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Abstract. Correctness and regulatory compliance of today’s software systems are
crucial for our safety and security. This can be achieved with policy enforcement:
the process of monitoring and possibly modifying system behavior to satisfy a
given policy. The enforcer’s capabilities determine which policies are enforceable.
We study the enforceability of policies specified in metric first-order temporal
logic (MFOTL) with enforcers that can cause and suppress different system ac-
tions in real time. We consider an expressive safety fragment of MFOTL and show
that a policy from that fragment is enforceable if and only if it is equivalent to a
policy in a simpler, syntactically defined MFOTL fragment. We then propose an
enforcement algorithm for all monitorable policies from the latter fragment, and
show that our EnfPoly enforcer outperforms state-of-the-art tools.

1 Introduction

Modern software systems are increasingly complex, ubiquitous and intransparent. In this
context, allowing individuals to scrutinize and control the systems that affect their daily
lives is an important technical and societal challenge. To achieve this goal it is crucial to
develop systems that can monitor and control other target systems, by enforcing policies
that describe the acceptable target system’s behaviors.

Policy enforcement [54], depicted in Figure 1, is a form of execution monitoring
where a system, called an enforcer, observes a target system’s actions, detects attempted
policy violations, and reacts to prevent them. In contrast, policy monitoring (or runtime
verification) [7, 26] provides monitors that only passively detect policy violations by the
target system. Both problems have offline and online variants: the former considers a trace
of recorded target system actions, while the latter observes the target system in real time.

Policy enforcement has been studied in different communities (Section 2) like
controller synthesis [1, 46, 47], security [4, 54], and operating systems [51, 52], each
defining and solving the problem in a different, specialized context.

Schneider [54] studied the general form of the policy enforcement problem in the
context of security. He proposed security automata as enforcers that, when composed

Fig. 1: Policy enforcement
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An enforcer E observes actions in a target system S and reacts (e.g., causes or suppresses some ac-
tions in S ) to ensure policy compliance. S interacts with an environment X, which E cannot control.
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with the target system, prevent policy violations by simply terminating it. Schneider,
and later others [11], identified classes of policies that were enforceable using such
an enforcer. As policy enforceability depends on the enforcer’s powers over the target
system (e.g., its ability to suppress, cause, or delay system’s actions), other enforceable
policy classes have been suggested [9].

Automata and temporal logic are popular formalisms for policy specification. Exist-
ing security policy enforcers typically focus on propositional policies expressed as vari-
ants of (security, edit, or timed) automata [27]. In contrast, controller synthesis tools [6]
also enforce specifications expressed in LTL [16] or in (fragments of) metric temporal
logics [17,19,32,40]. However, automata and propositional temporal logic are limited in
their expressiveness: they regard system actions as atomic and thus cannot formulate de-
pendencies between the data values coming from an infinite domain that the actions may
carry as parameters. For instance, a data value may contain personally identifiable infor-
mation, and then each system action that uses the value should be preceded by an action
that receives a consent for the value’s particular use [5]. To the best of our knowledge,
there is no tool that supports enforcement for first-order logic specifications.

In this paper, we consider the online policy enforcement (Section 3) of policies
expressed in metric first-order temporal logic (MFOTL) [20], which extends LTL with
metric constraints and first-order quantification (Section 4). To enforce MFOTL policies,
our enforcer can observe the target system in real time, actively cause or suppress
different types of actions, and only observe other actions of the target system. As enforcer
must react in real time, policies must be such that their satisfaction does not depend on
future information. All actions, caused either by the enforcer or the target system, are
instantaneous and tagged with a timestamp.

We therefore consider two “well-behaved” fragments of MFOTL: (1) we study en-
forceability of MFOTLF

□ , a safety fragment of MFOTL comprising closed formulae of
the form □φ (“always φ”) where φ’s satisfaction does not depend on future information;
and (2) we design an efficient enforcement algorithm for monitorable and enforceable
MFOTLF

□ formulae. Violations of monitorable formulae [12] can be detected by ma-
nipulating only finite sets of satisfying valuations. As these sets are always finite, we
can use simple, yet efficient, data structures and reuse the existing, highly-optimized
monitoring algorithm for monitorable MFOTL formulae [13].

Overall, we characterize the enforceability of MFOTLF
□ formulae by an enforcer

with the ability to suppress or cause different system actions, and propose and implement
an enforcer for monitorable MFOTLF

□ formulae. We make the following contributions:

– For an enforcer with the ability to suppress or cause (disjoint sets of) actions, we
characterize enforceability of MFOTLF

□ formulae. We show that it is undecidable
whether an MFOTLF

□ formula is enforceable and propose an expressively complete
syntactical approximation (Section 5).

– We develop an enforcement algorithm for monitorable MFOTLF
□ formulae and

prove its correctness (Section 6).
– Finally, we describe our enforcer’s implementation (Section 7) and evaluate its time

and memory usage against other state-of-the-art tools (Section 8).

The proofs of all lemmas and theorems can be found in our extended report [35].
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2 Related Work

We group related work into conceptual approaches and those that implement enforcers.

Theory. The policy enforcement problem was studied by Schneider and Erlingsson in
the context of security [24, 54]. Schneider defined security automata, a class of Büchi
automata, as enforcers. Violations were prevented by terminating the system. Bauer et
al. [14] extended Schneider’s work by considering enforcers that can suppress and cause
events. Basin et al. [11] distinguished between suppressable and (only-)observable events
and refined Schneider’s enforceability accordingly, but only discussed enforcement
via suppression. Falcone et al. [25] later studied the enforcement of propositional
timed policies by suppressing and delaying events. Recently, Aceto et al. [2] proposed
bidirectional enforcers that treat input and output system actions differently. We see this
distinction as a more refined event type partition (Section 3).

Policy enforcement is closely related to the controller synthesis problem [46], where
a controller (≈ enforcer) wants to ensure compliance of a plant (≈ system) with a
specification (≈ policy). Specification realizability corresponds to enforceability, while
controller synthesis (i.e., generating an automaton from a specification) corresponds to
generating an enforcement algorithm tailored to a particular specification. Our enforcer
does not explicitly generate code for a specific policy, but rather takes the policy directly
as input. Early work by Pnueli, Rosner and Abadi [1, 46, 47] studied LTL realizability
and LTL (controller) synthesis. More efficient approaches later emerged [29, 39, 53], as
well as techniques for timed automata [6] and metric extensions of LTL [17, 19, 32, 40].

