
Enforcing the GDPR

François Hublet, David Basin, and Srd̄an Krstić

Institute of Information Security, Department of Computer Science, ETH Zürich,
Zurich, Switzerland {francois.hublet,basin,srdan.krstic}@inf.ethz.ch

Abstract. Violations of data protection laws such as the General Data Protection
Regulation (GDPR) are ubiquitous. Currently building IT support to implement
such laws is difficult and the alternatives such as manual controls augmented by
auditing are limited and scale poorly. This calls for new automated enforcement
techniques that can build on, and enforce, a formalization of the law.
In this paper, we present the first enforceable specification of a core set of GDPR
provisions, centered on data-subject rights, and describe an architecture that
automatically enforces this specification in web applications. We evaluate our
architecture by implementing three case studies and show that our approach incurs
only modest development and runtime overhead, while covering the most relevant
privacy-related aspects of GDPR that can be enforced at runtime.

1 Introduction

Since 2018, nearly C3 billion in fines were imposed on organizations violating the EU’s
General Data Protection Regulation (GDPR).1 Despite these fines, GDPR violations are
still ubiquitous [10,32]. In a world where data processing permeates most aspects of life,
it appears unlikely that ex-post auditing and fines can bring about compliance at scale.
In this context, an ex-ante, automated approach to privacy is needed.

Runtime verification (RV) [5] provides both a theoretical and practical framework
for monitoring and enforcing complex properties of computer systems at runtime. In RV,
system actions are represented as time-stamped events. System execution then consitutes
a trace of events that is checked for compliance with a specification, i.e., a trace property
describing the system’s desired executions. In particular, online RV tools can check
compliance in real-time, with violations being either reported (in the case of runtime
monitoring [23]) or prevented (in the case of runtime enforcement [39]).

The challenge of using RV techniques for automated enforcement of privacy laws is
threefold. First, legal provisions must be faithfully translated into a formal specification:
relevant actions by both software systems and individuals must be encoded as events, and
legal provisions turned into a formal specification. Second, the resulting specification
must be enforceable by an automatic process, also called an enforcer (Section 2.1):
one must identify which actions can be suppressed or caused to prevent violations, and
then check that all potential violations of the specification can be prevented by such
suppression or causation. Third and finally, applications must be instrumented so that
they emit appropriate events and can suppress or cause relevant actions. In particular, a
core requirement of privacy laws is for applications to track information flows in order to

1 July 2018–May 2023. Source: www.enforcementtracker.com.

2 François Hublet, David Basin, and Srd̄an Krstić

faithfully determine where and how personal data is used. A dynamic information-flow
control mechanisms can be used to deduce data ownership during execution (Section 2.2).

In this paper, we propose the first comprehensive approach to privacy enforcement
that jointly addresses all of the above challenges for a core set of GDPR provisions.
More specifically, we leverage an RV approach that uses a logical specification language
supporting first-order quantification and (metric) temporal operators, providing both a
high degree of expressiveness and real-time enforcement support [24]. The provided
expressiveness is crucial for a faithful formalization of GDPR provisions.

We first formalize a core set of GDPR provisions as an enforceable specification
(Section 3). Our specification builds on previous work [2] on formalizing and monitoring
parts of the GDPR using Metric First-Order Temporal Logic (MFOTL) [8, 13]. However,
in contrast to this prior work, we show how GDPR provisions can be enforced rather
than just monitored. Specifically, we extend the previous work to cover a larger fragment
of GDPR provisions, and then use the theory of MFOTL enforcement [24] to show the
enforceability of our specifications. We cover purpose and consent-based data usage, as
well as the rights to access, rectify, erase, restrict, and object to data processing.

We then build an architecture that enforces this specification in web applications
(Section 4). Our architecture consists of three components: data subjects’ browsers, the
WebTTC+ execution environment where data controllers deploy their applications, and
a privacy platform to which data subjects delegate the enforcement of their privacy
preferences. WebTTC+ is an extension of the recently introduced WebTTC environment
(TTC stands for Taint, Track, and Control) for enforcing information-flow policies using
taint tracking [25]. WebTTC+ ensures that the applications’ behavior complies with
privacy laws by interacting with an enforcer deployed at the privacy platform. WebTTC+
reports relevant events to the enforcer, which in turn responds with remedial actions (i.e.,
sets of events to cause or suppress) that WebTTC+ must execute to ensure compliance.
Additionally, the data subjects can directly interact with the privacy platform to manage
their consent and exercise their rights. The platform sends events representing data
subject queries (e.g., requests for data access or erasure) to the enforcer.

We evaluate our architecture by implementing three web applications as case studies.
These are a microblogging app, a conference management system, and a health record
manager. Our evaluation shows that our architecture can enforce a relevant core fragment
of GDPR provisions while preserving the application’s functionality and introducing
only a modest performance and development overhead (Section 5).

In summary, we make the following contributions:
– We propose the first enforceable specification for core GDPR provisions in MFOTL.
– We develop an architecture for enforcing this specification in web applications and

show how to instrument relevant actions to obtain appropriate events.
– We evaluate a prototype implementation of our architecture on three case studies.

Our evaluation shows that our approach incurs only modest development and runtime
overhead, while covering the most relevant privacy-related aspects of the GDPR that
can be enforced at runtime.

Our analysis of related work (Section 6) shows that this is the first approach that
comprehensively enforces a core set of GDPR provisions. The companion repository [26]
contains all artifacts.

Enforcing the GDPR 3

2 Background

We first introduce Metric First-Order Temporal Logic (MFOTL) and runtime enforce-
ment. We then present the WebTTC environment that extracts the traces for enforcement.

2.1 Runtime enforcement with Metric First-Order Temporal Logic

Given a specification describing intended system execution, runtime enforcement [39]
is the process whereby the system execution is observed by a so-called enforcer that
detects attempted violations and reacts to prevent them. In this paper, we use MFOTL [8]
as the specification language and the EnfPoly tool [24] as the enforcer.

Let Σ = (D,E,a) be a first-order signature, containing an infinite set D of constant
symbols, a finite set of event names E, and an arity function a : E→ N. An event is a
pair e(d1, . . . ,da(e)) ∈ E×Da(e) of an event name e with arity a(e), and a(e) parameters.

Events represent system actions observable by the enforcer. Some observable events
can be suppressed or caused by the enforcer, while others can only be observed. Hence,
E can be partitioned into sets of suppressable (Sup), causable (Cau), and only-observable
(Obs) event names. Given a signature Σ, a trace is a sequence of pairs σ= ((τi,Di))i,
where the τi ∈N are nondecreasing timestamps and Di ∈DB is a finite set of events. The
empty trace is denoted by ε, the set of traces by T, and a (trace) property is any set P ⊆T.
For two traces σ,σ′ with σ finite, σ ·σ′ is their concatenation, and |σ′| is the length of σ′.

Let I be the set of (possibly infinite) intervals over N and let V be for a countable set
of variables. MFOTL formulae over a signature Σ are defined by the grammar

φ ::= r(t1, . . . , ta(r)) | ¬φ | φ∨φ | ∃x. φ | I φ |#I φ | φSI φ | φUI φ,

where x ∈ V, t1, . . . , ta(r) ∈ V∪D, r ∈ E, and I ∈ I. We further derive Boolean ⊤ :=
p∨¬p, ⊥ := ¬⊤, φ∧ψ := ¬(¬φ∨¬ψ), φ⇒ ψ := ¬φ∨ψ, and temporal operators
“once” (♦I φ :=⊤SI φ) and “always” (□I φ := ¬(⊤UI ¬φ)).We also define a shorthand
for the “inclusive since” operator as φ ŜI ψ := φSI (φ∧ψ). Temporal operators with no
interval explicitly given have the interval [0,∞) instead. Predicates are formulae of the
form r(t1, . . . , ta(r)). A formula that contains no future temporal operators is called a past-
only formula. We use fv(φ) for the set of φ’s free variables.

