
Is Modeling Access Control Worth It?
David Basin

basin@inf.ethz.ch
ETH Zürich

Zurich, Switzerland

Juan Guarnizo
juan.guarnizo@inf.ethz.ch

ETH Zürich
Zurich, Switzerland

Srđan Krstić
srdan.krstic@inf.ethz.ch

ETH Zürich
Zurich, Switzerland

Hoang Nguyen
hoang.nguyen@inf.ethz.ch

ETH Zürich
Zurich, Switzerland

Martín Ochoa
ocho@zhaw.ch

Zurich University of Applied Sciences
Zurich, Switzerland

ABSTRACT
Implementing access control policies is an error-prone task that can
have severe consequences for the security of software applications.
Model-driven approaches have been proposed in the literature and
associated tools have been developed with the goal of reducing the
complexity of this task and helping developers to produce secure
software efficiently. Nevertheless, there is a lack of empirical data
supporting the advantages of model-driven security approaches
over code-centric approaches, which are the de-facto industry stan-
dard for software development.

In this work, we compare the result of implementing the same
functional and security requirements by multiple developer groups
in the context of a security engineering graduate course.We thereby
obtain evidence on the security and efficiency of a tool-based model-
driven approach to security from the literature compared to a direct
implementation in a well-known, modern web-development frame-
work. For example, the projects using model-driven development
pass up to 50% more security tests on average with less develop-
ment effort. Also, we observe that models are twice as concise as
manual implementations, which improves system maintainability.

CCS CONCEPTS
• Software and its engineering→ Systemmodeling languages;
• Security and privacy → Software security engineering; Ac-
cess control.

KEYWORDS
access control, security engineering, modeling languages

ACM Reference Format:
David Basin, Juan Guarnizo, Srđan Krstić, Hoang Nguyen, andMartín Ochoa.
2023. Is Modeling Access Control Worth It?. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’23),
November 26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3576915.3623196

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark.
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623196

1 INTRODUCTION
Developing secure web applications is difficult and error-prone. In
particular, the incorrect implementation or configuration of access
control is the most critical web application security risk according
to the OWASP Top 10 report for 2021 [26]. For example, in 2019 the
financial services company giant First American had a data breach
that put 885 million sensitive customer records at risk because the
company did not have proper access control [37]. A logged-in user
could access other customers’ information simply by changing one
value in the URL. The leaked data included bank account numbers,
social security numbers, driver’s license information, and more.

Abstractly, access control determines whether actions (like those
for creating, reading, updating, and deleting data) are authorized
and prevents unauthorized actions. Typically, applications deter-
mine which actions are authorized based on contextual information,
like the data affected by the action, or data about the user carrying
out the action. A special case is role-based access control (RBAC)
where only the user’s role is considered. But, more generally, ac-
cess control may be programmatic or fine-grained (FGAC) where
the authorization decision may depend on arbitrary parts of the
application’s current state. Ideally, the application should enforce
the least privilege and complete mediation principles [30, 31]. The
former requires that each user only performs actions that are nec-
essary to carry out their business role within the application’s do-
main. The latter requires that every action is checked for authority.

In practice, these two seemingly simple principles are difficult to
implement in a code-centric way as the implementation process is
error-prone and does not scale with the application size. Many devel-
opment frameworks offer libraries [1, 3, 20, 22, 23, 25] that can sim-
plify the implementation of FGAC, but they still require non-trivial
effort to use, maintain, and evolve. Alternatively, developers can
use a model-driven security (MDS) methodology and tools [5, 6, 8]
that tightly couple the system implementation with FGAC policies
defined using design models that integrate security into the design
process. These design models resemble typical abstract access con-
trol models: they are simple, concise, and expressive. They also have
formal semantics that supports automatically checking least priv-
ilege using model checking techniques [4]. Moreover, MDS tools
can automatically generate correct-by-design implementation of
the authorization decisions based on the models and they can in-
strument every application’s action to achieve complete mediation.

In this paper, we investigate why developers struggle to imple-
ment access control correctly and whether the main cause is the
complexity resulting from the low abstraction level of existing li-

https://doi.org/10.1145/3576915.3623196
https://doi.org/10.1145/3576915.3623196

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Basin, Juan Guarnizo, Srđan Krstić, Hoang Nguyen, & Martín Ochoa

braries combined with the need for programmatic access control.
Moreover, we investigate whether using higher-level abstractions,
namely those provided by MDS, would significantly improve cor-
rectness and reduce development effort. To answer these questions,
we have conducted the first empirical study of developers’ behav-
ior when tasked with implementing access control for a simple web
application, both directly and using MDS. We collect and analyze
quantitative and qualitative data from both types of development,
such as the quality of the implementation and the experience of
the developers, in order to derive and support our insights.

