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Abstract

Privacy by design requires integrating data protection into systems
from the outset, during their design, rather than building it in later.
Related legislation does not specify how to achieve this and main-
stream languages and frameworks lack support for privacy by de-
sign. To address this long-standing problem, we have developed dif-
ferent, effective technical solutions. First, we have developed pow-
erful logic-based tools that enforce formal data protection policies
at runtime by controlling relevant system actions. Second, we have
proposed methods and tools for integrating privacy models into sys-
tem design models, enabling model-driven privacy enforcement. We
report on our methods, tools, and practical experiences using them.

CCS Concepts

« Software and its engineering — System modeling languages;
« Security and privacy — Software security engineering; Ac-
cess control.
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1 Introduction

The right to privacy is enshrined in national and supranational law.
For example, the GDPR [10] imposes comprehensive data protection
requirements on all entities operating in the EU. In particular, it
stipulates that personal data may be collected only for specific,
explicit, and legitimate purposes [10, Art. 5(1)(b)], and processed
only with user consent or another valid legal basis [10, Art. 6(1)].
Organizations processing personal data cannot ignore these laws or
the penalties for non-compliance. This leads to a crucial technical
challenge: how to build systems that comply with these laws.
Existing regulations and standards require appropriate technical
measures to be taken to ensure compliance, but offer limited guid-
ance on concrete solutions. For example, the GDPR mandates ‘data
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protection by design and by default’ [10, Art. 25], known as ‘pri-
vacy by design’ [8], which emphasizes integrating data protection
and auditing from the start. The ISO 31700 standard provides high-
level advice and examples, but lacks specific technical guidance.
While these principles help define design requirements, they do not
address how to bridge the gap between general laws and building
systems that respect user privacy. Our work aims to bridge this gap.

We have developed privacy-by-design methods and tools that are
(i) rigorous, supporting precise formalizations of legal requirements,
(ii) mechanizable, providing runtime policy enforcement and code-
generation, and (iii) general, applying to diverse privacy require-
ments and implementations. We build on the notion of runtime en-
forcement (RE) [24], where a policy enforcement point (PEP) inter-
cepts attempted system actions, converts them to events, and sends
them to a policy decision point (PDP), as in Figure 1. In response to
events or proactively as time passes, the PDP issues commands to
ensure policy compliance at all times; based on these commands,
the PEP forces the system to take modified, compliant actions.

We present highlights of two approaches to achieving this, both
building on RE in different ways. The first approach (Section 2), em-
bodied in the ENFGUARD [18, 19] and INSTRLIB [13] tools, proposes
a novel PDP algorithm for expressive specifications written in met-
ric first-order temporal logic (MFOTL) [15] and a general PEP li-
brary for Python applications. MFOTL’s expressiveness and its abil-
ity to proactively send commands makes ENFGUARD a powerful
tool that can be used with any enforceable formalization of privacy
requirements. The INSTRLIB library interfaces the system with EN-
FGUARD by intercepting specified actions and replacing them with
those actions prescribed by ENFGUARD’s commands.

The second approach (Section 3), implemented in the vAcTIoNGUI
tool [20], is a substantial extension of the idea of Model-Driven
Security [2, 22] to privacy. Namely, systems are designed with for-
mal data and privacy models. The privacy models formulate data-
protection requirements like purpose-based usage and user con-
sent. Model transformations generate correct-by-design code for
the enforcement mechanisms directly from the models themselves.

We provide details on both approaches, including tool support
and their evaluations. We conclude by comparing these approaches
and pointing to directions for future work (Section 4).
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Figure 1: Runtime enforcement model
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Syntax Semantics

E(ai,...,an) Theevent E(ay,...,ay) occurs in the present
PAY; ¢ —> ¥ ¢ AND ¢ hold; ¢ holds impLIES ¢ holds

-¢; Yu. ¢ ¢ does NOT hold; FORr ALL values of x, ¢ holds
OP;O¢ EVENTUALLY, ¢ will hold; ¢ ALwAys holds
YS¢ Some time in the past, ¢ held and sINCE then, ¥/

has always held

Each temporal operator (0,0, S) can be subscripted with an interval
I =[a,b] orI=[a, ) that specifies a time window in which ¢ must hold.
For instance, O[g 69] ¢ means ‘¢ ALways holds during the next 60 time units.