A valuation is any function v : V∪D→D such that v(d) = d for all d ∈D. We write
v[x 7→ d] for the function equal to v, except for v(x) = d. Given a trace σ= ((τi,Di))i,
a timepoint 1 ≤ i ≤ |σ|, a valuation v, and a formula φ, the satisfaction relation |= is
defined in Figure 1. We write v |=σ φ for v,1 |=σ φ and {σ | ∃v. v |=σ φ} for the trace
property Pφ defined by the formula φ. Without the loss of generality, we focus on closed
MFOTL formulae, which are formulae φ where fv(φ) = /0.

Trace properties may be defined in terms of infinite traces, whereas enforcers can
only observe a finite (prefix of a) trace. Intuitively, a trace must be checked ‘prefix-wise’,
i.e., by evaluating its prefixes in increasing order. A trace complies with a property iff an
enforcer for this property accepts all of its prefixes.

An enforceable property must contain the empty trace, i.e., the system must initially
comply with the property. Additionally, for any extension σ · (τ,D) of a (non-violating)
prefix σ, the enforcer must have enough information to decide on its compliance with
the property. In MFOTL, this means that the formula should not depend on future

4 François Hublet, David Basin, and Srd̄an Krstić

v, i |=σ r(t1, ..., tn) iff r(v(t1), ...,v(tn)) ∈ Di v, i |=σ ¬φ iff v, i ̸|=σ φ

v, i |=σ ∃x. φ iff v[x 7→ d], i |=σ φ for d ∈ D v, i |=σ φ∨ψ iff v, i |=σ φ or v, i |=σ ψ

v, i |=σ I φ iff i > 1 and v, i−1 |=σ φ and τi −τi−1 ∈ I | v, i |=ε φ

v, i |=σ #I φ iff i+1 ≤ |σ| and v, i+1 |=σ φ, and τi+1 −τi ∈ I
v, i |=σ φSI ψ iff v, j |=σ ψ for some j ≤ i, τi −τ j ∈ I, and v,k |=σ φ for all k, j < k ≤ i
v, i |=σ φUI ψ iff v, j |=σ ψ for some |σ| ≥ j ≥ i, τ j −τi ∈ I, and v,k |=σ φ for all k, j > k ≥ i

Fig. 1: MFOTL semantics

information in the trace, for example, it can be a past-only formula. Furthermore, there
must exist finite sets D− and D+ of suppressable and causable events respectively that
the enforcer can respectively suppress and cause to ensure satisfaction of the property
at the new time point, i.e., σ · (τ,D \ D− ∪D+) satisfies the property. In general, the
problem of checking whether an MFOTL formula defines an enforceable property is
undecidable [24]. Instead, we consider a syntactic fragment, called guarded MFOTL
(GMFOTL), where each formula is guaranteed to define an enforceable property:

ψ ::=⊥ | s(t1, . . . , tn) | ¬c(t1, . . . , tn) | ψ∧φ | ψ∨ψ | ∃x. ψ.

Here, s ∈ Sup,c ∈ Cau, and φ is any MFOTL formula. When Sup∩Cau= /0, GMFOTL
is expressively complete [24], i.e., any MFOTL formula that defines an enforceable
property can be rewritten to an equivalent GMFOTL formula. Formally:

Theorem 1. Assume that Sup∩Cau= /0. Given a past-only closed MFOTL formula φ,
property P□φ is enforceable iff there exists a GMFOTL formula ψ and □φ≡□¬ψ.

EnfPoly [24] is an implementation of an MFOTL enforcer. It takes as input an
GMFOTL formula and a trace, which it incrementally processes. At each processing
step it reports sets of events to be suppressed or caused such that the formula is satisfied.

2.2 The WebTTC execution environment

WebTTC is an execution environment for web applications that can enforce information-
flow policies specified as MFOTL formulae [25]. Such formulae are expressed over
information-flow traces whose events capture inputs, outputs, and the influence of inputs
on outputs. For example, the policy “Alice’s inputs shall never influence any output
performed to any user for marketing purposes” is formalized in WebTTC as

□ [∀o,ds. Out(ds,Marketing,o)⇒¬(∃i. Itf(i,o)∧ (♦In(Alice, i)))] .

Here, Out(u,Marketing,o) reads “the output with identifier o is performed to user ds
for marketing purposes”, In(Alice, i) reads “Alice inputs the input with identifier i”,
and Itf(i,o) states “the input with identifier i interferes with the output with identifier
o.” The Itf event captures a standard notion of (non-)interference between inputs and
outputs, from the information-flow control (IFC) literature [22].

To enforce such information-flow policies, WebTTC follows a dynamic approach
that uses a policy enforcement point (PEP) that supervises application execution together
with a policy decision point (PDP) implemented by EnfPoly (see Figure 2). Applications
written in a Python-like programming language with IFC semantics [25] are deployed by

Enforcing the GDPR 5

WebTTC

PEP

ApplicationsD
at

ab
as

e

Tr
ac

e

eventsPDP

Browser policy

Flows of personal data (associated with UTs)

remedial actions
events

data

Fig. 2: WebTTC architecture

developers inside WebTTC where they interact with a database. All inputs and outputs
are observable by the PDP, which can suppress outputs to ensure compliance with a user-
specified information-flow policy. User inputs to applications are processed in three steps:
TAINT: A new input from a user u goes through the PEP, which tags it with a fresh input

identifier, called a unique taint (UT), and sends an event In(u,ut) to the PDP, which
stores it in the trace. The input and its UT are forwarded to the application.

TRACK: The semantics of the programming language in which applications are written
propagates UTs during execution. At any time, each data item in memory or in the
database is tagged with the UTs of all inputs that interfered with its current value.

CONTROL: WebTTC requires that every application output be labeled with a purpose.
When an application attemps to perform an output to a user u for some purpose
p, the PEP generates a fresh output identifier o as well as events Out(u, p,o) and
Itf(ut,o) for each UT ut tagging the output value. It then sends these events to the
PDP, which can instruct the PEP to suppress the output if it would cause a policy
violation. If the output is not suppressed, the trace is updated.
To summarize, WebTTC uses the following first-order signature ΣTTC:

Event Description Type
In(u,ut) Data subject ds inputs a value with UT ut
Out(u, p,ut) Value with UT ut is output to data subject ds for purpose p S

Itf(ut,o) Input with UT ut interferes with output o
S = Suppressable; unmarked events are only-observable

We refer the reader to the paper presenting TTC [25] for additional details.

3 Formalizing GDPR provisions

We now review the core GDPR provisions (Section 3.1), present an appropriate first-
order signature (Section 3.2), and an MFOTL formula formalizing the core GDPR
provisions (Section 3.3). Finally, we show that the formula is enforceable (Section 3.4).

3.1 Core GDPR provisions

We focus on the provisions laid out in Chapters 2 and 3 of the GDPR, which define the
principles of data processing and the rights of the data subject:

– Purpose and consent-based usage [Art. 5(1)(b), 6(1), 7(1,3), 9(1,2)]. The process-

6 François Hublet, David Basin, and Srd̄an Krstić

ing of personal data is lawful only if the data subject has consented to processing
for one or more specific purposes, unless the data controller can claim a specific
legal ground. Data subjects can revoke consent at any time. Specific legal grounds
are applicable in the case of sensitive data (special data categories, Art. 9).

– Right to access and right to data portability [Art. 15(1), 20(1)]. Data subjects
have the right to access any personal data relating to them. They have the right to
obtain a copy of this data in a machine-readable format.