Tools. Policy enforcement approaches typically rely on different classes of automata
both as enforcers and as policies [11, 14, 21, 24, 25, 27, 28, 41, 42, 45, 49, 50, 54]. A recent
survey [26] listed three enforcement tools: GREP [49], Proactive Libraries [50], and
TiPEX [45]. Both GREP and TiPEX use timed automata as a specification language, and
could thus support propositional temporal logics like MITL [3] via conversion to timed
automata [18, 43]. They do not, however, natively support temporal logic.

The state-of-the-art MonPoly tool [13] can detect violations of monitorable MFOTL
policies [12]. Other tools for first-order temporal logics include Verimon [8, 38, 55] and
DejaVu [30, 31], none of which supports enforcement to prevent violations.

Many controller synthesis tools have been developed for LTL like Lily [36], Un-
beast [23], Acacia+ [16] and SSyft [56]. Other tools synthesize controllers for systems
described by timed automata to comply with specifications written in TCTL [15, 44],
MTL [32], or its fragment MTL0,∞ [40]. BluSTL [22,48] is a MATLAB toolbox for gen-
erating controllers from signal temporal logic (STL) specifications. None of these tools
supports first-order logic.

3 Policy Enforcement
We fix a signature Σ = (D,E,a), containing an infinite set D of constant symbols,
a finite set of event names E, and an arity function a : E→ N. An event is a pair
(e,(d1, . . . ,da(e))) ∈ E×Da(e) of an event name e and a(e) arguments.

Events model system actions observable by the enforcer. While some of these
observable events can also be controlled (i.e., suppressed or caused) by the enforcer,
others can only be observed. To capture these different cases, we partition E into two
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sets: a set of controllable event names, and a set of only-observable event names. Among
the controllable event names, we further distinguish between suppressable event names
Sup⊆ E and causable event names Cau⊆ E. The set of only-observable event names is
Obs= (E\Sup)\Cau. In general, some controllable events might be both suppressable
and causable. However, we will assume that no such events exist, i.e. Sup∩Cau = /0.
Our reason for this will become apparent when we consider MFOTL policy enforcement
(Section 6), and we will discuss ways in which this assumption can be relaxed.

Example 1. As a running example, consider the signature (N,{Open,Close,Knock},a),
where a(·) = 1, Sup = {Open}, and Cau = {Close}. The target system controls a
set of doors indexed by integers, which an enforcer can mechanically close or keep
closed, but not hold open. Each door i is equipped with a sensor that causes a Knock(i)
event whenever a human knocks on the door. Knock events are only-observable (Obs=
{Knock}), since they reflect the environment’s behavior.

Given a signature Σ, we define the set of (event) databases DB∗ as 2{(e,d) |e∈E, d∈Da(e)}.
Databases represent structures over Σ. We restrict ourselves to considering automatic
databases, i.e., databases that can be represented by a collection of finite automata [37].
This setup is the most general one used for MFOTL monitoring in [12].

Definition 1 (Automatic event database). An event database D is automatic iff for all
e∈E, D∩{(e,d) | d ∈Da(e)} is a regular set. DB is the set of automatic event databases.

Finally, for any E ⊆ E, we denote by Ev(E) the set of all databases with event names
in E only, i.e. Ev(E) := {D ∈ DB | ∀(e,(d1, . . . ,da(e))) ∈ D. e ∈ E}.

Traces are finite or infinite sequences σ= (τi,Di)1≤i≤k, k ∈ N∪{∞}, where τi ∈ N
are nondecreasing timestamps, and Di ∈ DB are databases. The smallest timestamp of
a trace σ is denoted by sts(σ) = τ1 ∈ N, its largest timestamp is denoted by lts(σ) =
sup1≤i≤k τi ∈ N∪{∞}. The empty trace is denoted by ε, the set of traces by T, and the
set of finite traces by T f = {σ ∈ T | |σ| <∞}. If σ,σ′ are two traces such that σ is finite,
σ ·σ′ denotes the concatenation of σ and σ′. A (trace) property is a subset P⊆T. For all
σ,σ′ ∈ T, we write σ⪯ σ′ iff σ is a prefix of σ′, and denote by pre(σ) the set of all pre-
fixes of σ. The limit closure of a set A⊆ T, denoted by cl(A), contains all traces whose
finite prefixes are all in A, i.e., cl(A) = {σ ∈ T | ∀σ′ ∈ pre(σ). |σ′| < ∞⇒ σ′ ∈ A}. The
truncation of A is trunc(A) = {σ∈ A | pre(σ)⊆ A}, the largest prefix-closed subset of A.

Finite databases DB† ⊆ DB are a specific type of automatic databases. We also con-
sider traces with finite databases T† ⊆ T, and finite traces with finite databases T†

f .
We now extend the definition of enforceability [11] to support causable events.

Definition 2 (Enforceability). A property P⊆ T is enforceable iff there is a determinis-
tic Turing machine (TM)M accepting a set of finite traces S such that

(i) cl(trunc(S )) = P;
(ii) M accepts ε;

(iii) For all σ ∈ trunc(S ), τ≥ lts(σ), and D ∈ DB,M halts on σ · ((τ,D)); and
(iv) For all σ ∈ trunc(S ), τ ≥ lts(σ), and D ∈ DB, there exists S ∈ Ev(Sup) and

C ∈ Ev(Cau) such thatM accepts σ · ((τ,(D\S )∪C)).
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Properties are sets of infinite traces, while enforcers (that do not know the system’s im-
plementation) can only observe finite traces. Hence, an enforceable property must be
checked “prefix-wise”: a trace is in a property iff an enforcer accepts all of its prefixes.
Enforceable properties must hold on the empty trace, i.e., the system must initially com-
ply with the property. For any extension of a (non-violating) prefix, the enforcer must be
able to decide on its compliance to the property. Whenever a valid prefix is extended with
an additional database, there must exist sets of suppressable and causable events which
the enforcer can respectively suppress and cause to ensure satisfaction of the property.

