of industrial SBAs, to assess if
existing and well-known specification patterns are adequate
or not. If this is not the case, our goal is to gather substantial
evidence for new specification patterns and/or language
constructs required to support their practical use in industrial
settings.

In this paper we present the results of our study on the
use of specification patterns in SBAs. The study has been
performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case
studies extracted from research papers in the area of specifi-
cation, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and
service-oriented computing within the last 10 years. The
other set was composed of case studies corresponding to

ICSE 2012

Service Provisioning Patterns

 12

Specification Patterns from Research to Industry:
A Case Study in Service-Based Applications

Domenico Bianculli
Faculty of Informatics

University of Lugano

Lugano, Switzerland

domenico.bianculli@usi.ch

Carlo Ghezzi
DEEPSE group - DEI

Politecnico di Milano

Milano, Italy

ghezzi@elet.polimi.it

Cesare Pautasso
Faculty of Informatics

University of Lugano

Lugano, Switzerland

cesare.pautasso@usi.ch

Patrick Senti
Information Technology

Credit Suisse AG

Zürich, Switzerland

patrick.senti@credit-suisse.com

Abstract—Specification patterns have proven to help devel-
opers to state precise system requirements, as well as formalize
them by means of dedicated specification languages. Most of the
past work has focused its applicability area to the specification
of concurrent and real-time systems, and has been limited to
a research setting. In this paper we present the results of our
study on specification patterns for service-based applications
(SBAs). The study focuses on industrial SBAs in the banking
domain. We started by performing an extensive analysis of
the usage of specification patterns in published research case
studies — representing almost ten years of research in the area
of specification, verification, and validation of SBAs. We then
compared these patterns with a large body of specifications
written by our industrial partner over a similar time period.
The paper discusses the outcome of this comparison, indicating
that some needs of the industry, especially in the area of
requirements specification languages, are not fully met by
current software engineering research.

Keywords-specification patterns; specification languages; re-
quirements specifications; services

I. INTRODUCTION

The concept of pattern has been initially proposed in the
domain of architecture by C. Alexander [1], to represent
“the description of a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice”.

This idea of pattern has then been adopted in software
engineering with the concept of design patterns [2], as
reusable solutions for recurring problems in software de-
sign. Subsequently, the concept of design patterns has been
embraced in different sub-domains of software engineering,
from architectural patterns to reengineering patterns, includ-
ing property specification patterns.

Property specification patterns [3] have been proposed in
the late ‘90s in the context of finite-state verification, as
a means to express recurring properties in a generalized
form, which could be formalized in different specification
languages, such as temporal logic. Specification patterns
aimed at bridging the gap between finite-state verification

tools (e.g., model checkers) and practitioners, by providing
the latter with a powerful instrument for writing down
properties to be fed to a formal verification tool.

Given the origin of property specification patterns, most
of past work has focused its applicability area to the spec-
ification (and the verification) of concurrent and real-time
systems (see, for example, [4]), with limited applications
outside the research setting.

In the last years, open software [5] systems such as
service-based applications (SBAs) have emerged, introduc-
ing new engineering challenges due to their dynamic and
decentralized nature. One of these research challenges is
related to the specification, verification and validation of
SBAs [6]. At the same time, service-oriented architectures
(SOAs) have gained a lot of attention in enterprises, which
started to adopt them for the integration of their information
systems [7]. However, to the best of our knowledge, the re-
search literature on specification, verification and validation
of SBAs has presented limited evidence of its applicability
to and suitability for industrial-level case studies.

One of the questions that we asked ourselves during
our research is whether existing requirements specification
languages are expressive enough to formalize common re-
quirements specifications used in industry. In particular, we
are interested in evaluating the use of specification patterns
for expressing properties of industrial SBAs, to assess if
existing and well-known specification patterns are adequate
or not. If this is not the case, our goal is to gather substantial
evidence for new specification patterns and/or language
constructs required to support their practical use in industrial
settings.