– Right to rectification [Art. 5(1)(d), Art. 16]. Data subjects have the right to rectify
any inaccurate personal data relating to them.

– Right to erasure (“right to be forgotten”) [Art. 17(1,2)]. Data subjects have the
right to obtain the erasure of any personal data relating to them. Other controllers
with whom the data has been shared shall be notified about the erasure.

– Right to restriction of processing [Art. 18(1)]. Data subjects have the right to
restrict the processing of any personal data relating to them.

– Right to object [Art. 21(1)]. Data subjects have the right to object to the processing
of data relating to them based on specific legal grounds.
For simplicity, we focus on the case where data subjects interact with applications,

each managed by a single data controller. We then formalize the above provisions for
each individual application, rather than for each data controller.

3.2 First-order signature for core GDPR concepts

We encode key GDPR concepts as a first-order signature representing observable sys-
tem actions. The signature (Table 1a) consists of two sets of events. The first set repre-
sents actions triggered by the data subjects (DS): consent (DSConsent) and revocation
(DSRevoke) thereof; requests for accessing (DSAccess), deleting (DSErase), rectify-
ing (DSRectify), or restricting the use of data (DSRestrict); repealing restrictions
(DSRepeal); and objections to processing (DSObject). Each event in this set has a name
prefixed with DS. The second set represents actions triggered by the application: col-
lection (Collect), usage (Use), and sharing of data (ShareWith); granting access to
(GrantAccess), erasure (Erase), and rectification of data (Rectify); notifications of
data deletion to third-party controllers (NotifyErase); and claims of legal grounds to
process data (LegalGround). All predicates refer to single data items by their unique
taints (UTs). The predicate Collect (resp. LegalGrounds) has a Boolean parameter sp
that is true if and only if the data collection (resp. the claim of legal grounds) involves
(resp. applies to) ‘special’ data. We call sp the special-data flag of the data or claim.

Data-subject-triggered actions are not controlled by the enforcer, and hence the cor-
responding events are only-observable. The collection of data, sharing, and claims for
legal grounds, which are not constrained by any core GDPR provision, are also only-
observable. In contrast, the usage of data (Use) is subject to restrictions and must there-
fore be suppressable (S). Finally, GrantAccess, Erase, Rectify and NotifyErase

events, which data subjects must be able to request, must be causable (C).

3.3 MFOTL formula formalizing core GDPR provisions

The core GDPR provisions are formalized by the formula given in Table 1b. The formula

Enforcing the GDPR 7

Table 1: MFOTL formalization of core GDPR provisions

(a) MFOTL signature

Predicate Description Type
The data subject ds:

DSConsent(ds, prp,ut) gives consent to use data with UT ut for purpose prp
DSRevoke(ds, prp,ut) revokes consent given to use data with UT ut for purpose prp
DSAccess(ds,ut) requests access to data with UT ut
DSErase(ds,ut) requests erasure of data with UT ut
DSRectify(ds,ut,val) requests rectification of data with UT ut to new value val
DSRestrict(ds,ut) requests restriction of data with UT ut
DSRepeal(ds,ut) repeals restriction of data usage for data with UT ut
DSObject(ds,ut) objects to usage of data with UT ut by application

The application:
Collect(ds,ut, sp) collects data with UT ut of data subject ds∗

Use(prp,ut) uses data with UT ut for purpose prp S

ShareWith(ctr,ut) shares data with UT ut with third-party controller ctr
GrantAccess(ds,ut) gives data subject access to data with UT ut C

Erase(ut) erases data with UT ut C

Rectify(ut,val) rectifies data with UT ut to new value val C

NotifyErase(ctr,ut) notifies controller ctr about erasure of data with UT ut C

LegalGround(grd,ut, sp) claims legal ground grd for using data with UT ut∗

C = Causable; S = Suppressable; unmarked events are only-observable
∗sp is a special-data Boolean flag that is true iff the data belongs to a special category

(b) MFOTL formula

Description Formula
Overall formula Φ= □¬

(
φPurp ∨φAcc ∨φRect ∨φEr ∨φRestr ∨φObj

)
Purpose-based usage φPurp = ∃prp,ut,ds, sp. Use(prp,ut)∧♦Collect(ds,ut, sp)

∧¬
((
¬DSRevoke(ds, prp,ut) ŜDSConsent(ds, prp,ut)

)
∨(∃grd. ♦LegalGround(grd,ut, sp)))

Right to access φAcc = ∃ds,ut, sp.
(
¬GrantAccess(ds,ut) ŜI DSAccess(ds,ut)

)
∧♦Collect(ds,ut, sp)∧¬GrantAccess(ds,ut)

or ∃ds,ut, sp. DSAccess(ds,ut)
∧♦Collect(ds,ut)∧¬GrantAccess(ds,ut)

Right to rectification φRect = ∃ds,ut,val, sp.
(
¬Rectify(ds,ut,val) ŜI DSRectify(ds,ut,val)

)
∧♦Collect(ds,ut, sp)∧¬Rectify(ds,ut,val)

or ∃ds,ut, sp. Rectify(ds,ut,val)
∧ ♦Collect(ds,ut, sp)∧¬Rectify(ds,ut,val)

Right to erasure (1) φEr1 = ∃ds,ut, sp.
(
¬Erase(ut) ŜI DSErase(ds,ut)

)
∧♦Collect(ds,ut, sp)∧¬Erase(ut)

or ∃ds,ut, sp. DSErase(ds,ut)
∧♦Collect(ds,ut, sp)∧¬Erase(ut)

Right to erasure (2) φEr2 = ∃ctr,ut. Erase(ut)
∧ ♦ShareWith(ctr,ut)∧ ¬NotifyErase(ctr,ut)

Right to restriction φRestr = ∃prp,ut,ds, sp. Use(prp,ut)∧♦Collect(ds,ut, sp)
∧
(
¬DSRepeal(ds,ut) ŜDSRestrict(ds,ut)

)
Right to object φObj = ∃prp,ut,ds, sp. Use(prp,ut)∧♦Collect(ds,ut, sp)

∧♦(DSObject(ds,ut)∧♦(∃grd. LegalGround(grd,ut, sp)))

I denotes any interval [i days,∞) with i ≤ 30.

Φ is a past-only MFOTL formula of the form □¬(φPurp ∨ ·· ·∨φObj). The disjunction
contains seven subformulae that describe the violations of the provisions in Section 3.1.

Provisions restricting data usage. The formulae φPurp,φRestr, and φObj respectively
capture violations of purpose-based usage, the right to restrict processing, and the right

8 François Hublet, David Basin, and Srd̄an Krstić

to object. Purpose-based usage is violated when each of the following hold:
1. The data with UT ut is used for purpose prp, which is exactly Use(prp,ut);
2. The data with UT ut was collected from data subject ds with the special-data flag

sp, which is ♦Collect(ds,ut, sp);
3. (a) Neither the data subject ds has given consent to process data with UT ut for

purpose prp and has not revoked that consent since then, which is exactly
¬DSRevoke(ds, prp,ut) ŜDSConsent(ds, prp,ut),

(b) nor has the application claimed a legal ground grd to use data with UT ut with
the special-data flag sp, i.e., ∃grd. ♦LegalGround(grd,ut, sp).

The corresponding formula φPurp is shown in Table 1b. The formula φRestr is similar, but
does not allow claims of legal grounds. The formula φObj formalizes the right to object.
This right is violated when all of the following hold:
1. The data with UT ut is used for purpose prp;
2. The data with UT ut was collected from data subject ds;
3. At some time in the past:

(a) the application has claimed legal ground grd to use data with UT ut,
(b) and meanwhile, the data subject ds has objected to the use of data with UT ut.