Our notion of enforceability implies safety:

Lemma 1. Any enforceable property P⊆ T is a safety property.

The converse is not true: a safety property that requires that no Knock event ever hap-
pens is not enforceable, as Knock events are only-observable and cannot be suppressed.

An enforcer can be seen as a Turing machine that, given a finite trace, returns a pair
of sets of events to be respectively suppressed and caused in the last database of the
trace, with the additional requirement that events to be suppressed (resp. caused) should
be suppressable (resp. causable) and present (resp. not already present) in this database.

Definition 3 (Enforcer). An enforcer is a computable function µ : T f →DB×DB such
that for all σ ∈ T f , τ≥ lts(σ), D ∈ DB, and (B,C) = µ(σ · ((τ,D))):

(i) For all (e,d) ∈ B, e ∈ Sup and (e,d) ∈ D; and
(ii) For all (e,d) ∈C, e ∈ Cau and (e,d) /∈ D.

An enforcer µ is correct with respect to a property P if, for all σ ∈ P, any trace σ′

obtained by adding a single database at the end of σ and then updating it (to some σ′′)
according to µ ensures σ′′ ∈ P.

Definition 4 (Correct enforcement). An enforcer µ is called correct with respect to a
property P⊆ T and a set of databases ∆⊆ DB if for all σ ∈ P∩T f , τ≥ lts(σ), D ∈ ∆,
and (B,C) = µ(σ · ((τ,D))), we have σ · ((τ,(D\B)∪C)) ∈ P.

Transparent enforcers [10] do not to alter traces that belong to the enforced property:

Definition 5 (Transparent enforcement). An enforcer µ is called transparent with
respect to a property P ⊆ T and a set of databases ∆ ⊆ DB if for all σ ∈ P∩T f ,
τ≥ lts(σ), D ∈ ∆, we have σ · ((τ,D)) ∈ P =⇒ µ(σ · ((τ,D))) = ( /0, /0).

Given A⊆ T and B,C ⊆ E, extend(A,B,C) is the set of all traces σ · (τ,D) obtained
by appending to any trace σ ∈ A the pair (τ,D∪D′) with τ ≥ lts(σ), D ∈ 2B×D∗ and
D′ = {(c,d) | c ∈C,d ∈ Da(c)}. Intuitively, set extend(A,B,C) is obtained from the set
A by appending some events from B and all events from C to A. We have:

Lemma 2. Let P⊆ T such that P is enforceable. Then there exists a correct and trans-
parent enforcer with respect to P and DB.
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v, i |=σ r(t1, ..., tn) iff (r,(v(t1), ...,v(tn))) ∈ Di v, i |=σ ¬φ iff v, i ̸|=σ φ

v, i |=σ ∃x. φ iff v[x 7→ d], i |=σ φ for d ∈ D v, i |=σ φ∨ψ iff v, i |=σ φ or v, i |=σ ψ

v, i |=σ  I φ iff i > 1 and v, i−1 |=σ φ and τi−τi−1 ∈ I | v, i |=ε φ

v, i |=σ #I φ iff i+1≤ |σ| and v, i+1 |=σ φ, and τi+1−τi ∈ I
v, i |=σ φSI ψ iff v, j |=σ ψ for some j≤ i, τi−τ j ∈ I, and v,k |=σ φ for all k, j < k ≤ i
v, i |=σ φUI ψ iff v, j |=σ ψ for some |σ| ≥ j≥ i, τ j−τi ∈ I, and v,k |=σ φ for all k, j > k ≥ i

Fig. 2: MFOTL semantics

4 Metric First-Order Temporal Logic

Metric first-order temporal logic (MFOTL) extends first-order logic with the metric tem-
poral operators “previous” ( I), “next” (#I), “since” (SI), and “until” (UI). We write
I for the set of intervals over N and V for a countable set of variables. MFOTL formulae
over a signature Σ are defined by the grammar

φ ::= r(t1, . . . , ta(r)) | ¬φ | φ∨φ | ∃x. φ | I φ |#I φ | φSI φ | φUI φ,

where t1, . . . , ta(r) ∈V∪D, r ∈E, and I ∈ I. We define shorthands⊤ := p∨¬p,⊥ :=¬⊤,
φ⇒ ψ := ¬φ∨ψ, and the operators “once” (♦I φ :=⊤SI φ), “eventually” (♢I φ :=⊤UI
φ), “always” (□I φ :=¬♢I¬φ), and “historically” (■I φ :=¬♦I¬φ). Temporal operators
with no interval have [0,∞) instead. Predicates are formulae of the form r(t1, . . . , ta(r)).

We extend the domain of valuation v : V→ D to D by setting v(d) = d for all d ∈ D.
We write v[x 7→ d] for the mapping equal to v, except that v(x) is d. We use fv(φ) for the
set of φ’s free variables. For k ∈ N, a trace σ= ((τi,Di))1≤i≤k, a timepoint 1≤ i≤ |σ|,
a valuation v, and a formula φ, satisfaction relation |= is defined in Figure 2. Note that
|= is well-defined for both finite and infinite traces. We write v |=σ φ for v,1 |=σ φ.

We say that two MFOTL formulae φ and ψ are equivalent, written φ≡ ψ, iff for all
v, σ ∈ T, 1≤ i≤ |σ|, we have v, i |=σ φ⇔ v, i |=σ ψ.

If φ is closed, i.e., fv(φ) = /0, φ’s satisfaction does not depend on v. We then write
|=σ φ as shorthand for ∀v. v |=σ φ. Given a closed formula φ, we denote by L(φ)⊆ T
the set of all traces that satisfy φ, i.e., L(φ) := {σ ∈ T | |=σ φ}. Finally, we denote by
L f (φ) the set of finite traces in L(φ), i.e., L f (φ) = {σ ∈ L(φ) | |σ| <∞}. Extending the
previous terminology, we say that a formula φ is enforceable iff L(φ) is enforceable.

If the truth value of a formula only depends on the trace content in the past or present,
an enforcer can compute satisfactions for each trace prefix, and react timely.

Definition 6 (Future-free formulae). An MFOTL formula φ is called future-free iff for
all σ ∈ T, valuation v, and σ′ ⪯ σ such that |σ′|= i, we have v, i |=σ φ⇔ v, i |=σ′ φ.