In this paper we present the results of our study on the
use of specification patterns in SBAs. The study has been
performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case
studies extracted from research papers in the area of specifi-
cation, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and
service-oriented computing within the last 10 years. The
other set was composed of case studies corresponding to

ICSE 2012

Service Provisioning Patterns

 13

Specification Patterns from Research to Industry:
A Case Study in Service-Based Applications

Domenico Bianculli
Faculty of Informatics

University of Lugano

Lugano, Switzerland

domenico.bianculli@usi.ch

Carlo Ghezzi
DEEPSE group - DEI

Politecnico di Milano

Milano, Italy

ghezzi@elet.polimi.it

Cesare Pautasso
Faculty of Informatics

University of Lugano

Lugano, Switzerland

cesare.pautasso@usi.ch

Patrick Senti
Information Technology

Credit Suisse AG

Zürich, Switzerland

patrick.senti@credit-suisse.com

Abstract—Specification patterns have proven to help devel-
opers to state precise system requirements, as well as formalize
them by means of dedicated specification languages. Most of the
past work has focused its applicability area to the specification
of concurrent and real-time systems, and has been limited to
a research setting. In this paper we present the results of our
study on specification patterns for service-based applications
(SBAs). The study focuses on industrial SBAs in the banking
domain. We started by performing an extensive analysis of
the usage of specification patterns in published research case
studies — representing almost ten years of research in the area
of specification, verification, and validation of SBAs. We then
compared these patterns with a large body of specifications
written by our industrial partner over a similar time period.
The paper discusses the outcome of this comparison, indicating
that some needs of the industry, especially in the area of
requirements specification languages, are not fully met by
current software engineering research.

Keywords-specification patterns; specification languages; re-
quirements specifications; services

I. INTRODUCTION

The concept of pattern has been initially proposed in the
domain of architecture by C. Alexander [1], to represent
“the description of a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice”.

This idea of pattern has then been adopted in software
engineering with the concept of design patterns [2], as
reusable solutions for recurring problems in software de-
sign. Subsequently, the concept of design patterns has been
embraced in different sub-domains of software engineering,
from architectural patterns to reengineering patterns, includ-
ing property specification patterns.

Property specification patterns [3] have been proposed in
the late ‘90s in the context of finite-state verification, as
a means to express recurring properties in a generalized
form, which could be formalized in different specification
languages, such as temporal logic. Specification patterns
aimed at bridging the gap between finite-state verification

tools (e.g., model checkers) and practitioners, by providing
the latter with a powerful instrument for writing down
properties to be fed to a formal verification tool.

Given the origin of property specification patterns, most
of past work has focused its applicability area to the spec-
ification (and the verification) of concurrent and real-time
systems (see, for example, [4]), with limited applications
outside the research setting.

In the last years, open software [5] systems such as
service-based applications (SBAs) have emerged, introduc-
ing new engineering challenges due to their dynamic and
decentralized nature. One of these research challenges is
related to the specification, verification and validation of
SBAs [6]. At the same time, service-oriented architectures
(SOAs) have gained a lot of attention in enterprises, which
started to adopt them for the integration of their information
systems [7]. However, to the best of our knowledge, the re-
search literature on specification, verification and validation
of SBAs has presented limited evidence of its applicability
to and suitability for industrial-level case studies.

One of the questions that we asked ourselves during
our research is whether existing requirements specification
languages are expressive enough to formalize common re-
quirements specifications used in industry. In particular, we
are interested in evaluating the use of specification patterns
for expressing properties of industrial SBAs, to assess if
existing and well-known specification patterns are adequate
or not. If this is not the case, our goal is to gather substantial
evidence for new specification patterns and/or language
constructs required to support their practical use in industrial
settings.

In this paper we present the results of our study on the
use of specification patterns in SBAs. The study has been
performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case
studies extracted from research papers in the area of specifi-
cation, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and
service-oriented computing within the last 10 years. The
other set was composed of case studies corresponding to

Service Provisioning Patterns

ICSE 2012

 13

Counting the number of events

Specification Patterns from Research to Industry:
A Case Study in Service-Based Applications

Domenico Bianculli
Faculty of Informatics

University of Lugano

Lugano, Switzerland

domenico.bianculli@usi.ch

Carlo Ghezzi
DEEPSE group - DEI

Politecnico di Milano

Milano, Italy

ghezzi@elet.polimi.it

Cesare Pautasso
Faculty of Informatics

University of Lugano

Lugano, Switzerland

cesare.pautasso@usi.ch

Patrick Senti
Information Technology

Credit Suisse AG

Zürich, Switzerland

patrick.senti@credit-suisse.com

Abstract—Specification patterns have proven to help devel-
opers to state precise system requirements, as well as formalize
them by means of dedicated specification languages. Most of the
past work has focused its applicability area to the specification
of concurrent and real-time systems, and has been limited to
a research setting. In this paper we present the results of our
study on specification patterns for service-based applications
(SBAs). The study focuses on industrial SBAs in the banking
domain. We started by performing an extensive analysis of
the usage of specification patterns in published research case
studies — representing almost ten years of research in the area
of specification, verification, and validation of SBAs. We then
compared these patterns with a large body of specifications
written by our industrial partner over a similar time period.
The paper discusses the outcome of this comparison, indicating
that some needs of the industry, especially in the area of
requirements specification languages, are not fully met by
current software engineering research.