We formalize 3. as ♦(DSObject(ds,ut)∧♦(∃grd, sp. LegalGround(grd,ut, sp))).

Provisions regulating data-subject requests. The formulae φAcc, φRect φEr1, and φEr2 re-
spectively capture the rights to access, rectification, and (two types of) erasure. Formulae
φAcc, φRect, and φEr1 share a similar structure, which requires that the application per-
forms some action in a timely manner when the data subject requests it (a so-called re-
sponse pattern [17]). We describe erasure in detail, with the other cases being analogous.

According to Art. 12(3) GDPR, erasure must be performed “without undue delay
and in any event within one month of receipt of the request.” To ensure compliance with
such a provision, it suffices that an appropriate Erase event is always caused within 30
days after each DSErase event. In particular, both the ‘zealous’ approach that causes
Erase immediately after DSErase and the ‘lazy’ approach that causes it i ≤ 30 days
after DSErase are acceptable. These approaches translate into the GMFOTL formulae

φEr1,zealous =□¬(∃ds,ut. ¬Erase(ut)∧DSErase(ds,ut))

φEr1,lazy,i =□¬
(
∃ds,ut. ¬Erase(ut) Ŝ[i,∞) DSErase(ds,ut)

)
∀i ≤ 30.

The phrase “without undue delay” used in Article 12(3) suggests that the ‘zealous’
variant may be closest to the spirit of the law. However, since this aspect remains open to
interpretation, we report both in Table 1b. We obtain similar variants for φRect and φAcc.

According to Art. 17(2), erasure of any data item should be accompanied by noti-
fying all controllers with whom this data item was shared. This is formalized by the
formula φEr2 in Table 1b. It is violated when some data with UT ut has been shared
with a controller at some point in the past (♦ShareWith(pro,ut)), this data is erased
(Erase(ut)), and no notification has been issued (¬NotifyErase(pro,ut)).

3.4 Enforceability

To use EnfPoly, we must show that formula Φ defines an enforceable property PΦ.

Enforcing the GDPR 9

Lemma 1. The formula Ψ = φPurp ∨φAcc ∨φRect ∨φEr ∨φRestr ∨φObj is in GMFOTL.

Proof. Each disjunct is a GMFOTL formula. The subformulae φPurp, φRestr, and φObj are
all of the form ∃x1 . . . xk. Uses(. . .)∧ψ with ψ past-only, which is a GMFOTL formula
since Uses is suppressable. The subformulae φAcc, φRect, φEr1, and φEr2 are all of the
form ∃x1 . . . xk. ¬X(. . .)∧ψ or ∃x1 . . . xk. ψ∧¬X(. . .) where ψ is past-only and X is a
causable event (GrantAccess, Rectify, Erase, or NotifyErase), and is therefore
also a GMFOTL formula. Hence, formula Ψ is a disjunction of GMFOTL formulae, and
itself a GMFOTL formula.

Since Φ=□¬Ψ a closed past-only formula, we use Theorem 1 to obtain as a corrollary:

Lemma 2. PΦ is enforceable.

Since Φ is also monitorable [8], we can use EnfPoly to enforce it. EnfPoly’s algorithm
guarantees compliance with the negated disjunction by preventing the violation of each of
its disjuncts. The violations of φPurp, φRestr, and φObj will be prevented by suppressing the
involved Use event (i.e., preventing data usage), while violations of φAcc, φRect, φEr1, and
φEr2 will be prevented by causing GrantAccess, Rectify, Erase, and NotifyErase.

4 Enforcement architecture

Figure 3 depicts our enforcement architecture. Data subjects interact with applications
through their web browser, equipped with a browser extension. The extension helps data
subjects view purposes and set their consent preferences, and sends the corresponding
consent events to the PDP. It also allows data subjects to declare some inputs as contain-
ing special data or personal data of another data subject. Additionally, data subjects can
access the platform’s privacy dashboard to see how their data has been used.

A controller deploys their applications in the WebTTC+ execution environment,
which extends WebTTC with support for deletion, rectification, data subject access, and
notification of other controllers. As in WebTTC, applications’ inputs and outputs are
controlled by a PEP, which reports critical operations to the PDP and can suppress or
cause actions at the PDP’s request. However, unlike in WebTTC, the PDP is no longer
located inside of WebTTC+, but deployed on a privacy platform.

The privacy platform consists of three main components: a PDP (as in WebTTC)
instantiated with the policy formalized by the MFOTL formulaΦ (Section 3.3); a trace (as
in WebTTC) storing events of the current compliant application execution; and a privacy
dashboard [9,35,36] used by data subjects to query and review events related to their data,
and exercise their privacy-related rights. The dashboard can read past events from the
trace and emit new ones (the DS-prefixed events in Table 1a) on behalf of data subjects.

We now explain how the actions corresponding to the events introduced in Section 3.2
are instrumented. We first consider purpose-based usage, the right to restriction, and the
right to object, which are enforced through the suppression of Use (Section 4.1). Next,
we discuss erasure and rectification, whose enforcement requires causation (Section 4.2).
Finally, we consider the right to access personal data (Section 4.3).

4.1 Instrumenting purpose and consent-based usage, restriction, and objection

Data collection and consent are captured by the events Collect andDSConsent, which

10 François Hublet, David Basin, and Srd̄an Krstić

WebTTC+

D
at

ab
as

e PEP

Applications

Privacy platform
Φpolicy

PDP

Tr
ac

e

Privacy

dashboard

Browser
Extension

remedial actions
events events

events

queries

data
events

Flows of personal data (associated with UTs)
New or modified components

Fig. 3: GDPR enforcement architecture

are only-observable. The browser extension plays a key role in the data and consent
collection process. Recall that it allows data subjects to set their privacy preferences (i.e.,
which of their data can be processed for which purposes), to declare if some data belongs
to a special category, and to declare whose personal data they input. An example of the
latter is when a physician enters patient data into a software system; the physician would
use the extension to declare the patient’s identity. Formally, the extension keeps three
maps Mpurposes, Mowners, and Mspecial each associating pairs (url,arg) of an URL and
argument name to, respectively, a set of purposes, a set of data subjects, and a special-
data flag. Any value sent as argument arg to the URL url is considered to belong to
Mowners[(url,arg)] data subjects, to contain special data if Mspecial[(url,arg)], and it can
be used for Mpurposes[(url,arg)] purposes.

Data collection consists of three steps. First, a data subject attempts to make a request
to an application’s URL; the extension retrieves the data subject’s preferences and
immediately logs the relevant consent events to the PDP. Then, the extension modifies
the request to add fresh UTs for each input. Finally, the application receives the request
and logs Collect events for each input. More formally:
1. The data subject ds queries the URL url deployed on a WebTTC+ server with argu-

ments ai and values vi, for 1 ≤ i ≤ k. The extension intercepts the request and asso-
ciates fresh UTs (uti)1≤i≤k to the new inputs. It then sends DSConsent(ds, prp,uti)
to the PDP for all 1 ≤ i ≤ k and prp ∈ Mpurposes[(url,ai)].

2. The extension sends to the application the original request together with the UTs uti,
the owners Mowners[(url,ai)], and the special-data flags Mspecial[(url,ai)].

3. Finally, after it receives the new inputs and their UTs, WebTTC+ logs an event
Collect(ds′,app,uti, spi) for each 1 ≤ i ≤ k, ds′ ∈ Mowners[(url,ai)], and spi =
Mspecial[(url,ai)], and waits for the PDP to acknowledge the logging of all events.
Only then can the collected data be processed.

Data usage is captured by the predicate Use. Purpose-based usage, the right to restriction,
and the right to object are all enforced through the suppression of Use events.