For instance, formulae without future operators (UI , #I , ♢I , □I) are future-free, but also
some that have these operators nested in appropriate past operators.

Example 2. The formula φ1 = ♦[3,4](∃x. Close(x)) uses no future temporal operators,
and is therefore future-free. The formula φ2 = ♦[3,4](∃x. Close(x)∧♢[1,2] Open(x))
contains a future operator, but is still future-free, since the future operator ♢[1,2] (looking
at most 2 time units into the future) is nested in a ♦[3,4] operator that is always evaluated
at least 3 time units in the past. The formula φ3 = ♢[1,2] Open(x) is not future-free: its
truth value depends on events happening up to 2 time units in the future.
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In the rest of this paper, we consider the fragment MFOTLF
□ that contains all closed

formulae of the form □φ, where φ is future-free. Given the correctness of the monitoring
algorithm [12] for MFOTL formulae of the form □φ, where all future operators in φ have
bounded intervals and the fact that future-free formulae are a subset of the algorithm’s
supported formulae, we have:

Lemma 3. For any φ ∈MFOTLF
□ , there exists a TM that decides L f (φ).

In fact, the algorithm determines without delay whether a future-free formula is satisfied.

5 MFOTL Enforceability

In this section, we characterize the enforceability of MFOTLF
□ formulae with an enforcer

as described in Section 3. Our first result is negative: a reduction, presented in our
extended report [35], shows that the enforceability of MFOTLF

□ formulae in undecidable.

Theorem 1. Assume that Sup contains at least one event of arity at least 2 and Obs ̸= /0.
The set E = {φ ∈MFOTLF

□ | φ is enforceable} is not computable.

The proof relies on the undecidability of universal validity in FOL. Therefore, it is
sensible to ask whether some syntactical characterization of enforceability can be re-
covered by reasoning modulo equivalence of formulae. Is there a decidable and enforce-
able fragment of MFOTLF

□ that contains all enforceable policies modulo equivalence?
If so, such a fragment would not only provide a sound approximation of enforceable
MFOTLF

□ formulae, but also an approximation that is expressively complete. All en-
forceable MFOTLF

□ policies could be expressed using the fragment via an appropriate
(manual) rewriting. Rather surprisingly, such a fragment exists. Consider the following:

Definition 7 (GMFOTL). Guarded MFOTL (GMFOTL) is defined inductively by:

ψ ::=⊥ | s(t1, . . . , tn) | ¬c(t1, . . . , tn) | ψ∧φ | ψ∨ψ | ∃x. ψ

where s ∈ Sup,c ∈ Cau, and φ is an MFOTL formula.

In GMFOTL, all subformulae (and, in particular, all temporal subformulae) are
guarded by an instance of a predicate r(t1, . . . , tn) with r being suppressable, or by an in-
stance of a negated predicate ¬r(t1 . . . , tn) with r being causable. In the following, we call
such a (possibily negated) predicate a guard. The presence of a guard ensures that, when
an GMFOTL formula is satisfied with respect to a trace prefix, it can always be made
false by suppressing or causing appropriate events in the last database of the prefix.

Example 3. Consider the formula φ4 = ¬Close(x)∧ψ, with an arbitrary future-free for-
mula ψ and fv(ψ) = {x}. For φ4 to be satisfied with respect to a trace prefix σ, it must
hold for some valuation of x and {(Close,(a)) | v, |σ| |=σ ψ,v(x) = a}must not be in the
last database of σ. Hence, φ4 can be falsified by causing the appropriate Close events.

It can be shown that all closed formulae of the form □¬ψ with ψ∈GMFOTL and future-
free are enforceable. Since enforceability is defined in terms of the language recognized
by a given formula, we obtain that all MFOTLF

□ formulae equivalent to some □¬ψ, with
ψ ∈ GMFOTL closed and future-free, are enforceable. In fact, the converse is also true:
all future-free MFOTLF

□ formulae are equivalent to a formula of the above form. We have
thus obtained an expressively complete fragment of enforceable MFOTLF

□ . Formally:
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Theorem 2. A formula □φ ∈MFOTLF
□ is enforceable iff there exists ψ ∈ GMFOTL

such that □φ≡□¬ψ.

Example 4. Consider the formula φ5 = □∀x. (Open(x)⇒¬♦[2,5] Open(x)). This for-
mula is enforceable: Open events that lead to a violation (i.e., those occurring 2 to 5 time
units after a previous Open event with the same argument) can always be suppressed.
The formula φ5 is equivalent to □¬ψ where ψ ∈ GMFOTL is

(∃x. Open(x))∧¬(∀x. (Open(x)⇒¬♦[2,5] Open(x))).

6 MFOTL Enforcement in the Finite Case

In the previous section, we have presented GMFOTL, a syntactic class of MFOTL that
is expressively complete for enforceable MFOTLF

□ formulae. Lemma 2 implies the ex-
istence of an enforcer for such formulae. However, the naive enforcer constructed in the
lemma’s proof may be inefficient—in fact, it may cause an infinite number of new events.

In this section, we focus on traces with finite databases and MFOTL formulae
from the intersection of enforceable MFOTLF

□ formulae with monitorable MFOTL
formulae [12]. We show that, in this case, we can exhibit a correct and transparent
enforcer that produces only a finite number of events to be suppressed or caused.

6.1 Monitoring MFOTL Formulae

Basin et al. [12] describe an algorithm that efficiently monitors monitorable MFOTL
formulae. Variants of this algorithm and the fragment it supports are used in several state-
of-the-art tools [13, 55]. We now briefly recall the algorithm and some of its properties.

The algorithm encodes each database D ∈ DB† as a finite set of tables, one for each
event name in the database. The row d is in the table corresponding to the event name e if
(e,d)∈D. The set of satisfying valuations of a formula can similarly be encoded as a table
whose rows represent valuations restricted to the domain of the formula’s free variables.

The algorithm computes the table of satisfying valuations for a monitorable MFOTL
formula bottom-up, using well-known table operations like join, anti-join, union, and
projection. The syntactic monitorable fragment ensures that table operations always pro-
duce finite tables. In the rest of the section, we assume that this algorithm is available as
a subroutine SAT(φ,σ) = {v | v, |σ| |=σ φ} that returns the set of satisfying valuations of
a monitorable MFOTL formula φ with respect to finite trace σ ∈ T† and timepoint |σ|.