Keywords-specification patterns; specification languages; re-
quirements specifications; services

I. INTRODUCTION

The concept of pattern has been initially proposed in the
domain of architecture by C. Alexander [1], to represent
“the description of a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice”.

This idea of pattern has then been adopted in software
engineering with the concept of design patterns [2], as
reusable solutions for recurring problems in software de-
sign. Subsequently, the concept of design patterns has been
embraced in different sub-domains of software engineering,
from architectural patterns to reengineering patterns, includ-
ing property specification patterns.

Property specification patterns [3] have been proposed in
the late ‘90s in the context of finite-state verification, as
a means to express recurring properties in a generalized
form, which could be formalized in different specification
languages, such as temporal logic. Specification patterns
aimed at bridging the gap between finite-state verification

tools (e.g., model checkers) and practitioners, by providing
the latter with a powerful instrument for writing down
properties to be fed to a formal verification tool.

Given the origin of property specification patterns, most
of past work has focused its applicability area to the spec-
ification (and the verification) of concurrent and real-time
systems (see, for example, [4]), with limited applications
outside the research setting.

In the last years, open software [5] systems such as
service-based applications (SBAs) have emerged, introduc-
ing new engineering challenges due to their dynamic and
decentralized nature. One of these research challenges is
related to the specification, verification and validation of
SBAs [6]. At the same time, service-oriented architectures
(SOAs) have gained a lot of attention in enterprises, which
started to adopt them for the integration of their information
systems [7]. However, to the best of our knowledge, the re-
search literature on specification, verification and validation
of SBAs has presented limited evidence of its applicability
to and suitability for industrial-level case studies.

One of the questions that we asked ourselves during
our research is whether existing requirements specification
languages are expressive enough to formalize common re-
quirements specifications used in industry. In particular, we
are interested in evaluating the use of specification patterns
for expressing properties of industrial SBAs, to assess if
existing and well-known specification patterns are adequate
or not. If this is not the case, our goal is to gather substantial
evidence for new specification patterns and/or language
constructs required to support their practical use in industrial
settings.

In this paper we present the results of our study on the
use of specification patterns in SBAs. The study has been
performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case
studies extracted from research papers in the area of specifi-
cation, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and
service-oriented computing within the last 10 years. The
other set was composed of case studies corresponding to

Service Provisioning Patterns

ICSE 2012

 13

Counting the number of events

Average number of events

Specification Patterns from Research to Industry:
A Case Study in Service-Based Applications

Domenico Bianculli
Faculty of Informatics

University of Lugano

Lugano, Switzerland

domenico.bianculli@usi.ch

Carlo Ghezzi
DEEPSE group - DEI

Politecnico di Milano

Milano, Italy

ghezzi@elet.polimi.it

Cesare Pautasso
Faculty of Informatics

University of Lugano

Lugano, Switzerland

cesare.pautasso@usi.ch

Patrick Senti
Information Technology

Credit Suisse AG

Zürich, Switzerland

patrick.senti@credit-suisse.com

Abstract—Specification patterns have proven to help devel-
opers to state precise system requirements, as well as formalize
them by means of dedicated specification languages. Most of the
past work has focused its applicability area to the specification
of concurrent and real-time systems, and has been limited to
a research setting. In this paper we present the results of our
study on specification patterns for service-based applications
(SBAs). The study focuses on industrial SBAs in the banking
domain. We started by performing an extensive analysis of
the usage of specification patterns in published research case
studies — representing almost ten years of research in the area
of specification, verification, and validation of SBAs. We then
compared these patterns with a large body of specifications
written by our industrial partner over a similar time period.
The paper discusses the outcome of this comparison, indicating
that some needs of the industry, especially in the area of
requirements specification languages, are not fully met by
current software engineering research.

Keywords-specification patterns; specification languages; re-
quirements specifications; services

I. INTRODUCTION

The concept of pattern has been initially proposed in the
domain of architecture by C. Alexander [1], to represent
“the description of a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice”.

This idea of pattern has then been adopted in software
engineering with the concept of design patterns [2], as
reusable solutions for recurring problems in software de-
sign. Subsequently, the concept of design patterns has been
embraced in different sub-domains of software engineering,
from architectural patterns to reengineering patterns, includ-
ing property specification patterns.

Property specification patterns [3] have been proposed in
the late ‘90s in the context of finite-state verification, as
a means to express recurring properties in a generalized
form, which could be formalized in different specification
languages, such as temporal logic. Specification patterns
aimed at bridging the gap between finite-state verification

tools (e.g., model checkers) and practitioners, by providing
the latter with a powerful instrument for writing down
properties to be fed to a formal verification tool.