WebTTC+ emits Use(prp,ut) whenever WebTTC would emit both Out(ds, prp,o)
and Itf(ut,o). Thus, Use(prp,ut) holds whenever the application performs an output for
the purpose prp whose value is influenced by input ut. Any Use event can be suppressed
by suppressing the corresponding output. Being based on non-interference, our definition

Enforcing the GDPR 11

captures not only the usage of the original data-subjects inputs, but also the usage of
any data derived from data-subject inputs. Extending the notion of personal data to data
derived from user inputs is in line with the GDPR. Namely, the GDPR defines personal
data as “any information relating to an identified or identifiable natural person” [Art.
4(1)], a definition that generally encompasses both raw and derived data.

At first glance, controlling data usage only at outputs may appear to depart from
the GDPR’s definition of processing as “any operation or set of operations which is
performed on personal data or on sets of personal data” [Art. 4(2)]. However, we claim
that this approach does not restrict the violations that we can prevent. First, the notion
of purpose is best understood as an attribute of business processes [7] that rely on
interactions between computer systems and human agents. Such interactions necessarily
involve outputs. Moreover, according to the GDPR, data must be “limited to what is
necessary in relation to the purposes for which they are processed” (‘data minimization’,
Art. 5(1)(c)). The principle of data minimization is inherently unmonitorable [2], and is
therefore not amenable to runtime enforcement. Now, data which has no influence on
outputs can hardly be considered ‘necessary’ in relation to the purposes of the business
process, since interaction with humans is what business processes are designed for.
Hence, any violation of purpose-based usage that cannot be captured by observing
outputs is also a violation of data minimization, and can therefore not be prevented using
runtime enforcement.

Legal grounds can be claimed by WebTTC+ applications by using a special instruction
claim_legal_ground(grd, sp, x). This claims a legal ground grd to use the data con-
tained in some term x with special-data flag sp. When this instruction is executed by an
application app, WebTTC+ logs a LegalGround(grd,ut, sp) event for each UT ut asso-
ciated with the value that term x is evaluates to. Note that it is not the system’s respons-
ability to ensure that these legal claims are valid as such a check cannot be automated.
The system only logs the events, which can be objected to later on.

Data-subject requests can be sent by data subjects for each of their inputs collected by
the applications by interacting with the privacy dashboard. Recall that these requests are
captured by DSRevoke, DSRestrict, DSRepeal, and DSObject events that are sent to
the PDP by the privacy dashboard. Note that in addition to using the extension, users can
also provide consent manually (i.e., emit DSConsent events) through the dashboard.

4.2 Erasure and rectification

Erasure and rectification can be requested by users through the privacy dashboard, which
emits DSErase and DSRectify events on their behalf.

WebTTC+ extends WebTTC’s with two functions erase(ut) and rectify(ut,v)
that can be caused by the PDP to handle the erasure (resp. the rectification) of data stored
in the database. Additionally, WebTTC+ allows applications to declare handler functions
that can be used to restore a consistent application state when data is erased. Assuming a
relational database, the algorithm implemented by erasure(ut) proceeds as follows:
1. Identify all tables, rows, and fields tagged with ut;
2. Perform erasure by deleting the identified table content or rows or setting the

identified fields to a default value;

12 François Hublet, David Basin, and Srd̄an Krstić

3. For each erased table, row, or field, call the handling function, if it exists;
4. Emit Erase(ut).

The case of rectification is slightly more complex. Namely, rectification should
behave differently for raw data and derived data. For raw data, the old input value can be
immediately replaced with the new input value. Derived data can only be set to a default,
after which the application can provide a way for it to be re-computed using the new
input value. The algorithm for rectify(ut,v) is as follows:
1. Identify all tables, rows, and fields tagged with ut;
2. Erase the content of any identified tables or rows;
3. For any identified field, if it contains raw data, replace its value by v,

otherwise, set it to a default value;
4. For each identified table, row, or field, call the handling function, if it exists;
5. Emit Rectify(ut,v).

Integrity tags To distinguish raw data from derived data, we extend TTC’s memory
model with integrity tags. Instead of pairs ⟨v,α⟩ of a value v and a set of UTs α, our
memory model now relies on triples ⟨v,α,β⟩, where β is either the constant Derived
or an object Raw(ut), where ut is a UT. Whenever a data item in memory is equal to
⟨v,α,Raw(ut)⟩, its value v must be equal to the original value of the input with UT ut.
When it is equal to ⟨v,α,Derived⟩, its value may not be equal to the value of any input.

After erasure, the formula φEr2 triggers notification of all controllers with whom the
erased data has been previously shared. WebTTC+ triggers a ShareWith(pro,ut) event
on each output influenced by ut whose recipient is a third-party controller, rather than a
data subject. The causable event NotifyErase is instrumented by exposing a function
notify(ut,ctr) that can be triggered by the PDP. This function notifies the third-party
controller ctr about the erasure of ut.

4.3 Access to data

Data subjects request access to data through the privacy dashboard, which emits DSAccess
events. On receiving a DSAccess event, the PDP instructs the PEP to cause a corre-
sponding GrantAccess event. The PEP then calls a function access(ds,ut) exposed
by WebTTC+, which has the following behavior:
1. Identify all tables, rows, and fields tagged with ut;
2. Copy the content of all identified tables, rows, and fields into a specific access table.
3. Provide the data subject with a link to an interface that supports browsing, and

downloading, a machine-readable dump of the data (for data portability).
4. Emit GrantAccess(ds,ut).
5. In the interface, use the standard WebTTC+ mechanism to show ds only the data

that can be shown without violating other data subjects’ consent.
The last step resolves the tension that arises between the right to access and other

rights when data aggregates different users’ inputs. When a data item d has been produced
by combining inputs from two users A and B, granting A access to d might violate
purpose-based usage from B’s point of view, hamper B’s capacity to erase or rectify d,
and interfere with B’s right to restrict the processing of d (see [29] for a discussion of
the GDPR’s ambiguity in matters of shared data ownership). We take a conservative

Enforcing the GDPR 13

Application WebTTC+ Python/Flask
Functionality Privacy Template Functionality Template

Minitwit+ 140 16 100 121 119
Conf 312 47 502 284 508
HIPAA 142 25 852 136 846

Table 2: Lines of code of the WebTTC+ and the baseline implementations

approach that prioritizes consent-based usage over access, subjecting the extracted data
to the same enforcement procedures as any data stored by applications.

5 Evaluation

We now evaluate a prototype implementation of our enforcement architecture with
regard to its development and runtime overhead and its coverage of GDPR provisions.
Our prototype includes the WebTTC+ environment, the privacy platform, and a Firefox
extension. Overall it has 5.5k lines of code (LoC) in Python with 2.7k LoC reused from
the WebTTC environment from previous work [25]. The WebTTC+ environment and
the privacy dashboard use the Flask web framework and SQLite databases. The PDP
is based on EnfPoly [24], with additional Python code ensuring synchronization with
a QuestDB time-series database storing the log. Appendix B shows screen captures
of the privacy dashboard, the browser extension, and one of the deployed case study
applications. Our evaluation aims to answer the following research questions:
RQ1: Can realistic web applications be developed in WebTTC+? If yes, how do the

additional privacy requirements impact the size of their code base?
RQ2: How much runtime overhead does WebTTC+ incur compared to a baseline appli-

cation without support for automated privacy enforcement?
RQ3: What share of the GDPR’s provisions does our implementation effectively en-

force? What aspects are not covered?
To answer the above questions, we port the following applications to our architecture:

– Minitwit+, a clone of the microblogging Minitwit application [46];
– Conf, a conference management system [49]; and
– HIPAA, a health record management system [49].