Figure 2: MFOTL syntax and semantics (selected)

2 Proactive Runtime Enforcement

Logical formalisms have been previously proposed to formalize
privacy laws [9, 12, 23, 25]. Applying these approaches to runtime
policy enforcement, rather than just detecting non-compliance (as
in runtime monitoring [11]), poses new challenges.

The first challenge is expressivity: the formalism should be able
to specify a wide range of requirements and assumptions about the
system. This includes explicitly specifying the temporal sequencing
of events, which has been the source of errors in previous work [17].
In the context of runtime enforcement, the formalization should
capture not only obligations, but also assumptions on how the PEP
can modify events. For instance, if data processing requires consent,
then, logically, one way to ensure compliance is to force the logging
of consent whenever processing happens! This, however, would
defeat the principle of free consent. Hence, the PEP should be
constrained to never cause consent events, but to be able to suppress
processing events whenever needed.

The second challenge is performance: the PDP and PEP used
should operate in real time with little runtime overhead, also when
composed with other software modules to enforce policies in com-
plex applications.

For high expressivity, we opted for metric first-order temporal
logic (MFOTL) [6] as a policy language and developed several ef-
ficient PDP tools for MFOTL. We then used our tools to enforce
privacy requirements in web applications at runtime, demonstrat-
ing our approach’s practical performance.

Formalizing and enforcing MFOTL specifications

In earlier work on monitoring GDPR requirements using industry
log files, Arfelt et al. [1] showed that MFOTL could be used to for-
malize core GDPR requirements. In addition to standard proposi-
tional connectives, MFOTL (Figure 2) features temporal operators
with intervals specifying real-time constraints, events with argu-
ments taken from an infinite domain (e.g., integers or strings), and
quantifiers. MFOTL has been recently extended to support addi-
tionally SQL-style aggregations [5], (recursive) let bindings [26],
and function applications in terms [18]. This logic is at the core of
a mature ecosystem of tools and case studies that demonstrate its
relevance to real-world applications [7].

Example 2.1. Consider the following requirements adapted from
the GDPR: (R1) when a user’s personal data is processed for some
purpose, the user should have consented to the processing and not
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revoked this consent; (R2) whenever a user requests the deletion of
their personal data, then this data should be deleted within 30 days.

In the context of runtime enforcement, such requirements can
be formalized by: a signature, consisting of a list of relevant events;
a set of capabilities for each event, indicating whether the event
can be caused or suppressed by the PEP; and a formula (also called
‘policy’) describing compliant sequences of events.

For (R1), we introduce four events, Use(d, p), PersonalData(d, u),
GiveConsent(u, p), and RevokeConsent(u, p), that read as: ‘data d
is used/processed for purpose p’, ‘data d is personal data relating to
user u’, ‘user u consents to the processing of their data for purpose
p’, and ‘user u revokes their consent to use their data for purpose
p’. The event Use is suppressable and the other three events are
only observable. The MFOTL formula encoding (R1) is

O(Yu,d, p. Use(d, p) A PersonalData(d, u)
— (—RevokeConsent(u, p) S GiveConsent(u, p))). (1)

To formalize (R2), we use two additional events, DeleteReq(u)
and Delete(d), meaning ‘user u requests deletion of their personal
data’ and ‘data d is deleted’, respectively. To enforce this require-
ment, Delete should be causable by the PEP, whereas DeleteReq
needs only be observable. Assuming that the system’s time unit is
seconds, the corresponding formula is

O(VYu. DeleteReq(u)
— 9[0,2592000] Vd. (PersonalData(d, u) — Delete(d))), (2)

where 2592000 is the number of seconds in 30 days.

In recent work, we implemented three PDPs for MFOTL: ENF-
Pory [14], WHYENF [19], and ENFGUARD [18], which support in-
creasingly large fragments of MFOTL. WHYENF and ENFGUARD are
proactive PDPs: they not only respond to user events, but can also in-
sert events before a deadline (‘in the nick of time’ [3]), to discharge
obligations. This feature is important when enforcing policies such
as (2), which require some action—here, Delete—to be taken inde-
pendently of system events. ENFGUARD additionally supports func-
tion applications, aggregations, and let bindings, making it the most
expressive MFOTL enforcer available. Each of these tools takes as
input a signature, a set of capabilities, and a formula. It first stati-
cally checks whether the provided formula is enforceable according
to the given capabilities, and, when this is the case, proceeds to en-
force the formula at runtime. Since first-order enforceability is un-
decidable [14], we use typing rules to identify an enforceable syntac-
tic fragment of MFOTL [18, 19]. We demonstrate that our enforce-
able fragment is expressive enough to support a large set of both
privacy and non-privacy benchmarks found in previous work [18].