The monitorable MFOTL fragment [55] also ensures that for any valuation v satis-
fying a formula φ from the fragment with respect to a finite trace σ and a time point
1≤ i≤ |σ|, for every x ∈ fv(φ) the value v(x) ∈ D is contained in some event argument
in a database in σ or a constant term in φ. Formally:

Lemma 4. For all monitorable φ ∈MFOTL, valuation v, trace σ ∈ T†, and timepoint
1≤ i≤ |σ|, assuming v, i |=σ φ, we have

∀x ∈ fv(φ). ∃1≤ j≤ |σ|. (e,d) ∈ D j,1≤ k ≤ a(e). dk = v(x)∨dk ∈ cst(φ)

where cst(φ)⊂ D denotes the (finite) set of constant terms that appear in φ.

We will use this lemma, as well as the termination of the subroutine SAT [12], to
prove the termination of our enforcer.
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Algorithm 1 Function enf

function enf(φ,σ,v)
if φ= r(t1, . . . , tn),r ∈ Sup then

return ({(r,(v(t1), . . . ,v(tn)))}, /0)
else if φ= ¬r(t1, . . . , tn),r ∈ Cau then

return ( /0,{(r,(v(t1), . . . ,v(tn)))})
else if φ= φ1∧φ2 then

return enf(φ1,σ,v)
else if φ= φ1∨φ2 then

return FIXPOINT(σ,enfor, φ1, φ2, v)
else if φ= ∃x. φ1 then

return FIXPOINT(σ,enfex, φ1, v)

function enfor, φ1, φ2, v(σ)
(D−,D+)← ( /0, /0)
if v ∈ SAT(φ1,σ) then

(D−,D+)← (D−,D+)⋓ enf(φ1,σ,v)
if v ∈ SAT(φ2,σ) then

(D−,D+)← (D−,D+)⋓ enf(φ2,σ,v)
return (D−,D+)

function enfex, φ1, v(σ)
(D−,D+)← ( /0, /0)
for v ∈ D s.t. v[x 7→ v] ∈ SAT(φ1,σ) do

(D−,D+)← (D−,D+)⋓enf(φ1,σ,v[x 7→ v])
return (D−,D+)

6.2 Enforcer
Given σ ∈ T f , τ≥ lts(σ), and D,D−,D+ ∈ DB, we first define the function update as

update(σ · ((τ,D)),(D−,D+)) := σ · ((τ,(D∪D+)\D−)).

Namely, update returns the trace obtained by adding all events from D+ and removing
all events from D− in the last database of σ.

For any σ ∈ T f and enforcer µ, we define ℓµ(σ) ∈ T f as the limit of the sequence
(ui)i∈N ∈ TN

f defined by u0 = σ and for all i ∈ N, ui+1 = update(ui,µ(ui)). This limit
is always well-defined [35], and if ui+1 = ui for some i ∈ N, we have ℓµ(σ) = ui. This
allows us to define a routine FIXPOINT(σ,µ) that iteratively computes u0,u1, . . . ,ui, . . . ,
returns ℓµ(σ) = ui as soon as (ui)i∈N reaches a fixpoint ui+1 = ui, and does not terminate
otherwise. We will later show that, in our setup, this procedure always terminates.

Our enforcer relies on the function enf described in Algorithm 1, which takes as an
input a future-free and monitorable GMFOTL formula φ, a finite trace σ, and a valuation
v such that v, |σ| |=σ φ, and returns a pair of sets of events to be respectively suppressed
and caused at the last timepoint in σ in order to obtain some new trace σ′ such that
v, |σ| ̸|=σ′ φ. For notational convenience, we denote by ⋓ the elementwise union of pairs
of sets (A,B)⋓ (C,D) = (A∪C,B∪D).

The intuition behind enf is as follows. If the formula φ is reduced to an atom
r(t1, . . . , tn) or ¬r(t1, . . . , tn), we can make it false by suppressing or causing a single
event. If φ is of the form φ1∧φ2 with φ ∈ GMFOTL, it is sufficient to make φ1 false to
make φ false: enf looks for events to be suppressed or caused in φ1.

For formulae of the form φ1 ∨ φ2, additional care is needed. At first glance, the
strategy used for ∧ seems applicable, modulo a simple case distinction: if both φ1 and φ2
are satisfied by a given pair of a trace and a valuation, we need to find events to suppress
or cause in both subformulae; if only one conjunct is satisfied, we look for events to
suppress or cause in this subformula only. But such a one-step strategy is insufficient.

Example 5. Consider the formula φ6 = Open(1)∨(¬Close(2)∧¬Open(1))∈GMFOTL
and the trace σ6 = ((0,{(Open,(1))})). Only the left disjunct is satisfied. Hence, ap-
plying the above strategy would produce the trace σ′6 = ((0, /0)), which again satisfies
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φ6 as it satisfies the right disjunct now. Hence, after having suppressed (Open,(1)) we
must check for satisfaction of φ6 again, and, if necessary, select additional events to
be suppressed or caused, here causing (Close,(2)) suffices. This results in the trace
σ′′6 = ((0,{(Close,(2))})), which now does not satisfy φ6.

The above iterative approach, which performs a fixpoint computation, is formalized
as a call to FIXPOINT(σ,enfor, φ1, φ2, v), where enfor, φ1, φ2, v performs the above case
distinction for a fixed valuation v satisfying φ1∨φ2.

The same problem arises with existentially quantified formulae of the form ∃x. φ1.
For fixed v, function enfex, φ1, v identifies events that must be suppressed or caused
to prevent the satisfaction of φ1 using any valuation v′ extending v, and a call to
FIXPOINT(σ,enfex, φ1, v) computes the corresponding fixpoint.

Finally, for any closed, monitorable and future-free φ ∈ GMFOTL, we define our
tentative enforcer for □¬φ as

µ̂φ(ρ) =

{
enf(φ,ρ, /0) if |σ| |=ρ φ
( /0, /0) otherwise.