Given the origin of property specification patterns, most
of past work has focused its applicability area to the spec-
ification (and the verification) of concurrent and real-time
systems (see, for example, [4]), with limited applications
outside the research setting.

In the last years, open software [5] systems such as
service-based applications (SBAs) have emerged, introduc-
ing new engineering challenges due to their dynamic and
decentralized nature. One of these research challenges is
related to the specification, verification and validation of
SBAs [6]. At the same time, service-oriented architectures
(SOAs) have gained a lot of attention in enterprises, which
started to adopt them for the integration of their information
systems [7]. However, to the best of our knowledge, the re-
search literature on specification, verification and validation
of SBAs has presented limited evidence of its applicability
to and suitability for industrial-level case studies.

One of the questions that we asked ourselves during
our research is whether existing requirements specification
languages are expressive enough to formalize common re-
quirements specifications used in industry. In particular, we
are interested in evaluating the use of specification patterns
for expressing properties of industrial SBAs, to assess if
existing and well-known specification patterns are adequate
or not. If this is not the case, our goal is to gather substantial
evidence for new specification patterns and/or language
constructs required to support their practical use in industrial
settings.

In this paper we present the results of our study on the
use of specification patterns in SBAs. The study has been
performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case
studies extracted from research papers in the area of specifi-
cation, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and
service-oriented computing within the last 10 years. The
other set was composed of case studies corresponding to

Service Provisioning Patterns

ICSE 2012

 13

Counting the number of events

Average number of events

Maximum number of events

Specification Patterns from Research to Industry:
A Case Study in Service-Based Applications

Domenico Bianculli
Faculty of Informatics

University of Lugano

Lugano, Switzerland

domenico.bianculli@usi.ch

Carlo Ghezzi
DEEPSE group - DEI

Politecnico di Milano

Milano, Italy

ghezzi@elet.polimi.it

Cesare Pautasso
Faculty of Informatics

University of Lugano

Lugano, Switzerland

cesare.pautasso@usi.ch

Patrick Senti
Information Technology

Credit Suisse AG

Zürich, Switzerland

patrick.senti@credit-suisse.com

Abstract—Specification patterns have proven to help devel-
opers to state precise system requirements, as well as formalize
them by means of dedicated specification languages. Most of the
past work has focused its applicability area to the specification
of concurrent and real-time systems, and has been limited to
a research setting. In this paper we present the results of our
study on specification patterns for service-based applications
(SBAs). The study focuses on industrial SBAs in the banking
domain. We started by performing an extensive analysis of
the usage of specification patterns in published research case
studies — representing almost ten years of research in the area
of specification, verification, and validation of SBAs. We then
compared these patterns with a large body of specifications
written by our industrial partner over a similar time period.
The paper discusses the outcome of this comparison, indicating
that some needs of the industry, especially in the area of
requirements specification languages, are not fully met by
current software engineering research.

Keywords-specification patterns; specification languages; re-
quirements specifications; services

I. INTRODUCTION

The concept of pattern has been initially proposed in the
domain of architecture by C. Alexander [1], to represent
“the description of a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice”.

This idea of pattern has then been adopted in software
engineering with the concept of design patterns [2], as
reusable solutions for recurring problems in software de-
sign. Subsequently, the concept of design patterns has been
embraced in different sub-domains of software engineering,
from architectural patterns to reengineering patterns, includ-
ing property specification patterns.

Property specification patterns [3] have been proposed in
the late ‘90s in the context of finite-state verification, as
a means to express recurring properties in a generalized
form, which could be formalized in different specification
languages, such as temporal logic. Specification patterns
aimed at bridging the gap between finite-state verification

tools (e.g., model checkers) and practitioners, by providing
the latter with a powerful instrument for writing down
properties to be fed to a formal verification tool.

Given the origin of property specification patterns, most
of past work has focused its applicability area to the spec-
ification (and the verification) of concurrent and real-time
systems (see, for example, [4]), with limited applications
outside the research setting.

In the last years, open software [5] systems such as
service-based applications (SBAs) have emerged, introduc-
ing new engineering challenges due to their dynamic and
decentralized nature. One of these research challenges is
related to the specification, verification and validation of
SBAs [6]. At the same time, service-oriented architectures
(SOAs) have gained a lot of attention in enterprises, which
started to adopt them for the integration of their information
systems [7]. However, to the best of our knowledge, the re-
search literature on specification, verification and validation
of SBAs has presented limited evidence of its applicability
to and suitability for industrial-level case studies.