Runtime enforcement in web applications

To evaluate our tools’ practicality, we conducted multiple case
studies [13, 15, 16] that use our PDPs as backends for enforcing
privacy requirements in web applications at runtime.

First, we built a prototype web development framework that
supports the deployment of untrusted applications processing user
data [16]. Users can define custom privacy requirements in MFOTL.
The PEP uses dynamic information-flow control to track the flows
of information in the code and produce appropriate events that are
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checked by ENFPory for compliance with the user-defined require-
ments. We ported three existing applications to our framework
with modest latency overhead (<15 ms).

We subsequently extended these case studies to enforce six key
GDPR requirements in web applications [15]. In our extended frame-
work, called WebTTC+, a privacy dashboard is available for users
to exercise their rights, e.g., request the deletion of their data. Ad-
ditionally, users can use a browser extension to give or withdraw
consent for any of their inputs to an application. The latency over-
head remains moderate (<10 ms).

More recently, we developed a lightweight instrumentation li-
brary for ENFGUARD, which supports the enforcement of arbitrary
Python code with ENFGUARD with minimal coding effort [13]. This
new library and PDP are at the core of an ongoing effort to build
larger case studies of web privacy enforcement.

3 Model-driven Privacy

For developers, ensuring that systems comply with privacy re-
quirements is a difficult, error-prone task. To address this chal-
lenge, we propose a model-driven system-development method-
ology, focusing on purpose-based data usage and user consent re-
quirements [20]. As indicated in Table 1, developers define data and
privacy models, from which our tools automatically generate an ap-
plication with a fully-configured privacy enforcement mechanism.

Developer defines Our approach generates

Data model Data classes & method stubs
Privacy model Runtime instrumentation
— user class Authentication

- personal data classes Privacy classes & helper methods
- purposes and their hierarchy ~ Database configuration
- declared purposes Privacy notice & consent management

- actual purpose mapping Purpose tracking mechanism

Table 1: Model-driven privacy methodology

Modeling and enforcing privacy requirements

In our approach, developers first specify a data model, describing
the system’s state space and privacy-relevant aspects such as what
constitutes personal data. The model, given by a UML class diagram,
describes a set of classes and enumeration types, each with their
own attributes and methods. Classes may be related by associations.

0.1
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name: Stri +moderates
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Figure 3: Data model of an event management platform

Example 3.1. Figure 3 (black part) shows a data model of an event
management platform that includes the classes Person, Event,
Category, and Ad, related by seven associations. Each class defines
a set of attributes and methods; for example, the Person class in-
cludes an email attribute and a show_profile() method.
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Based on the data model, the privacy model identifies the user
class and classes containing personal data. It further defines a set
of purposes and an associated purpose hierarchy. It also contains a
privacy policy, which is a set of declared purposes, each specifying:
(1) personal data, (2) the purpose of its use, and (3) a condition
under which usage is permitted. Finally, the privacy model defines
a purpose mapping, relating some methods to their actual purposes.

Example 3.2. Consider a privacy policy of the event platform:

O  We use your subscription information to recommend you
events, but only if you have attended fewer than three.

O  We use your email address information for functional
purposes, such as displaying your profile.

The privacy model includes PROFILE, RECOMMENDATIONS, and
the composite FUNCTIONAL purpose, which encompasses PROFILE.
The Person class is both the user and personal data class. Be-
sides the above policy, the model maps recommend_events() and
show_profile() to RECOMMENDATIONS and PROFILE, respectively.