Example 6. Consider the GMFOTL monitorable formula

φ7 = (∃x. Open(x)∧♦[0,5] Close(x)︸ ︷︷ ︸
φ1

7

)∨ (∃y. ¬Close(y)∧¬Close(y)S[5,∞) Open(y)︸ ︷︷ ︸
φ2

7

),

which is satisfied whenever an (Open,(x)) event follows a (Close,(x)) within 5 time
units for some x ∈D, or there is a (Close,(y)) event for some y ∈D that is not followed
by any (Close,(y)) event within 5 time units. Consider the following trace:

σ7 = ((0,{(Open,(1))}),(1,{(Close,(2))}),(5,{(Open,(2))})) .

We have |=σ7 φ7: events (Close,(2)) and (Open,(2)) at timestamps 1 and 5 satisfy the
left disjunct, while the (Open,(1)) event at timestamp 0 and the lack of a (Close,(1))
event between timestamps 0 and 5 satisfies the right disjunct. As φ7 is closed, the set
of valuations satisfying it is { /0}, where /0 denotes the empty application. We compute
enf(φ7,σ7, /0) = FIXPOINT(σ7,enfor, φ1

7, φ
2
7, /0).

Since σ7 satisfies both φ1
7 and φ2

7, we get:

enfor, φ1
7, φ

2
7, /0(σ7) = enf(φ1

7,σ7, /0)⋓ enf(φ2
7,σ7, /0)

= enf(Open(x)∧♦[0,5] Close(x),σ7,{x 7→ 2})⋓
enf(¬Close(y)∧¬Close(y)S[5,∞) Open(y),σ7,{y 7→ 1})

= enf(Open(x),σ7,{{x 7→ 2}})⋓ enf(¬Close(y),σ7,{{y 7→ 1}})
= ({(Open,(2))}, /0)⋓ ( /0,{(Close,(1))})
= ({(Open,(2))},{(Close,(1))}).

We then update σ7:

σ′7 = update(σ7,enfor, φ1
7, φ

2
7, /0(σ7))

= (({0,Open,(1)}),(1,{Close,(2)}),(5,{Close,(1)}))
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and check that σ′7 = update(σ′7,enfor, φ1
7, φ

2
7, /0(σ

′
7)), i.e., that ̸|=σ′7

φ7.
Hence, we finally get µ̂φ7(σ7) = enf(φ7,σ7, /0) = ({(Open,(2))},{(Close,(1))}).

6.3 Correctness and Transparency

For any monitorable, future-free and closed φ ∈ GMFOTL and finite σ ∈ T†, the en-
forcer µ̂φ always terminates. Termination is a consequence of Lemma 4 above; the cor-
responding proofs are given in our extended report [35]. Having established termination,
we can prove that our enforcer is correct and transparent:

Theorem 3. Let φ ∈ GMFOTL be closed, monitorable and future-free. Then µ̂φ is a
correct and transparent enforcer with respect to L(□¬φ)∩T† and DB†.

At this point, it is worth reflecting on the effect that the assumption Sup∩Cau= /0 has
on the correctness of our enforcer. In general, dropping this assumption results in some
non-enforceable formula being equivalent to some formula □¬ψ with ψ ∈ GMFOTL;
thus, Theorem 2 no longer holds. For example, a formula such as φ7 = □¬(C∨¬C)
where C ∈ Sup∩Cau and a(C) = 0 is not enforceable: given an initially empty trace—
on which, by convention, φ7 is satisfied—adding any first timepoint makes the formula
unsatisfiable, since ¬(C∨¬C) ≡ ⊥. This rules out enforceability, which requires that
appending only-observable events to a valid trace does not lead to a violation.

To understand why we need to assume Sup∩Cau= /0 for the above algorithm to be
correct, consider the behavior of µ̂φ7 for the (non-enforceable) formula φ7 above on the
trace σ7 = (({C},0)). The enforcer calls FIXPOINT(σ7,enfor, C, ¬C, /0), which itself calls
enfor, C, ¬C, /0(σ7). This routine determines that only the left disjunct C is satisfied, and
returns the actions (D−,D+) = ({C}, /0). We get σ′7 = ((0, /0)) and call enfor,C,¬C(σ7)
again to find a fixpoint. Now, the second disjunct is not satisfied, leading to the actions
(D−,D+) = ( /0,{C}) and to the updated trace σ′′7 = ((0,{C})) = σ7. The same process
repeats indefinitely.

When Sup∩Cau = /0, such a behavior is avoided. Since only suppressable events
are suppressed and causable events caused, and since suppressable and causable events
are disjoint, the algorithm will never try to suppress (resp. cause) an event that it has
previously caused (resp. suppressed). Hence, the sets of caused and suppressed events
can only grow during the fixpoint computation. This ensures termination, as any new
iteration except the last one must compute at least one new event to cause or suppress.

Note that the assumption Sup∩Cau= /0 can be relaxed if we additionally require
each suppressable and causable event to appear only with, or only without, a negation in
the formula. In the definition of enf, each element from Sup∩Cau can then be considered
to belong to Sup or Cau only.

7 Implementation

We have implemented our enforcer in the EnfPoly tool [34], which extends the MonPoly
tool [13] with ca. 500 lines of OCaml code. Users can specify suppressable and causable
events by adding “-” or “+” after the corresponding event description in the signature.
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Example 7. The example signature Σ can be specified as:
Open(int)- Close(int)+ Knock(int)

Events that are both enforceable and causable can be specified, e.g. as SomeE+-. In this
case, for each formula to be enforced, a simple constraint-solving procedure is used to
determine whether each such event can be considered only enforceable or only causable
in the context of the current formula.

Strictly relative-past MFOTL Note that Algorithm 1 takes as input a monitorable and
enforceable MFOTLF

□ formula. Monitorability and enforcability can be syntactically
approximated, but determining whether an MFOTL formula is future-free is undecid-
able [35]. Therefore, we have also developed a syntactical approximation of future-
free formulae, called strictly relative-past formulae, which EnfPoly uses in practice.
We formally define the fragment in our extended report [35]. Intuitively, all formulae
that use only past temporal operators (i.e. past-only MFOTL) are strictly relative-past.
Additionally, the strictly relative-past fragment contains many non-past formulae, for
which one can statically verify that they do not depend on the future. For example,
φ8 = ♦[5,+∞)(Close(2)U[0,5) Open(3)) is strictly relative-past, but not past-only. Ob-
serve that the intervals of the temporal operators of φ8 ensure that its truth value does
not depend on future events: the evaluation of φ8 at timestamp τ uses Close events from
timestamps ≤ τ−5, and Open from timestamps < τ−5+5 = τ, which all lie in the past.