One of the questions that we asked ourselves during
our research is whether existing requirements specification
languages are expressive enough to formalize common re-
quirements specifications used in industry. In particular, we
are interested in evaluating the use of specification patterns
for expressing properties of industrial SBAs, to assess if
existing and well-known specification patterns are adequate
or not. If this is not the case, our goal is to gather substantial
evidence for new specification patterns and/or language
constructs required to support their practical use in industrial
settings.

In this paper we present the results of our study on the
use of specification patterns in SBAs. The study has been
performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case
studies extracted from research papers in the area of specifi-
cation, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and
service-oriented computing within the last 10 years. The
other set was composed of case studies corresponding to

Service Provisioning Patterns

ICSE 2012

 13

Average response time

Counting the number of events

Average number of events

Maximum number of events

Specification Patterns from Research to Industry:
A Case Study in Service-Based Applications

Domenico Bianculli
Faculty of Informatics

University of Lugano

Lugano, Switzerland

domenico.bianculli@usi.ch

Carlo Ghezzi
DEEPSE group - DEI

Politecnico di Milano

Milano, Italy

ghezzi@elet.polimi.it

Cesare Pautasso
Faculty of Informatics

University of Lugano

Lugano, Switzerland

cesare.pautasso@usi.ch

Patrick Senti
Information Technology

Credit Suisse AG

Zürich, Switzerland

patrick.senti@credit-suisse.com

Abstract—Specification patterns have proven to help devel-
opers to state precise system requirements, as well as formalize
them by means of dedicated specification languages. Most of the
past work has focused its applicability area to the specification
of concurrent and real-time systems, and has been limited to
a research setting. In this paper we present the results of our
study on specification patterns for service-based applications
(SBAs). The study focuses on industrial SBAs in the banking
domain. We started by performing an extensive analysis of
the usage of specification patterns in published research case
studies — representing almost ten years of research in the area
of specification, verification, and validation of SBAs. We then
compared these patterns with a large body of specifications
written by our industrial partner over a similar time period.
The paper discusses the outcome of this comparison, indicating
that some needs of the industry, especially in the area of
requirements specification languages, are not fully met by
current software engineering research.

Keywords-specification patterns; specification languages; re-
quirements specifications; services

I. INTRODUCTION

The concept of pattern has been initially proposed in the
domain of architecture by C. Alexander [1], to represent
“the description of a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice”.

This idea of pattern has then been adopted in software
engineering with the concept of design patterns [2], as
reusable solutions for recurring problems in software de-
sign. Subsequently, the concept of design patterns has been
embraced in different sub-domains of software engineering,
from architectural patterns to reengineering patterns, includ-
ing property specification patterns.

Property specification patterns [3] have been proposed in
the late ‘90s in the context of finite-state verification, as
a means to express recurring properties in a generalized
form, which could be formalized in different specification
languages, such as temporal logic. Specification patterns
aimed at bridging the gap between finite-state verification

tools (e.g., model checkers) and practitioners, by providing
the latter with a powerful instrument for writing down
properties to be fed to a formal verification tool.

Given the origin of property specification patterns, most
of past work has focused its applicability area to the spec-
ification (and the verification) of concurrent and real-time
systems (see, for example, [4]), with limited applications
outside the research setting.

In the last years, open software [5] systems such as
service-based applications (SBAs) have emerged, introduc-
ing new engineering challenges due to their dynamic and
decentralized nature. One of these research challenges is
related to the specification, verification and validation of
SBAs [6]. At the same time, service-oriented architectures
(SOAs) have gained a lot of attention in enterprises, which
started to adopt them for the integration of their information
systems [7]. However, to the best of our knowledge, the re-
search literature on specification, verification and validation
of SBAs has presented limited evidence of its applicability
to and suitability for industrial-level case studies.

One of the questions that we asked ourselves during
our research is whether existing requirements specification
languages are expressive enough to formalize common re-
quirements specifications used in industry. In particular, we
are interested in evaluating the use of specification patterns
for expressing properties of industrial SBAs, to assess if
existing and well-known specification patterns are adequate
or not. If this is not the case, our goal is to gather substantial
evidence for new specification patterns and/or language
constructs required to support their practical use in industrial
settings.