Prior to generating the PDP and PEP, our approach (and asso-
ciated tools) first performs a model-to-model transformation, in-
tegrating parts of the privacy model into the data model, i.e., in-
troducing a Consent class that links the data owner, their personal
data, and a purpose (Figure 3, gray part). It afterward generates the
corresponding classes with method stubs, authentication, database
configurations, and a privacy enforcement mechanism. This mecha-
nism includes: a privacy notice where users can grant or revoke con-
sent for each declared purpose; a purpose-tracking mechanism that
maintains a stack of active purposes during execution by pushing
the purpose of each called method (as defined in the purpose map-
ping) and popping it on return; and runtime instrumentation that
intercepts personal data actions and ensures they are allowed only
if every purpose on the stack matches a declared purpose whose
condition holds and for which the data owner has given consent.

Finally, it is the developer’s responsibility to implement the appli-
cation’s functional requirements by writing code for the generated
method stubs. Depending on this implementation, different data ac-
tions, such as reading (e.g., v = user.email) or updating personal
data (e.g., user.email = v), may be triggered at runtime. The sys-
tem’s instrumentation intercepts these actions during execution. If
a privacy violation were to occur, the read action would return a
restricted default value, whereas other actions would raise a pri-
vacy exception. Through this instrumentation of data actions, our
approach ensures that privacy policies are consistently enforced
throughout the system (complete mediation). This helps develop-
ers avoid accidental privacy violations and thereby reduces the risk
of non-compliance.

Example 3.3. Consider the following Python code snippet, in
which the developer replaces the generated method stub of the

show_profile() method with a concrete implementation:
# Generated method stub:
def show_profile():
# Code implemented by developers
ucategories = current_user.subscriptions # a violation
uemail = current_user.email # not a violation
return render_template('profile.html',{'categories': ucategories,
'email': uemail})

When the user u executes this method, the system pushes the Pro-
FILE purpose onto the active purpose stack. Based on Example 3.2,
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Approach Capabilities

Activeness Expressiveness

Policy Language Integration References

Proactive Enforcement Suppression & Causation Proactive

Model-Driven Privacy Suppression only Reactive

Enforceable GDPR MFOTL
Purpose limitation OCL

general PDP & manual PEP [13, 15, 18, 19]
generated PDP & PEP [4, 20, 21]

Table 2: Comparison of our two approaches

reading u’s subscriptions violates the privacy policy and is al-
ways suppressed. In contrast, reading ’s email is permitted only if
u has given consent for either FUNCTIONAL or PROFILE purposes.

Evaluation

To demonstrate the practicality of this approach, we developed
model-to-code transformations for two popular web frameworks:
ASP.NET (C#) and Flask (Python). The latter transformation, called
vAcTIONGUI, is publicly available at [21]. Our performance evalu-
ation shows that the instrumentation on data actions introduces
modest overhead, e.g., viewing a personal timeline on a social net-
working app incurs a fraction of a second per request.

We also conducted an empirical study in a graduate-level secu-
rity engineering course. Sixty students implemented privacy re-
quirements for the event management platform (Figure 3) twice:
once manually and once using the vAcTioNGUI tool. Despite hav-
ing less experience with model-driven development and tools, stu-
dents using vAcT1IoNGUI required 33% less time and wrote eight
times less code to implement applications that are, on average, 64%
less prone to privacy violations.

4 Conclusions

We addressed the challenge of providing technical foundations for
privacy by design using two runtime enforcement approaches. The
first one, based on the ENFGUARD and INSTRLIB tools, applies metric
first-order temporal logic to specify and proactively enforce privacy
requirements. The second one, based on the vAcTIoNGUI tool, uses
model-driven development to generate applications with built-in
privacy enforcement. Both have been evaluated in practical case
studies, showing their effectiveness and low runtime overhead.

The two approaches complement each other. The former sup-
ports a more expressive policy language and can proactively enforce
a wider range of requirements. In contrast, the latter focuses on
the most critical aspect of privacy. Moreover, it is more developer-
friendly and simpler to integrate into existing development work-
flows as it generates the policy enforcement point automatically,
without requiring a manual instrumentation effort (Table 2).

Still, achieving rigorous, tool-supported privacy by design faces
further challenges. Supporting collaboration between lawyers and
system designers to audit IT systems for legal compliance is es-
sential, especially in linking laws to system actions. Additionally,
enforcing data protection aspects like data minimization [10, Art.
5(1)(c)], which cannot be enforced by observing individual execu-
tions, is an exciting topic to explore.
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