To enforce a formula of the form □¬φ, EnfPoly checks if φ is closed, in GMFOTL,
and strict relative-past. Associative and commutative rewriting is used to relax the
GMFOTL membership conditions in conjuncts. Then, the enforcement loop starts. At
every timepoint, the enforcer reacts either with OK, if there is no violation, or with a set
of events to cause and a set of events to suppress, otherwise.

Example 8. The output of EnfPoly when enforcing formulae □¬φ6 and □¬φ7 (from
Examples 5 and 6) on traces σ6 and σ7, respectively, is shown in the table below.

Formula: □¬φ6, Trace: σ6 Formula: □¬φ7, Trace: σ7
@0 Open(1); @0 Open(1);
[Enforcer] Suppress: Open(1) [Enforcer] OK.
[Enforcer] Cause: Close(2) @1 Close(2);
[Enforcer] OK. [Enforcer] OK.

@5 Open(2);
[Enforcer] Suppress: Open(2)
[Enforcer] Cause: Close(1)
[Enforcer] OK.

Timestamped databases (prefixed with @) of a trace are incrementally input to EnfPoly,
while its output (prefixed with [Enforcer]) is shown chronologically interleved with
the input. When enforcing □¬φ6 on σ6, the enforcer immediately reacts to the the
first database {(Open,(1))} at timestamp 0 with two actions: it suppresses the event
(Open,(1)) and causes the event (Close,(2)). Finally, it indicates that it has finished
enforcing the formula by emitting OK. For □¬φ7, EnfPoly processes three timestamped
databases. The first two do not violate the policy and hence there is no reaction other
than OK from the enforcer. The third database causes a violation and the enforcer sup-
presses event (Open,(2)) and causes event (Close,(1)) to satisfy the policy.
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χ1 =□¬(r∧ ((♦[1,5) r)∨ ( [0,0]♦[0,0] r)))) Sup= {r},Obs= {a}

χ2 =□¬((g∧♦[0,6)(r∧ (¬ ♦r)))∨ (r∧ ( (¬gS (r∧ (¬ ♦r)))))) Sup= {r,g},Obs= /0

χ3 =□¬(r∧ ((¬rS(20,∞) g)∨ (¬rS[0,15) g)∨ (¬gSr)))∨g∧¬rSg) Sup= {r,g},Obs= {a}

Fig. 3: Policies used to compare EnfPoly to GREP

8 Evaluation

We now compare our enforcer with other state-of-the-art tools. As our tool is the first one
to support the enforcement of first-order temporal policies, comparison is only possible
with (1) propositional temporal enforcers or (2) first-order temporal monitors.

Note that when there are no causable events in the signature, online monitoring tools
can be used as online enforcers in the following way. First, before the events of every
timepoint are sent to the monitor, save the monitor’s internal state. Then, have the monitor
process the timepoint. If the monitor does not detect a violation, save the monitor’s
state again and proceed with the next timepoint. If a violation is detected, restore the
previous saved state and re-read only the only-observable events from the timepoint that
led to a violation, suppressing all suppressable events from the last timepoint. When the
formula to monitor is enforceable and there are no causable events in the signature, this
construction always provides a valid enforcer. This approach has been used recently [33]
to perform MFOTL enforcement with MonPoly.

Our evaluation aims to answer the following research questions:
RQ1. Does EnfPoly show better performance than existing propositional enforcers?
RQ2a. Given an MFOTL formula, how much overhead does EnfPoly’s enforcement

cause compared to MonPoly’s monitoring of the same formula?
RQ2b. Does EnfPoly show better performance in enforcing formulae over a signature

with no causable events than MonPoly adapted to be an online enforcer?
For RQ1, we focus on runtime enforcement tools, which use a setup similar to ours in

terms of enforcement capabilities. We compare EnfPoly to GREP [49]. The tool GREP,
along with TiPEX and Proactive Libraries, is one of three tools referenced in a recent
survey paper [26]. GREP has been shown to outperform TiPEX by up to two orders
of magnitude [49], and, unlike Proactive Libraries, it comes with an publicly available
implementation. For RQ2, we compare EnfPoly to MonPoly [13].

In all experiments, we measure the enforcers’ memory using Python’s psutil. We
also measure enforcers’ total runtime, as well as their latency, i.e., the time spent waiting
for an enforcer to compute its output, which we normalize by the number of events in
the trace. The speedup of our tool with respect to a tool t is computed as the difference
between t’s and our tool’s runtime divided by t’s runtime. All experiments are run on an
2.4 GHz Intel Core i5-1135G7 QuadCore CPU with 32 GB RAM.
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(a) Runtime performance for various choices of p, fixing N = 25, n = 10, L = 5000

Policy χ1

Policy χ2

Policy χ3

(b) Runtime and memory over time for N = 1000 executions, fixing n = 10, L = 5000, p = 0.1

Policy χ1 Policy χ2 Policy χ3

Fig. 4: Runtime and memory consumption of EnfPoly and GREP
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EnfPoly vs GREP (RQ1). To compare the performance of the two enforcers, we consider
the three policies presented on Figure 3, which are slight adaptations of the three bench-
mark examples used in [45, 49] to evaluate GREP and TiPEX. The original benchmark
policies were not enforceable according to Definition 2. To enable enforceability, some
previously non-accepting states were made accepting. As GREP takes as input policies
specified as timed automata, we provide both an automaton and an MFOTLF

□ definition
for each formula. These specifications are equivalent on traces with at most one event
per database. We generate such random traces of length L ·n = 50000 with

– L = 5000 unique timestamps from {1, . . . ,L};
– timestamps τi equal to ⌈ i

n⌉ for timepoint i ∈ {1 . . .L ·n}, where n = 10;
– each timepoint containing an event with probability p and no event otherwise; and
– event names sampled uniformly from {a,r} for χ1 and from {a,g,r} for χ2 and χ3.