In this paper we present the results of our study on the
use of specification patterns in SBAs. The study has been
performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case
studies extracted from research papers in the area of specifi-
cation, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and
service-oriented computing within the last 10 years. The
other set was composed of case studies corresponding to

Service Provisioning Patterns

ICSE 2012

Service Provisioning Patterns
in SOLOIST

 14

Average response time

Counting the number of events

Average number of events

Maximum number of events

Service Provisioning Patterns
in SOLOIST

 14

Average response time

Counting the number of events

Average number of events

Maximum number of events

C/
��R(�)

U/,L
��R(�)

M/,L
��R(�)

D/
��R(�, �)

 15

Propositional

Metric Temporal Logic

with aggregating modalities

SOLOIST

T | ¬� | � � �

�U-� | �S-�

C/
��R(�) | U/,L

��R(�) | M/,L
��R(�) | D/

��R(�, �)

SOLOIST

 16

Model: a timed -word�

p p pp p p
q qqq

q

SOLOIST

 17

� = 0 3 6 7 9 13 14

Model: a timed -word�

Counting Modality

 18

� � ��

! !

C/
<�(�)

� � / �

Counting Modality

 18

� � ��

! !

C/
<�(�)

� � / �

� < �

 19

“If operation A has been executed exactly 4 times
in the past 5 minutes, than operation B will be executed

within 32 seconds.”

Counting Modality

G(C���=� (%) � F[�,��](&))

SOLOIST

 20

U/,L
��R(�)

� � ��

�� �K
! !� � L� � �L� � �L

SOLOIST

 20

U/,L
��R(�)

� � ��

�� �K
! !� � L� � �L� � �L

�+�+�
� �� R

Average modality

 21

� �� �

K
L

�

U/,L
��R(�)

Average modality

 21

� �� �

K
L

�

U/,L
��R(�) � 1+1+1+1

4 �� n

Average modality

 21

� �� �

K
L

�

U/,L
��R(�) � 1+1+1+1

4 �� n � 1+1+1+1 �� 4 ·n

Average modality

 21

� �� � �

U/,L
��R(�) � 1+1+1+1

4 �� n � 1+1+1+1 �� 4 ·n � C4h,h
��4n(�)

4h

Average Modality

 22

“When operation A is executed, the average number
of executions, in an interval of 1 minute, of operation B

during the past 12 minutes should be less than 4.”

G(% � U���,��<� (&))

Maximum Modality

 23

“When operation A is executed, the maximum number
of executions, in an interval of 1 minute, of operation B
during the past 12 minutes should be greater than

5”

G(% � M���,��
>� (&))

SOLOIST

 24

M/,L
��R(�)

� � ��

�� �K
! !� � L� � �L� � �L

SOLOIST

 24

M/,L
��R(�)

� � ��

�� �K
! !� � L� � �L� � �L

� �� R

Average Distance Modality

 25

“When operation A is executed, the average response
time of all the executions of operation C in the past 12

minutes should be less than 3 seconds.”

G(% � D���<� ('WXEVX, 'IRH))

SOLOIST

 26

�

D/
��R(�, �)

� �

�� �K
! !

�

�� �� �� ��

SOLOIST

 26

�

D/
��R(�, �)

� �

�� �K
! !

�

�� �� �� ��

(�����)+(�����)
� �� R

Bounded Satisfiability
Checking

 27

�� ¬

Execution trace SOLOIST

SMT
solver…

Bounded Satisfiability
Checking

 27

�� ¬

Execution trace SOLOIST

SMT
solver

I don’t speak
SOLOIST!

…

SOLOIST Satisfiability

 28

SOLOIST

Intermediate
language

SMT
solver Model

Timed word

SOLOIST Satisfiability

 28

SOLOIST

Intermediate
language

SMT
solver Model

Timed word

C���<� (T)

SOLOIST Satisfiability

 28

SOLOIST

Intermediate
language

SMT
solver Model

Timed word

C���<� (T)

Translate

SOLOIST Satisfiability

 28

SOLOIST

Intermediate
language

SMT
solver Model

Timed word

C���<� (T)

Translate

Ok, this I can
understand!

SOLOIST Satisfiability

 28

SOLOIST

Intermediate
language

SMT
solver Model

Timed word

C���<� (T)

Translate Interpret

Ok, this I can
understand!

SOLOIST Satisfiability

 28

SOLOIST

Intermediate
language

SMT
solver Model

Timed word

C���<� (T) 0 1 2

C���<� (T) C���<� (T)

Translate Interpret

Ok, this I can
understand!