This study was conducted as part of a project in a graduate secu-
rity engineering course offered by the authors. The course covers
software engineering principles for building secure systems. In the
course project, students are asked to develop a secure web applica-
tion twice: once using an MDS tool called ActionGUI [5], and once
by manual programming in Python (Section 2). Both alternatives
have an educational value as students learn to implement autho-
rization at two very different abstraction levels. We base our study
on computer science students from a software engineering course
as they are an acceptable proxy for developers [17, 29, 33].

Our study (Section 3) considers each student’s submission con-
sisting of the two alternative implementations of the secure web
application (Section 4). Projects are assessed using more than 1,000
predefined unit tests that evaluate the correctness of the access
control policies. In particular, we design unit tests to exhaustively
exercise both authorized and unauthorized actions within the appli-
cation. Additionally, the students are asked to complete an anony-
mous survey where they provide their subjective assessment of the
two alternative approaches’ difficulty and effectiveness.

Our contributions and key insights (Section 5) are:

• We carry out and report on the first empirical study on MDS,
and more generally on implementing access control, and we
compare it against the current state of practice.

• Modeling access control policies and relying on MDS result
in 50% fewer failed tests in the resulting applications. This
improvement additionally carries over to application main-
tenance and evolution.

• Complete mediation provided by model transformations is
crucial in improving security, while least privilege improves
only marginally with manual model inspection. We hypoth-
esize that automatic model analysis would improve the en-
forcement of least privilege.

• Modeling access control policies beforemanually implement-
ing them in code provides only limited benefit. It is impor-
tant to use MDS tools to automatically generate configura-
tion, code, and other artifacts from the models.

• The effort required for using each technique is similar. How-
ever, models are twice as concise as the manual implementa-
tion, which improves maintainability.

Finally, as this is the first empirical study on using MDS for access
control (Section 6), we hope that our relatively small, yet challeng-
ing, web application case study can serve as a benchmark for other
studies on access control implementation and configuration. All
the material used to conduct this study is provided in our publicly
available artifact [7].

2 PRELIMINARIES
System design is an often neglected aspect in system development,
although a detailed design is critical in bridging the gap between
(high-level) system requirements and (low-level) implementations.
In the design phase, system models are built and later refined into a
system implementation. These models remain useful artifacts that
connect the requirements and the implementation. Model-driven
security (MDS) [6] is a model-driven development [2, 9, 19] method-
ology that connects the system implementation with security re-
quirements via design models that support security. As the model
semantics are defined in terms of the allowed system executions,
MDS can use semantic-preserving model transformations to gen-
erate code that checks every system action (i.e., achieves complete
mediation) and prevent system executions disallowed by the mod-
eled security requirements.

In particular, MDS focuses on a specific class of security require-
ments: fine-grained access control (FGAC) policies that base au-
thorization decisions on the application’s current state. In MDS, a
software engineer first creates a design model in a design model-
ing language (e.g., a UML class diagram). Next, a security engineer
creates a security model in a security modeling language (e.g., like
SecureUML [21]). Via model transformations, a secure-by-design
implementation is obtained from the models.

ActionGUI (AG) [5] is a tool that supports the MDS methodology.
It implements a model transformation that takes data, security, and
GUImodels as input and produces a fully functional web application
with a configured enforcement mechanism for the FGAC policies
specified by the security model. The goal of the design process is to
obtain a security model that satisfies the principle of least privilege:
users are granted only the permissions necessary for them to carry
out their business role within the application.

A data model in AG is used to define the structure of the well-
formed states of the system. It is a simplified UML class diagram, i.e.,
a set of classes 𝐶 that can be related by binary associations 𝐴 ⊆ 𝐶2

and may have attributes 𝑎𝑡𝑡𝑟 (𝑐), for 𝑐 ∈ 𝐶 . Each association 𝑎 ∈ 𝐴

is binary: it has two association-ends 𝑒𝑙 and 𝑒𝑟 connecting two
classes. Each association 𝑎 declares both association-ends 𝑒𝑛𝑑 (𝑎) =
{(𝑒𝑙,𝑚𝑙, 𝑐𝑙), (𝑒𝑟,𝑚𝑟, 𝑐𝑟)}with their multiplicities𝑚𝑙,𝑚𝑟 (1 or *), and
(possibly) uniqueness constraints 𝑐𝑙, 𝑐𝑟 (Set or Bag).