For GREP, the duration of a time unit is set to 1 ms. GREP’s and EnfPoly’s code is in-
strumented to report the latency of processing inputs (i.e., excluding communication
costs). Communication costs were excluded since GREP and EnfPoly receive inputs in
a different format (one timepoint per line for EnfPoly, several timepoints per line for
GREP). The experiment is repeated N = 25 times for various values of p to measure the
effect of the event rate (i.e., the number of events per time unit) on the enforcers’ perfor-
mance. Note that as the signatures of χ1, χ2, and χ3 contain at most three event names,
we can keep the maximal number of events per timestamp small, fixing n = 10 and vary-
ing p only. GREP is run in online mode with the “fast” option (flag -f) activated.

For formulae χ1 and χ2, EnfPoly is faster than GREP on average for all values of
p, with a speedup between 40% and 90%. For χ3, GREP outperforms EnfPoly by up
to 20% for p ≥ 0.55, but underperforms it for p < 0.55. The corresponding summary
figures are presented in Figure 4a. Numerical data is given in Table 1 in the Appendix.

Additionally, in Figure 4b, we plot the cumulated latency and the memory consump-
tion over time for N = 100 individual executions of both EnfPoly and GREP. The mem-
ory consumption of our tool is constant over time, while GREP’s is linear. GREP also
displays quadratic latency for policy χ1, while EnfPoly’s latency is constant in all three
cases, resulting in linear cumulative latency.

EnfPoly vs MonPoly (RQ2). For RQ2a, we compare the runtime of EnfPoly with the
runtime of MonPoly (used as a monitor) on the same traces and formulae. For RQ2b, we
repeat this experiment using MonPoly as an enforcer, in the way described above.

In both cases, we generate random enforceable and monitorable MFOTL formulae
and random traces over a signature (int,E,a) with E = Sup = {A,B,C} and a(·) = 1.
The random formula generator has a configurable maximal depth d and samples bounds
of temporal operator intervals uniformly from {(i, j) ∈ {0, . . . , I}2 | i ≤ j}. Random
traces of length 1000 are generated with timestamps 1,2, . . . ,L with L = 1000 with no
repetitions. The number of events in a database is sampled according to the binomial
distribution with n trials and success probability p, while event names are sampled
uniformly from E. Finally, event’s arguments are sampled uniformly from {1, . . . ,A}.

Given parameters n,A,d, I ∈ N and p ∈ [0,1], both tools are executed on pairs of
independently generated random traces and enforceable and monitorable MFOTLF

□
formulae with the same combinations of parameters, repeated N = 25 times.
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For all values of the parameters, enforcement with EnfPoly adds up to 50% runtime
overhead on top of the costs of monitoring with MonPoly, and does not affect memory
consumption. On the other hand, using EnfPoly for enforcement is still 4 to 20 times
faster than using MonPoly as an enforcer, working in the way described above, and
with a comparable memory consumption. Most of the overhead of MonPoly used as an
enforcer is due to loading and saving the (complete) monitor state at each iteration, which
EnfPoly avoids. Average runtime costs are under 0.1 ms per event, with most averages
under 10 µs. In individual executions, both tools display constant time and memory
consumption. Detailed numerical results can be found in Table 1 in the Appendix (for
RQ2b), as well as in our extended report [35] (for RQ2a).

Discussion The above experiments show that EnfPoly, despite supporting a much larger
specification language, displays a runtime and memory performance at least as good as
GREP’s. Our enforcer’s performance is less sensitive to the choice of the input formula
and consumes a constant amount of memory over time. Compared to using MonPoly as
an MFOTL enforcer, EnfPoly provides a speedup of one order of magnitude. Runtime
and memory consumption per event processed is stable or decreasing when more events
occur simultaneously, and is not affected by longer trace sizes.

9 Conclusion

We have presented both the theory and practice of enforcing metric first-order temporal
logic (MFOTL) formulae with disjoint sets of causable and suppressable events. We have
characterized enforceability for MFOTL for such enforcers and proposed an efficient
enforcement algorithm. Our enforcer EnfPoly extends the MonPoly monitoring tool and
it is the first tool for first-order temporal logic enforcement. We have evaluated EnfPoly
and showed that although it supports a more expressive language it can still outperform
state-of-the-art enforcers.

As future work, we plan to generalize our approach to allow events that are both
suppressable and causable. Currently, it remains open whether enforceability can be
characterized syntactically modulo equivalence (as in Theorem 2) when this assumption
is lifted. But even if no such characterization exists, in practice one could develop
enforcement algorithms for larger (syntactical) fragments of enforceable policies.
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55. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for metric first-

order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) International Conference on
Runtime Verification (RV). LNCS, vol. 11757, pp. 310–328. Springer (2019)

56. Zhu, S., Tabajara, L., Li, J., Pu, G., Vardi, M.: A symbolic approach to safety LTL synthesis.
In: Strichman, O., Tzoref-Brill, R. (eds.) International Haifa Verification Conference (HVC).
LNCS, vol. 10629, pp. 147–162. Springer (2017)

A Evaluation Data

Table 1 shows the raw evaluation data produced by our experiments. The table on the left
contains the data obtained when answering RQ1, while the data in the table on the right
is obtained when answering RQ2. In the former we use three policies χ1, χ2, and χ3,
while in the latter we generate random enforceable and monitorable MFOTL formulae.

Parameter d is the depth of the generated random formulae, while I defines the
sample space for the bounds of temporal operator intervals: {(i, j) ∈ {0, . . . , I}2 | i≤ j}.

Random traces have length L ·n with timestamps 1,2, . . . ,L, each repeated n times.
Event names are sampled uniformly from E = {A,B,C}, while their arguments are
sampled uniformly from {1, . . . ,A}. The number of events in a database is sampled
according to the binomial distribution with n trials and success probability p.

Given parameters n,A,d, I ∈ N and p ∈ [0,1], both tools are executed on pairs of
independently generated random traces and enforceable and monitorable MFOTLF

□
formulae with the same combinations of parameters repeated N times.
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Table 1: Mean runtime performance (standard deviation) for various parameter values
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