Intermediate Language

 29

Intermediate Language

 29

CLTLB(D) - Constraint Linear Temporal Logic

Intermediate Language

 29

CLTLB(D) - Constraint Linear Temporal Logic

� = 0 3 6 7 9 13 14

Intermediate Language

 29

CLTLB(D) - Constraint Linear Temporal Logic

� = 0 3 6 7 9 13 14

0 3 6 7 9 13141 2 4 5 8 101112

 30

Intermediate Language

 30

Intermediate Language
QF-EUFIDL - Quantifier-free Integer difference logic

with equality and uninterpreted functions

 30

Intermediate Language
QF-EUFIDL - Quantifier-free Integer difference logic

with equality and uninterpreted functions

� = 0 3 6 7 9 13 14

QF-EUFIDL

 31

QF-EUFIDL

 31

� ::= T | X = X | X <H X | ¬� | � � �

QF-EUFIDL

 31

� ::= T | X = X | X <H X | ¬� | � � �

{4�, 4�, . . .} � �4� : Z+
� � {�, �}

QF-EUFIDL

 31

� ::= T | X = X | X <H X | ¬� | � � �

{4�, 4�, . . .} � �4� : Z+
� � {�, �}

{8�, 8�, . . .} � |8| : Z+
� � Z

QF-EUFIDL

 31

� ::= T | X = X | X <H X | ¬� | � � �

Predicate{4�, 4�, . . .} � �4� : Z+
� � {�, �}

{8�, 8�, . . .} � |8| : Z+
� � Z

QF-EUFIDL

 31

� ::= T | X = X | X <H X | ¬� | � � �

Predicate

Arithmetical variable

{4�, 4�, . . .} � �4� : Z+
� � {�, �}

{8�, 8�, . . .} � |8| : Z+
� � Z

Translation

 32

¬T

�U[�,��]�

C/
<��

�

propositional operators

metric temporal operators

aggregate operators

timing information

Translation

 33

¬T

C/
<��

�

propositional operators

counting modality

timing information

Timing Information

 34

0 1 2 3 4 5 6 7 8 9 10 11 12

|� |M < |� |M+�, �M � {� . . ., � �}

Timing Information

 34

0 5 6 10 25 27 32 45 56 57 59 61 79|� |

0 1 2 3 4 5 6 7 8 9 10 11 12

|� |M < |� |M+�, �M � {� . . ., � �}

Boolean Operators

 35

0 1 2 3 4 5 6 7 8 9 10 11 12

Boolean Operators

 35

� � � � � � �� � � � � ��T�

0 1 2 3 4 5 6 7 8 9 10 11 12

�T�M � T(M), �M � {� . . .,}

Boolean Operators

 35

� � � � � � �� � � � � ��T�

0 1 2 3 4 5 6 7 8 9 10 11 12

�T�M � T(M), �M � {� . . .,}
�¬T�M � ¬T(M), �M � {� . . .,}

� � � � � �� � � � � � ��¬T�

Boolean Operators

 35

� � � � � � �� � � � � ��T�

0 1 2 3 4 5 6 7 8 9 10 11 12

�T�M � T(M), �M � {� . . .,}
�¬T�M � ¬T(M), �M � {� . . .,}

�� � ��M � ���M � ���M, �M � {� . . .,}

� � � � � �� � � � � � ��¬T�
� � � � � � �� � � � � ��T � ¬T�

Counting Modality

 36

� � � � � � �� � � � � ����

0 1 2 3 4 5 6 7 8 9 10 11 12
C/

��R(�)

Counting Modality

 36

� � � � � � �� � � � � ����

|G�|

0 1 2 3 4 5 6 7 8 9 10 11 12
C/

��R(�)

Counting Modality

 36

� � � � � � �� � � � � ����

|G�| 0

0 1 2 3 4 5 6 7 8 9 10 11 12

|G�|� = �

C/
��R(�)

Counting Modality

 36

� � � � � � �� � � � � ����

1|G�| 0

0 1 2 3 4 5 6 7 8 9 10 11 12

|G�|� = �
���M � (|G�|M+� = (|G�|M + �)), �M � {� . . ., � �}

C/
��R(�)

Counting Modality

 36

� � � � � � �� � � � � ����

1 1|G�| 0

0 1 2 3 4 5 6 7 8 9 10 11 12

|G�|� = �

¬���M � (|G�|M+� = |G�|M), �M � {�..., � �}
���M � (|G�|M+� = (|G�|M + �)), �M � {� . . ., � �}

C/
��R(�)

Counting Modality

 36

� � � � � � �� � � � � ����

1 1 1 1 2 2 3 4 5 6 6 6|G�| 0

0 1 2 3 4 5 6 7 8 9 10 11 12

|G�|� = �

¬���M � (|G�|M+� = |G�|M), �M � {�..., � �}
���M � (|G�|M+� = (|G�|M + �)), �M � {� . . ., � �}

C/
��R(�)