Example 2.1. Consider the UML class diagram drawn in black in
part of Figure 1 on page 5. The corresponding AG data model has
three classes 𝐶 = {Person, Event, Category} and seven associa-
tions in𝐴. All associations’ multiplicities are unconstrained, except
for the one between the Person and Event classes: each instance of
an Event can be associated with at most one Person instance. All as-
sociation ends with multiplicity ∗ are considered as sets by default.

Given a data model, the set of actions A that a user may take is

{create(𝑐), delete(𝑐) | 𝑐 ∈ 𝐶} ∪
{read(𝑐, 𝑛), add(𝑐, 𝑛), remove(𝑐, 𝑛) | (𝑛, ∗, _) ∈ 𝑒𝑛𝑑 (𝑎), 𝑎 ∈ 𝐴} ∪
{read(𝑐, 𝑛), update(𝑐, 𝑛) | 𝑛 ∈ 𝑎𝑡𝑡𝑟 (𝑐), 𝑐 ∈ 𝐶, or

(𝑛, 1, _) ∈ 𝑒𝑛𝑑 (𝑎), 𝑎 ∈ 𝐴}.

For example, a user may create an Event object (create(Event)
action), set its name (update(Event, name) action), and add it to a
category (add(Event, categories) action).

Is Modeling Access Control Worth It? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

The object constraint language (OCL) [15] is a first-order logic
used to define properties of data models. OCL syntax has a pre-
defined part (e.g., integer (Z) addition, string (String) concatenation,
and collection functions like forall, select, size, etc), and a variable
part that depends on the given data model. Every OCL expression
evaluates to a value of some type. We denote with 𝜃𝑡 all OCL
expressions that evaluate to instances of type 𝑡 . OCL expressions
that evaluate to Booleans (𝜃B) are called OCL constraints.

OCL’s dot-operator is used to access an object’s attribute (e.g.,
p.name), or an association end, i.e., the collection of objects linked
with the object via an association (e.g., p.events). For calling collec-
tion functions, an arrow notation is used (e.g., p.events→size()).
When used with collections, the dot-operator maps over them. OCL
expressions can be written in the context of an object, and such an
object can be referred to using the keyword self .

Example 2.2. If the OCL constraint self .managedBy→ forall(𝑚 |
self .attendants→ includes(𝑚)) is given as an invariant of the
Event class, it would restrict the possible objects of the Event class
to those that always have all its managers as attendants.

The set of free variables of an OCL expression 𝜙 is fv(𝜙), e.g.,
fv(self .events→forall(𝑏 |𝑎.concat(𝑏.title) .size() < 𝑐)) = {𝑎String,
𝑐Z}. Here the variable 𝑏Event is bound by the forall function. Note
that we subscript variables with their types for clarity.

A security model defines which actions are authorized to be
carried out by users in different roles, i.e., an FGAC policy. Let R be
a set of roles and ⪯R a partial order on these roles representing the
role hierarchy on R. Intuitively, if 𝑟1 ⪯R 𝑟2, then 𝑟2 has all of 𝑟1’s
permissions. The set R can be modeled as an enumeration type.

Example 2.3. Suppose an application has the rolesR = {Freeuser,
Premiumuser,Moderator,Admin} and a role hierarchy Freeuser ⪯R
Premiumuser ⪯R Moderator, and Premiumuser ⪯R Admin. Then,
for example, the Admin role has all the permissions of the Freeuser
role, whereas it is incomparable with theModerator role.

AG assumes that a data model has a class 𝑐 representing the
application’s users with role ∈ 𝑎𝑡𝑡𝑟 (𝑐) with (enumeration) type R
(e.g., Person class in Figure 1).

Authorization constraints are OCL constraints that express con-
ditions under which a user (e.g., Alice) in some role (e.g., Freeuser)
may carry out some action (e.g., update(Event, title)). Such a
constraint is written in the context of the object representing the
resource; hence self evaluates to that object (e.g., an instance of
the Event class). The user object is represented as a free variable
caller in the constraint. Depending on the action, other factors may
also be relevant when making the authorization decision. For ex-
ample, when updating an attribute (e.g., title), its new value can
influence the decision, which is captured by the free variable value.
Given a valuation for the variables, the OCL constraint evaluates to
a Boolean that encodes whether the user can carry out the action.