These applications have been previously used to evaluate the performance of various IFC
frameworks [25, 30, 34, 46, 49]. Here, we use the variants of these applications presented
in Hublet et al. [25], where every output is labeled with a GDPR-style purpose from
{Service,Analytics,Marketing}, and we compare our WebTTC+ implementation
to a baseline implementation in Python using only Flask with the same database backend.

RQ1: Development effort. We have implemented all three applications in our framework,
preserving their original functionality. Most of the code from the baseline implementation
has been reused with only minor changes. This makes porting Flask applications to
WebTTC+ straightforward. Privacy-specific code (e.g., the handling functions) accounts
for less than 10% of all application code in the WebTTC+ implementations. We show
examples of this privacy-specific code in Minitwit+ in Appendix A. Table 2 shows the
number of LoC for each case study application.

14 François Hublet, David Basin, and Srd̄an Krstić

RQ2: Performance overhead. We compare the runtime performance of WebTTC+ imple-
mentations with a Python/Flask implementation. Since the Python/Flask baseline does
not enforce privacy, this yields an upper bound on the overhead of GDPR enforcement for
web apps. We measure the latency of executing the following representative workloads:

– In Minitwit+, we show 30 messages in its TIMELINE and post a NEW MESSAGE;
– In Conf, we show ALL PAPERS and ONE PAPER, and SUBMIT a paper;
– In HIPAA, we show ONE PATIENT and ALL PATIENTS.

The ALL PAPERS and ALL PATIENTS workloads constitute stress tests [49] used to
measure the runtime behavior of applications in the presence of large outputs. In real
production scenarios, showing all entities stored in a system is generally avoided and
pagination is used to improve runtime performance.

For each workload, we measure the time spent on (1) registering CONSENT at the
PDP, (2) waiting for the PDP’s VERDICTs, and (3) COMPUTATION within WebTTC+. Ad-
ditionally, for each application, we measure the latency of revoking consent (REVOKE),
erasing an input (ERASE) or rectifying it (RECTIFY), and opening the privacy DASH-
BOARD. We perform the measurements on a high-end laptop (Intel Core i5-1135G7, 32
GB RAM) over N = 100 repetitions, while varying the number u of users and the num-
ber n of entities (messages for Minitwit+, papers for Conf, and patients for HIPAA) in
the database. The results are shown in Figure 4.

For all workloads displaying a constant number of entities (i.e., TIMELINE, NEW
MESSAGE, ONE PAPER, SUBMIT, ONE PATIENT, REVOKE, ERASE, and RECTIFY), our
architecture incurs an overhead of at most one order of magnitude with respect to the
Flask/Python baseline. The part of the execution occurring within the WebTTC+ en-
vironment (i.e., the COMPUTATION part) adds at most 10 ms of extra latency with re-
spect to the baseline. The PDP is the main performance bottleneck: WebTTC+ spends
70%–90% of its running time waiting for PDP verdicts. The PDP’s latency grows loga-
rithmically. The total latency however remains below 75 ms, allowing for the seemless
usage of the applications. For the stress-test workloads displaying a number of entities
linear in n (ALL PAPERS and ALL PATIENTS), runtime performance remains within one
order of magnitude of the Flask/Python, with logarithmic growth. Comparable runtime
performance was measured in previous studies that used the same applications [25, 49].

RQ3: GDPR coverage. Beyond articles 5(1)(b,d), 6(1), 7(1,3), 9(1,2), 13(1), 15(1), 20(1),
16, 17(1,2), 18(1), and 21(1), our implementation provides at least a technical starting
point for enforcing the following provisions:

– Lawfulness [Art. 5(1)(a)];
– Transparency [Art 12(1,3)]. Any information requested by data subjects shall be

provided in transparent form, without undue delay and within at most one month;
– Right to information [Art. 13(1), 15(1)]. Data subjects have a right to be informed

when their personal data is collected and processed;
– Privacy by design [Art. 25(1)]. Appropriate technical measures shall be imple-

mented to provide privacy by design;
– Record of processing activities [Art. 30(1)]. Data controllers shall keep a record of

all processing activities conducted under their responsability.
Together, articles 5(1)(a,b,d), 6-7, 9, 12-13, 15-18, 21, 25, and 30 appear in 66% of the
violations reported on www.enforcementtracker.com as of May 2023. While this

Enforcing the GDPR 15

Scalability with respect to #users (u) Scalability with respect to #entities (n)

x-axis: u (logarithmic) x-axis: n (logarithmic)

n = C ·u; C = 4 in ALL PAPERS/ONE PAPER; else C = 256 fixed u = 256

CONSENT

VERDICT

COMPUTATION

Python/Flask

TIMELINE NEW MESSAGE TIMELINE NEW MESSAGE

ALL PAPERS ONE PAPER SUBMIT ONE PATIENT ALL PATIENTS

ONE PATIENT ALL PATIENTS REVOKE∗ REVOKE∗ ERASE∗

ERASE∗ RECTIFY∗ DASHBOARD∗ RECTIFY∗ DASHBOARD∗

∗Figures computed with the system loaded with Minitwit+ data

Fig. 4: Latency of workloads (y-axis: seconds per request, avg. over N = 100 requests)

figure only provides a rough estimate of the (maximal) coverage that can be expected
from our approach, it also clearly underlines the potential of runtime enforcement
techniques. The following provisions not covered by our approach are cited in at least 5%
of the cases each: Art. 32 (security of processing, 22%); Art. 5(1)(c) (data minimization,
10%), and Art. 5(1)(f) (storage limitation, 9%). Security is a concern orthogonal to ours,
whereas data minimization and storage limitation are generally unmonitorable [2].

6 Related work

GDPR formalization. Our formalization of a core of GDPR is closest to Arfelt et al.’s
work on monitoring the GDPR [2]. It extends their formalization by introducing UTs as
input identifiers and covering special data categories and the right to erasure. Additionally,
it fixes two inaccuracies. First, Arfelt et al.’s specification lacked ♦Collect(ds,ut, sp)
conjuncts, allowing consent given by any user to justify data usage. Second, the third
condition of the right to object (“there has been an objection since legal grounds have
been claimed”) was specified as ∃ . . .¬(¬DSObject(. . .)SLegalGround(. . .)), allowing
an application to reclaim the same legal grounds to override any objection.

Robaldo et al. have formalized a large part of the GDPR using reified Input/Output
logic [37, 38], and have validated their formalization with legal experts [6]. Their work
focuses on accurately encoding the law, but it does support enforcement. Smaller frag-
ments of the GDPR have been represented in other formalisms providing some support
for automated reasoning, such as deontic logic [1, 31], LegalRuleML [33], OCL [44],
OWL2 [11], and Prolog [16]. In a different line of research, several policy languages
were designed explicitly with GDPR provisions in mind [3, 20, 41, 47, 48].

16 François Hublet, David Basin, and Srd̄an Krstić

C
on

se
nt

Pu
rp

os
e

L
eg

al
gr

ou
nd

s
Sp

ec
ia

ld
at

a

Right to...

D
er

iv
ed

da
ta

Im
pl

em
en

ta
tio

n

ac
ce

ss
re

ct
ifi

ca
tio

n
er

as
ur

e
re

st
ri

ct
io

n
ob

je
ct

L
an

gu
ag

e-
ba

se
d This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ferrara & Spoto [18] ✓ ✓ ✓
Ferreira et al. [19] ✓ ✓ ✓ ✓
Hublet et al. [25] ✓ ✓ ✓ ✓
Karami et al. [28] ✓ ✓ ✓
Tokas et al. [43] ✓ ✓ ✓ ✓
Wang et al. [47, 48] ✓ ✓ ✓ ✓

C
on

se
nt

Pu
rp

os
e

L
eg

al
gr

ou
nd

s
Sp

ec
ia

ld
at

a

Right to...