Counting Modality

 37

0 1 2 3 4 5

0 1 1 1 1 2

� � �� � ����

|G�|

0 5 6 10 25 27|� |

�C�<�(�)�� �

Counting Modality

 37

0 1 2 3 4 5

0 1 1 1 1 2

� � �� � ����

|G�|

0 5 6 10 25 27|� |

|G�|� � |G�|� < � � |� |� � |� |� > � � |� |� � |� |� � �

�C�<�(�)�� �

Counting Modality

 37

0 1 2 3 4 5

0 1 1 1 1 2

� � �� � ����

|G�|

0 5 6 10 25 27|� |

�
|G�|� � |G�|� < � � |� |� � |� |� > � � |� |� � |� |� � �

|G�|� � |G�|� < � � |� |� � |� |� > � � |� |� � |� |� � ��C�<�(�)�� �

Counting Modality

 37

0 1 2 3 4 5

0 1 1 1 1 2

� � �� � ����

|G�|

0 5 6 10 25 27|� |

�

�
|G�|� � |G�|� < � � |� |� � |� |� > � � |� |� � |� |� � �

|G�|� � |G�|� < � � |� |� � |� |� > � � |� |� � |� |� � �

|G�|� � |G�|� < � � |� |� � |� |� > � � |� |� � |� |� � �

�C�<�(�)�� �

Counting Modality

 37

0 1 2 3 4 5

0 1 1 1 1 2

� � �� � ����

|G�|

0 5 6 10 25 27|� |

�

�
|G�|� � |G�|� < � � |� |� � |� |� > � � |� |� � |� |� � �

|G�|� � |G�|� < � � |� |� � |� |� > � � |� |� � |� |� � �

|G�|� � |G�|� < � � |� |� � |� |� > � � |� |� � |� |� � �

�C�<�(�)�� �

Counting Modality

 38

|� |M � |� |M�^�� > / �

|� |M � |� |M�^ � /)

�C/
��R(�)�M �

QMR{M,/}�

^=�

(|G�|M+� � |G�|M�^ �� R �

Complexity

 39

Complexity

 39

𝜆 size of the formula

𝜇 largest constant

H number of relevant events

Complexity

 39

𝜆 size of the formula

𝜇 largest constant

H number of relevant events

Translation size: O(�PSK(µ),�)

Complexity

 39

QF-EUFIDL satisfiability: NP-complete

𝜆 size of the formula

𝜇 largest constant

H number of relevant events

Translation size: O(�PSK(µ),�)

Complexity

 39

QF-EUFIDL satisfiability: NP-complete

SOLOIST trace checking is NP-complete

𝜆 size of the formula

𝜇 largest constant

H number of relevant events

Translation size: O(�PSK(µ),�)

Implementation and
Evaluation

• Implemented as a Common Lisp plugin for the ZOT
verification toolkit

• 30.000 traces were synthesized using the Process Log
Generator tool

 40

Scalability - Time Performance

 41

���

��

�

�

���

�

���

�

���

�� �

��

�

��

�

��

�

��SJ�VIPIZERX�IZIRXW

�

8M
Q
I�
�W

�

� ��C QSHEPMX]
� ��D QSHEPMX]

Sparseness - Time Performance

 42

���

��

�

�

���

�

���

�

���

�

���

�

���

�

���

�� �

�

�

�

�

�

�

�

�

���	

�

��	

�

��	

�

��	

�

��	

�

����	

�
����	

�

8MQI�WTER

�

8M
Q
I�
�W

�

� ��1IXVMG����	�������	
� ��'080&�(

Application to a Real Dataset

• We checked service composition from the “S-Cube Use
Case Repository”

• 9796 execution traces

 43

Average time (s) Average memory
(MB)

C modality 0.672±0.035 125.7±0.476

D modality 0.813±0.032 127.7±0.476

SMT-based Checking of
SOLOIST over Sparse Traces

 44

SMT-based Checking of
SOLOIST over Sparse Traces

 44

SMT-based Checking of
SOLOIST over Sparse Traces

 44

SMT-based Checking of
SOLOIST over Sparse Traces

 44

SMT-based Checking of
SOLOIST over Sparse Traces

 44

SMT-based Checking of
SOLOIST over Sparse Traces

 44

Current and Future Work

• Formalize new properties: Towards the
Formalization of Properties of Cloud-based
Elastic Systems.  
To appear at PESOS 2014 (ICSE 2014)

• Extend the approach for very large logs using
MapReduce

• Application to run-time verification

 45

SMT-based Checking of
SOLOIST over
Sparse Traces

Srđan Krstić
with

Marcello Bersani, Domenico Bianculli, Carlo Ghezzi and Pierluigi San Pietro