Given a data model, let Constr(𝑉) = {𝑒 | 𝑒 ∈ 𝜃B, fv(𝑒) ⊆ 𝑉 } be
the set of OCL constraints containing some of the free variables in𝑉 .
Given an action 𝑎 ∈ A, the set of authorization constraints C(𝑎) is:

C(𝑎) =

Constr({caller}), if 𝑎 is a create, delete, or read
Constr({caller, value}), if 𝑎 is an update
Constr({caller, target}), if 𝑎 is an add or remove.

The free variable target represents the object that is added to or
removed from self’s association end.

In addition to roles and their hierarchy, AG’s security model de-
fines a relation PA ⊆ ⋃

𝑎∈A R × {𝑎} × C(𝑎) representing a set
of FGAC permissions. In practice, AG defines this relation hierar-
chically starting from roles, resources, actions, and finally autho-
rization constraints. Intuitively, an action by a user is allowed if it
is associated with a permission containing an authorization con-
straint satisfied on the current instance of the data model, and the
user’s role is greater than or equal to the role in the permission.

Example 2.4. Consider the data model from Example 2.1 and the
roles from Example 2.3. The Person class represents the applica-
tion’s users. Suppose one wants to model the security requirement:
All authenticated users can view the list of attendants of a public event.
Only attendants of a private event have access to this information.

The requirement can be expressed as the FGAC permission
(Freeuser, read(Event, attendants), 𝜙) ∈ PA where 𝜙 is the OCL
constraint: not self .private or self .attendants→ includes(caller).
The permission for a Freeuser role is sufficient as other roles inherit
its permissions. In AG’s syntax the permission is written as follows:

role FREEUSER {
Event {

read(attendants) constrainedBy [not self.private
or self.attendants->includes(caller)]

//other FREEUSER permissions on the Event resource
}
//other FREEUSER permissions

}
//other roles' permissions

A GUI model defines the widgets contained in each page of the
web application (e.g., labels, text boxes, buttons, tables, and more)
and their event handlers’ behavior (e.g., the functionality executed
on a button click). The behavior can be specified using simple
control-flow structures (like assignments, if-then-else statements,
and loops) and actions from A.

AG’s model transformations generate a Java web application
in the Vaadin framework [35]. Intuitively, every action from A is
wrapped in an if-then-else statement that checks if the action is
allowed based on the current user and application state. In this way
AG achieves complete mediation by design.

Flask [12] is a Python library for developing web applications. It
binds URLs to Python functions (called endpoints) that implement
the functionality that the web application provides when a user
visits a URL. Flask applications typically rely on other libraries:
SQLAlchemy [32] for managing persistent state in a database, and
Flask-User [34] for authentication. Whenever a Flask endpoint is
called by an authenticated user, the Flask-User library initializes
the object called current_userwith the instance of that user. Flask
applications can also use existing authorization libraries, such as
Flask-OSO [23], Flask-Principal [25], Flask-Authorize [3].

3 STUDY DESIGN
We now define the scope and the goals of our study. We first out-
line our main research questions (Section 3.1). We then describe
the project’s design and timeline (Section 3.2). The project is imple-
mented by students as a course project within a security engineer-
ing course and we also describe the survey that we conduct after

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Basin, Juan Guarnizo, Srđan Krstić, Hoang Nguyen, & Martín Ochoa

the project (Section 3.3). Along the way, we explain how the project
and the survey data enable us to answer the research questions.

3.1 Research Questions
In this paper we focus solely on access control, which includes
the process of implementing authorization decisions and enforc-
ing them in a system. Secure coding aspects of building secure sys-
tems, like input sanitization or control-flow integrity, are out of our
study’s scope. Furthermore, as authorization decisions depend on
the current user’s attributes, we assume the existence of an appro-
priate authentication mechanism. The mechanism should correctly
associate each user of the application with an object representing
the user within the application’s data model.

Hereinafter, security requirements refer to access control poli-
cies. During system development, it is common to distinguish be-
tween the design and implementation phases. We assume that the
modeling of system requirements happens during the design phase,
whereas their implementation happens during the implementation
phase. When developing systems using the MDS methodology, no
implementation effort is needed to meet security requirements as,
given the design, the relevant parts of the implementation are gen-
erated directly by model transformations. In manual code-centric
approaches the design phase is skipped and all system requirements
are addressed in the implementation phase.