D
er

iv
ed

da
ta

Im
pl

em
en

ta
tio

n

ac
ce

ss
re

ct
ifi

ca
tio

n
er

as
ur

e
re

st
ri

ct
io

n
ob

je
ct

D
at

a-
st

or
e-

ba
se

d Barati et al. [4] * ✓ ✓
Chhetri et al. [12] * ✓
Dauden et al. [14] * ✓ * * * * * ✓
Davari & Bertino [15] * ✓
Gjermundrød et al. [21] * ✓ * ✓
Schwarzkopf et al. [40] ✓ ✓ ✓ ✓ ✓ ✓
Truong et al. [45] * * * * * ✓

* Provision is covered, but data leaving the data store is not protected.

Fig. 5: GDPR compliance by design: coverage of the provisions in Section 3.1

GDPR compliance by design. Many approaches enforce a specific GDPR provision
in software systems. To the best of our knowledge, none of these works relies on an
explicit logical formalization of the GDPR. Figure 5 shows existing approaches based on
their GDPR coverage: consent-based usage, purpose-based usage, legal grounds, special
data categories; coverage of the rights to access, rectification, erasure, restriction, and
objection; protection of derived data; and availability of an implementation.

Existing work can be classified into two categories: language-based approaches [42],
which include TTC [25], and data-store-based approaches [27]. In language-based
approaches, a programming language is instrumented to ensure privacy compliance
either statically [18,19,43,46,47] or at runtime [19,25,28]. Language-based approaches
typically can protect derived data. However, they have not been widely applied so far
beyond consent-based usage. In data-store-based approaches, personal data is stored in
protected database containers (data stores) that can be queried by controllers through an
API. Access-control mechanisms ensure data is only accessed with user consent. Within
data stores, most GDPR rights can be exercised seemlessly [14, 45]. Data processing,
however, happens mainly outside of the data stores; as a result, data that leaves the
database – and in particular, derived data – is no longer protected. The only work
discussing the protection of derived data with such an approach [40] provides just a high-
level roadmap without a concrete implementation.

7 Conclusion

We have presented the first enforceable specification of core GDPR provisions that
comes together with an enforcement architecture for web applications. To the best of our
knowledge, this work is the first to enforce a core set of GDPR provisions and protect
derived data by tracking information flows.

We envision three main directions for future work. First, our coverage of legal provi-
sions can be extended beyond the current fragment by relying on a more comprehensive
but still enforceable formalization of the GDPR, which we plan to develop. Second, we
will further investigate the performance of our enforcement mechanism under very large
data volumes and number of users and study optimizations that may ease its deployment
in real-world settings. Finally, we plan to extend our architecture by incorporating com-
plementary techniques that allow for the coverage of those aspects of the GDPR (e.g.,
data and storage minimization) not readily amenable to monitoring techniques.

Enforcing the GDPR 17

Acknowledgments Arduin Brandts contributed to a preliminary version of the enforce-
ment signature presented in Section 3.2. Jonas Degelo contributed to the development of
the PDP prototype. Ahmed Bouhoula provided feedback on a earlier draft of the paper.
François Hublet is supported by the Swiss National Science Foundation grant “Model-
driven Security & Privacy” (204796).

References

1. Amantea, I.A., Robaldo, L., Sulis, E., Boella, G., Governatori, G.: Semi-automated checking
for regulatory compliance in e-health. In: EDOCW 2021. pp. 318–325. IEEE (2021)

2. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: Sako, K., Schneider, S., Ryan,
P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 681–699. Springer (2019)

3. Baramashetru, C.P., Tapia Tarifa, S.L., Owe, O., Gruschka, N.: A policy language to capture
compliance of data protection requirements. In: IFM 2022. pp. 289–309. Springer (2022)

4. Barati, M., Rana, O., Petri, I., Theodorakopoulos, G.: GDPR compliance verification in
Internet of Things. IEEE Access 8 (2020)

5. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification.
Lectures on Runtime Verification: Introductory and Advanced Topics pp. 1–33 (2018)

6. Bartolini, C., Lenzini, G., Santos, C.: A legal validation of a formal representation of GDPR
articles. In: JURIX 2018 (2018)

7. Basin, D., Debois, S., Hildebrandt, T.: On purpose and by necessity: compliance under the
GDPR. In: FC 2018. pp. 20–37. Springer (2018)

8. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order temporal
properties. JACM 62(2), 1–45 (2015)

9. Bier, C., Kühne, K., Beyerer, J.: PrivacyInsight: the next generation privacy dashboard. In:
APF 2016. pp. 135–152. Springer (2016)

10. Bollinger, D., Kubicek, K., Cotrini, C., Basin, D.: Automating Cookie Consent and GDPR
Violation Detection. In: USENIX Security 2022. pp. 2893–2910 (2022)

11. Bonatti, P.A., Ioffredo, L., Petrova, I.M., Sauro, L., Siahaan, I.R.: Real-time reasoning in
OWL2 for GDPR compliance. Artificial Intelligence 289 (2020)

12. Chhetri, T.R., Kurteva, A., DeLong, R.J., Hilscher, R., Korte, K., Fensel, A.: Data Protection by
Design Tool for Automated GDPR Compliance Verification Based on Semantically Modeled
Informed Consent. Sensors 22(7), 2763 (2022)

13. Chomicki, J., Niwinski, D.: On the feasibility of checking temporal integrity constraints.
Journal of Computer and System Sciences 51(3), 523–535 (1995)

14. Daudén-Esmel, C., Castellà-Roca, J., Viejo, A., Domingo-Ferrer, J.: Lightweight blockchain-
based platform for GDPR-compliant personal data management. In: CSP 2021. pp. 68–73
(2021)

15. Davari, M., Bertino, E.: Access control model extensions to support data privacy protection
based on GDPR. In: BigData 2019. pp. 4017–4024. IEEE (2019)

16. De Montety, C., Antignac, T., Slim, C.: GDPR modelling for log-based compliance checking.
In: IFIPTM 2019. pp. 1–18. Springer (2019)

17. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state
verification. In: Second workshop on Formal methods in software practice. pp. 7–15 (1998)

18. Ferrara, P., Spoto, F.: Static Analysis for GDPR Compliance. In: ITASEC (2018)
19. Ferreira, M., Brito, T., Santos, J.F., Santos, N.: RuleKeeper: GDPR-Aware Personal Data

Compliance for Web Frameworks. In: S&P 2023. pp. 1014–1031. IEEE (2022)
20. Gerl, A., Bennani, N., Kosch, H., Brunie, L.: LPL, towards a GDPR-compliant privacy

language: formal definition and usage. Transactions on Large-Scale Data-and Knowledge-
Centered Systems XXXVII pp. 41–80 (2018)

18 François Hublet, David Basin, and Srd̄an Krstić

21. Gjermundrød, H., Dionysiou, I., Costa, K.: privacyTracker: a privacy-by-design GDPR-
compliant framework with verifiable data traceability controls. In: ICWE 2016 International
Workshops. pp. 3–15. Springer (2016)

22. Goguen, J.A., Meseguer, J.: Security policies and security models. In: S&P 1982. pp. 11–20.
IEEE (1982)

23. Havelund, K., Rosu, G. (eds.): Runtime Verification, ENTCS, vol. 55. Elsevier (2001)
24. Hublet, F., Basin, D., Krstić, S.: Real-time policy enforcement with metric first-order temporal

logic. In: ESORICS 2022. vol. II, pp. 211–232. Springer (2022)
25. Hublet, F., Basin, D., Krstić, S.: User-controlled Privacy: Taint, Track, and Control. In:

Proceedings of Privacy Enforcing Technologies (PoPETS) (2024), accepted, to appear
26. Hublet, F., Basin, D., Krstić, S.: Companion repository for “Enforcing the GDPR“ (2023),

https://gitlab.ethz.ch/fhublet/enforcing-the-gdpr
27. Janssen, H., Cobbe, J., Norval, C., Singh, J.: Decentralized data processing: personal data

stores and the GDPR. International Data Privacy Law 10(4), 356–384 (2020)
28. Karami, F., Basin, D., Johnsen, E.B.: DPL: A Language for GDPR Enforcement. In: CSF

2022. pp. 112–129. IEEE (2022)
29. Kutyłowski, M., Lauks-Dutka, A., Yung, M.: GDPR–challenges for reconciling legal rules

with technical reality. In: ESORICS 2020. vol. I, pp. 736–755. Springer (2020)
30. Lehmann, N., Kunkel, R., Brown, J., Yang, J., Vazou, N., Polikarpova, N., Stefan, D., Jhala, R.:

STORM: Refinement Types for Secure Web Applications. In: OSDI 2021. pp. 441–459 (2021)
31. Libal, T.: Towards automated GDPR compliance checking. In: TAILOR 2020. pp. 3–19.

Springer (2021)
32. Nguyen, T.T., Backes, M., Marnau, N., Stock, B.: Share First, Ask Later (or Never?)-Studying

Violations of GDPR’s Explicit Consent in Android Apps. In: USENIX Security (2021)
33. Palmirani, M., Governatori, G.: Modelling legal knowledge for GDPR Compliance Checking.

In: JURIX 2018 (2018)
34. Polikarpova, N., Stefan, D., Yang, J., Itzhaky, S., Hance, T., Solar-Lezama, A.: Liquid infor-

mation flow control. PACMPL 4(ICFP), 1–30 (2020)
35. Puhlmann, N., Wiesmaier, A., Heinemann, A.: Privacy Dashboards for Citizens and GDPR

Services for Small Data Holders: A Literature Review. arXiv:2302.00325 (2023)
36. Raschke, P., Küpper, A., Drozd, O., Kirrane, S.: Designing a GDPR-compliant and usable

privacy dashboard. IFIP 2017 pp. 221–236 (2018)
37. Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini, G.: Formalizing

GDPR provisions in reified I/O logic: the DAPRECO knowledge base. JLLI 29, 401–449
(2020)

38. Robaldo, L., Sun, X.: Reified input/output logic: Combining input/output logic and reification
to represent norms coming from existing legislation. Journal of Logic and Computation 27(8),
2471–2503 (2017)

39. Schneider, F.B.: Enforceable security policies. TISSEC 3(1), 30–50 (2000)
40. Schwarzkopf, M., Kohler, E., Frans Kaashoek, M., Morris, R.: Position: GDPR compliance

by construction. In: VLDB 2019 Workshops. pp. 39–53. Springer (2019)
41. Tokas, S., Owe, O.: A formal framework for consent management. In: FORTE 2020. pp. 169–

186. Springer (2020)
42. Tokas, S., Owe, O., Ramezanifarkhani, T.: Language-based mechanisms for privacy-by-design.

Privacy and Identity Management. Data for Better Living pp. 142–158 (2020)
43. Tokas, S., Owe, O., Ramezanifarkhani, T.: Static checking of GDPR-related privacy compli-

ance for object-oriented distributed systems. JLAMP 125, 100733 (2022)
44. Torre, D., Soltana, G., Sabetzadeh, M., Briand, L.C., Auffinger, Y., Goes, P.: Using models to

enable compliance checking against the GDPR: an experience report. In: MODELS 2019. pp.
1–11. IEEE (2019)

Enforcing the GDPR 19

45. Truong, N.B., Sun, K., Lee, G.M., Guo, Y.: GDPR-compliant personal data management: A
blockchain-based solution. TIFS 15, 1746–1761 (2019)

46. Wang, F., Ko, R., Mickens, J.: Riverbed: Enforcing user-defined privacy constraints in dis-
tributed web services. In: NSDI 2019. pp. 615–630 (2019)

47. Wang, L., Khan, U., Near, J., Pang, Q., Subramanian, J., Somani, N., Gao, P., Low, A., Song,
D.: PrivGuard. Privacy Regulation Compliance Made Easier. In: USENIX Security 2022. pp.
3753–3770 (2022)

48. Wang, L., Near, J.P., Somani, N., Gao, P., Low, A., Dao, D., Song, D.: Data capsule: A new
paradigm for automatic compliance with data privacy regulations. In: VLDB 2019 Workshops.
pp. 3–23. Springer (2019)

49. Yang, J., Hance, T., Austin, T.H., Solar-Lezama, A., Flanagan, C., Chong, S.: Precise, dynamic
information flow for database-backed applications. In: Krintz, C., Berger, E. (eds.) PLDI 2016.
pp. 631–647 (2016)

A Privacy code in Minitwit

In Minitwit+, the additional code can be summarized as follows:
– In the functions displaying user messages, we use a function filter_check to select

only those messages for which the data subjects have given consent for purpose
Service. The function filter_check is defined as follows:

def f i l t e r _ c h e c k (messages) :
messages2 = []
c he ck s = c h e c k _ a l l (’ S e r v i c e ’ , messages)
f o r i in range (0 , l e n (messages)) :

i f c he ck s [i] :
messages2 . append (messages [i])

re turn messages2

The function check_all is provided by WebTTC+. It takes a purpose p and a list of
pairs of values and sets of UTs [⟨v1,α1⟩, . . . ,⟨vk,αk⟩], and returns a list of Booleans
[b1, . . . ,bk] such that each bi is true iff vi can be used with purpose p. To obtain the
bi, WebTTC+ communicates with the PDP [25].

– We define handlers to support the deletion and rectification of messages and friend-
ship relationships. Deleting the text of the message or the ID of the friend should
trigger the deletion of the entire message or relation, e.g.,

@ h a n d l e _ f i e l d _ d e l e t i o n (’ message ’ , ’ t e x t ’)
def h a n d l e _ m e s s a g e _ t e x t _ d e l e t i o n (i) :

s q l ("DELETE FROM message WHERE i d = ?0 " , [i])
re turn None

In the case of rectification, we remove the previous message and create a new
message that we mark as [edited]. The code is as follows:

@ h a n d l e _ f i e l d _ r e c t i f i c a t i o n (’ message ’ , ’ t e x t ’)
def h a n d l e _ m e s s a g e _ t e x t _ r e c t i f i c a t i o n (i , n e w _ t e x t) :

row = s q l (" " " SELECT a u t h o r _ i d , t e x t , pub_da te
FROM message WHERE i d = ?0 " " " , [i]) [0]

s q l (" " " INSERT INTO message (a u t h o r _ i d , t e x t , pub_da te)

20 François Hublet, David Basin, and Srd̄an Krstić

VALUES (? 0 , ?1 , ?2) " " " ,
[row [0] , n e w _ t e x t + " [e d i t e d] " , row [2]])

s q l ("DELETE FROM message WHERE i d = ?0 " , [i])
re turn None

The functions handle_field_deletion and handle_field_rectification are provided
by WebTTC+, and allow programmers to define handler functions for the deletion
of specific fields.

B User interface

Fig. 6: Screen captures of the prototype’s user interface

(a) The browser extension (b) The Minitwit+ application

(c) The privacy dashboard entry corresponding
to the input “Hello world” in Figure 6b shows
data usage (⇝), consent (✓), and claims of legal
grounds, and allows for erasure, rectification,
access, and restriction.

(d) Requesting rectification of “Hello world”

(e) After performing rectification (f) After revoking consent for “Hello world”