To compare the model-driven and code-centric approaches for
implementing access control, we aim to answer the following re-
search questions:
RQ1 Can, and to what extent, modeling access control improve

the enforcement of least privilege?
RQ2 Can, and towhat extent, modeling access control help achieve

complete mediation?
RQ3 What is the effort needed to implement, fix, and evolve se-

curity in terms of lines of code?
RQ4 What is the effort needed to implement, fix, and evolve se-

curity in terms of time?
RQ5 Is implementing (resp., designing) access control more effec-

tive given a design (resp., reference implementation)?
RQ6 What are the most challenging aspects of access control to

specify (resp., implement)?

3.2 Project Timeline and Format
Table 1 presents the timeline of the course project, where each
row represents a project phase, and the columns describe the input
initially provided, the final deliverable to submit, and the phase’s
duration. Within the course project, students were tasked with
securing (i.e., implementing access control for) a case study web
application (see Section 4.1) using both AG and Flask. The project
consists of four consecutive phases, where Phases I and II each
last two weeks, and Phases III and IV are each one week long. The
project is carried out individually by each student.

In Phase I, the students were divided arbitrarily into two groups,
A and B. Group A was tasked with securing the AG application,
whereas group B was tasked with securing the Flask application. In
Phase II, the two groups switched roles, with Group A securing the
Flask application and Group B securing the AG application. The
reasons for dividing the students into groups is twofold. First, we

Table 1: Project Schedule

Input Deliverable Duration

Phase I Requirements
AG security model 2 weeks

(Group A) TemplateAG
Phase I Requirements

project.py, (*.py) 2 weeks
(Group B) TemplateFlask
Phase II

TemplateFlask project.py, (*.py) 2 weeks
(Group A)
Phase II

TemplateAG AG security model 2 weeks
(Group B)
Phase III TestsAG AG security model

1 week
(All groups) TestsFlask project.py, (*.py)
Phase IV ChangeRequest

All files 1 week
(All groups) TemplateUpdates
Survey

Questionnaire Anonymous answers 8 days
(All groups)

wanted to ensure that we address all students’ questions about the
project description (i.e., requirements engineering projects), simul-
taneously for both versions of the application in Phase I. Otherwise,
if all students use a single approach in this phase, some require-
ments may diverge across the two implementations, making them
incomparable. Second, we aimed to answer RQ1 and RQ2, i.e., if,
and to what extent, modeling access control can improve enforce-
ment of least privilege and complete mediation.

Both groups initially received the same Requirements document
containing the application’s functional and security requirements,
along with the respective ActionGUI (TemplateAG) and Flask (Tem-
platePython) initial code (hereinafter called templates) implement-
ing only the application’s functional requirements. The two tem-
plates were designed such that the students only need to modify
a pre-defined number of files. The students need to modify and
submit only the AG security model. The security model provided
within TemplateAG is trivial as it permits all actions. In the case
of Flask, the students only need to modify and submit a file called
project.py. This file initially contains all the Flask endpoints im-
plementing the application’s functional requirements. If the stu-
dents decide to factor out some of their code into separate .py files,
they must also submit these files.

The students were tasked with eliciting and analyzing the se-
curity requirements from the document and then modifying the
respective templates to implement these requirements. In Phase II,
the groups received the remaining templates and implemented the
other version of the application. After Phase II we can answer RQ5,
i.e., we assess the impact of the prior experience in implementing
(resp. designing) access control in Phase I on the design (resp. im-
plementation) in Phase II.

In Phase III, we provide test cases designed to exercise the se-
curity requirements in both applications (TestsAG and TestsFlask).
Each student was required to study the test cases and fix both of
their implementations to pass as many tests as possible. By ana-
lyzing which tests failed most frequently across all submissions in
each phase, we can determine which aspects of access control were
most difficult to implement correctly (RQ6).

Is Modeling Access Control Worth It? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Finally, in Phase IV we release the final inputs for the project:
new functional and security requirements are given in the Chang-
eRequest document. We also provide the students updates to both
the AG and Flask templates (TemplateUpdates patch) to implement
the functional requirements. The students are again asked to elicit
and analyze the security requirements and implement them in both
of their applications. The TemplateUpdates patch implements func-
tional requirements by only modifying the parts of the templates
that the students did not need to submit in earlier phases, so the new
changes in Phase IV can just focus on the security requirements.

We analyze difference in the lines of code between the submitted
deliverables across the phases to determine the effort needed to
implement, fix, and evolve security in applications (RQ3).

All the inputs from Table 1 provided to the students are publicly
available in our artifact [7].

3.3 Survey
As the final part of the study, we conducted an anonymous survey
to gather data on the experiences and opinions of the participants,
as well as the time needed for each project phase. The main goal
of this survey is to answer the research questions related to the
time efficiency of the two approaches for implementing, fixing, and
evolving security requirements (RQ4). The survey consists of 20
questions (Appendix A) covering topics such as the students’ prior
experience with AG and Flask development, the hours spent to
complete each project phase, and their personal experiences and
opinions. The survey was open for eight days and invitations to
participate were distributed via email to all enrolled students that
participated in at least one project phase.

4 WEB APPLICATION CASE STUDY
Here we describe the functional and security requirements of the
web application, called Event Platform, to be developed within the
project. We designed this application to have a very simple func-
tionality, but complex security requirements. The students have
received (almost) identical text as in this section [7].

We also describe the process of conducting the project, in partic-
ular how we adjusted the requirements during Phase I as a conse-
quence of the requirements engineering process. This adjustment
is in addition to the planned requirements evolution in Phase IV.

4.1 Event Platform
The Event Platform web application is a simplified version of typi-
cal event management platforms, like Meetup or Facebook Events.
Anyone can visit the platform and register to access limited func-
tionality. These users can also purchase a premium subscription to
access additional features, like creating private events.

The application is used to create and maintain a set of events
curated by its users: users can create, attend, request to attend, and
(help) manage events. Additionally, events can be organized into
categories, managed by moderators, to which users can subscribe.
Management of the platform’s users is done by administrators.

4.1.1 Data model. Figure 1 shows Event Platform’s data model.
The model consists of three classes (Person, Event, and Category)
and seven binary associations. All association ends withmultiplicity
* are considered sets.

Figure 1: Data model of the Event Platform web application
(black) and its evolution (red)

The Person class represents platform users and stores their name,
surname, username, password, and role. The Event class includes
a title, description, and a Boolean flag private. The Category
class only contains the name of the category.

There are four associations between Person and Event classes.
A person can create, manage, attend, or request to join multiple
events; hence an event has owner, managedBy, attendants and
requesters association ends. Dually, an event can be owned by
exactly one person, and multiple people can manage, attend, or
requested to join it. Respectively, these correspond to the events,
manages, attends, and requests association ends.

Each event can belong to zero or more categories, which are re-
ferred to as the event’s categories. Each category contains zero
or more events, which are referred to as the category’s events.
A person can moderate or subscribe to multiple categories, and
then they are in the category’s moderators and subscribers, re-
spectively. Similarly, a category can be moderated or subscribed to
by zero or more moderators; these are the user’s moderates and
subscriptions, respectively.

Furthermore, the following invariants should hold on the data
model: the managedBy and attendants association ends of an event
always contain the event owner; similarly, the attendants associa-
tion contains all the event managers. Note that the latter invariant
corresponds to the one in Example 2.2. Category moderators can
contain only persons with theModerator role.

4.1.2 Security requirements. As stated before, we focus on FGAC
policies as security requirements.

The authenticated users (who have previously registered with
the application) can have one of the following four roles: Freeuser,
Premiumuser,Moderator, or Admin. Since in AG every action must
be executed in a context of a role, we explicitly introduce two more
roles: the Visitor and the Lib role.

Users that interact with the application without previous authen-
tication have their actions executed in the context of the Visitor
role in AG. The Lib role is used to perform authentication actions.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Basin, Juan Guarnizo, Srđan Krstić, Hoang Nguyen, & Martín Ochoa

In web applications this is typically done by an authentication li-
brary, hence the name of the role. To achieve this in the AG Lib role
requires the corresponding permissions for logging in (i.e., reading
username, password, and role of a Person), and for registering
new users (i.e., creating a Person, initializing their username and
password, and initializing their role to Freeuser). These two roles
are not explicitly modeled in the Flask version of the application. In
particular, the functionality of the Lib role is carried out by the Flask-
User authentication library. The students were not required to mod-
ify the library to ensure least privilege. Rather, the library was as-
sumed to be correctly implemented, as is typically done in practice.
The permissions of theVisitor role are enforcedwhenever endpoints
are called by a non-authenticated user, which can be detected by call-
ing the Flask-User’s current_user.is_authenticated property.

In what follows, we define the application’s FGAC permissions
based on two interrelated dimensions: user-based and role-based.
When we refer to everyone, we mean both authenticated and non-
authenticated users; otherwise we make an explicit distinction.

User-based permissions. We specify access control permissions
for the set of attributes and association-ends of each class.

Authenticated users can create public events, and everyone can
read a public event’s core information such as its title, description,
and owner as well as the event’s categories. For private events,
only attendants can read the core information. Event managers
have permission to edit the event’s core information, except for
ownership, which cannot be changed once it has been initially set.
Additionally, only event managers canmodify the event’s categories
by adding or removing them.

For a public event, authenticated users can view the list of at-
tendants and managers. However, for a private event, only its at-
tendants have access to this information. The event owner has the
permission to promote and demote users between being attendants
and managers. Managers are authorized to remove an attendant
from their managed event as long as the attendant is not the event’s
manager. Additionally, managers can accept new attendant requests
to join their managed event. Any authenticated user, except event
managers, can opt to withdraw themselves from attending the event.
The event owner cannot remove themself from managing the event.

Users can request to join a public event and withdraw their re-
quests. Managers can see all outstanding requests for the respec-
tive events they manage and can accept or deny these requests.

Within the Person class, authenticated users can view the core
information (name, surname, username, and role) of any users. Ad-
ditionally, they can update their own passwords and core informa-
tion, with the exception of their role. Each user can access the list
of the events they own, manage, attend, or have requested to join,
as well as the categories to which they have subscribed. The cate-
gories’ moderators can be viewed by everyone.

The name, associated events, and moderators of a category can
be read by everyone. However, only the moderators of the category
can see its subscribers. Users can remove themselves from being a
category’s moderator.

Role-based permissions. The following access control permissions
are defined based on the system roles:

• The Visitor role can perform actions allowed to everyone.

• The Freeuser role can perform actions allowed to any au-
thenticated user.

• The Premiumuser role has all the permissions of the Freeuser
role and can also subscribe to and unsubscribe from cat-
egories, create private events, and request to join private
events.

• TheModerator role has all the permissions of the Premiu-
muser role and can remove events from the category they
moderate.

• The Admin role has all the permissions of the Premiumuser
role, as well as to delete persons, and can edit any person’s
password and role, create and delete categories, edit cate-
gories’ names, and add or remove users with the role moder-
ator as moderators of a category.

Notice that the role hierarchy induced by the role-based permissions
above is exactly the one from Example 2.3.

4.1.3 Security tests. We have designed an extensive set of test cases
for both the AG and Flask applications. The tests are used both to
assess the correctness of the implemented projects and as inputs
for the project’s Phase III.

The test cases are organized into groups based on scenarios
inspired by the capabilities of different roles. For example, the Lib
role can register a user, whichmeans that it can create an instance of
a Person and initialize its username and password fields. Moreover,
each test can be executed by a caller in a different role. While the
above scenario should be allowed when executed by the Lib role, it
should not be allowed in the case the caller is in any other role. We
summarize all the test cases in Appendix B.

For each test case group, we verify whether the submission
correctly implements the access control policies, and whether the
data invariants still hold after the actions have been performed.

As AG instruments every action from A, we have defined a set
of test cases for each role that covers each of these actions, under
different eligible scenarios (i.e., feasible application states). In total,
there are 455 test cases, consisting of 52 test cases for Lib, 59 for
Visitor, 84 for Freeuser, 86 for Premiumuser, 88 forModerator, 86
for Admin role.

In the case of the Flask version of the application, we have cre-
ated one or more test cases for each test case in the AG application.
The reason for having more test cases is that the actions from A
are not automatically instrumented in Flask and may be repeated
across multiple endpoints. For example, an event request is removed
from the appropriate association both when a user is granted (end-
point accept_request) and denied (endpoint reject_request) at-
tendance. The same removal action is executed in both endpoints,
and hence multiple tests are needed to check if the authorization
check is implemented correctly and consistently in both endpoints.
In general, for each permission (𝑟, 𝑎, 𝜙) in the security model, we
test that every endpoint containing the action 𝑎 enforces the au-
thorization constraint 𝜙 for the role 𝑟 in different states of the ap-
plication determined by the finitely many scenarios we consider.
Similarly, like in AG, each test in Flask is executed by a caller in
each role. Overall, this results in a total of 548 test cases, consisting
of 70 cases for Visitor, 124 for Freeuser, 117 for Premiumuser, 120
for Moderator, and 117 for Admin.

Is Modeling Access Control Worth It? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

We have manually ensured that the two sets of tests (for AG
and Flask, respectively) are equivalent. The reason for not using
a single (common) set of tests is because, unlike Flask, AG does
not expose an easily testable API. Due to this technical limitation,
we have tested the AG web application by creating special GUI
models (one for each caller role), each containing a button with an
event handler that runs the test code. The buttons are automatically
invoked using a Selenium script.

4.1.4 Evolved requirements. In Phase IV of the project, we added
a new invitation feature to the Event Platform application, which
allows users to send event invitations to other users. To facilitate
this, we extended the application’s data model to include an Invite
class and three adjacent associations (Figure 1, the red part). The
class is associated with an event and with two users: the user who
created the invitation and the user who is invited. The event as-
sociated with the invitation is denoted as event while the two
users are invitedBy and invitee. Users can send and receive any
number of invitations, which are referred to as their invites and
invitations, respectively. Additionally, events can have any num-
ber of invitations, which are known as the event’s invitations.

The new functional requirements impose an additional invariant
stating that if a user receives an invitation to an event, then they
cannot request to join it, and vice versa. All the above changes
were provided to the students as part of the TemplateUpdates patch
applicable to both the AG and Flask applications.

Finally, we extend our security requirements with FGAC permis-
sions on the new Invite class. Namely, authenticated users can
view the invitations they have sent and received. Additionally, they
can view the core information and the list of attendants and man-
agers of any event (including private one) to which they have been
invited. Managers can see every invitation for the event they man-
age. While anyone can create a blank invitation, only managers are
authorized to associate invitations with their managed events and
add users as invitees to these invitations.

An invitation can be deleted by the invitation’s owner, by the
associated event’s manager, or if the invitee declines it. If the in-
vitation is accepted by the invitee, it will also be deleted, and the
invitee will be added as an attendant of the associated event.

At the end of this phase, we ensure that the new functionality is
implemented without breaking the existing security requirements
by checking that the old set of test cases still pass. Then, we intro-
duce a new set of test cases to test the new security requirements.
In summary, for the AG application, we have 108 new test cases,
with 10 for Visitor, 10 for the system role, and 22 for each of the
other roles. For the Flask application, we have 96 new test cases,
with 8 for Visitor, and 22 for each of the other roles.

4.2 Conducting the Project
Before the project starts, we provided the students with training
on relevant topics. This included three exercise sessions and three
lab sessions on AG and Flask. We have introduced all relevant
authorization Flask libraries mentioned in Section 2 by example.
The students were also asked to implement two AG and three Flask
applications as part of the lab exercises. Although part of the course,
these exercises were notmandatory, and hencewe decided to survey
the students to understand to what extent did they participate.

The students were not allowed to collaborate and exchange
code during the study. They were encouraged to ask questions
via a Moodle forum dedicated to the project or directly to the
teaching assistants during the exercise and lab sessions. The forum
discussions were visible to all students.

The forum was also used to facilitate requirements engineering.
During Phase I, the students raised many questions due to the am-
biguous nature of the informal project description and some mi-
nor technical problems (e.g., problems compiling the templates).
To address these concerns, we updated the project description to
better reflect the intended requirements and extended the submis-
sion deadline for Phase I by four days. Namely, the exception in
the requirement that any user except an event’s manager can re-
move themselves from attending the event originally applied only to
the event’s owner. We refined the requirement to exclude all the
event’s managers to ensure that it remains consistent with the data
model invariants. The requirements were frozen once all students
submitted their deliverable in Phase I.

In Phase III, we released the test cases (TestsAG and TestsFlask)
and required the students to study them and fix as many imple-
mentation errors as possible. Overall, there were more than 1000
deterministic test cases that evaluated the specified security re-
quirements. Unfortunately, there were some errors in the test cases,
which were brought to our attention by the students. We quickly
fixed the erroneous test cases, and the submission deadline re-
mained unchanged.

5 DATA ANALYSIS
In this section, we present our analysis of the data obtained from the
students’ submissions and the survey responses. We first present
the metrics that we computed from the data. We then use the
information they provide to address the research questions posed
in Section 3. Finally, we provide some general remarks beyond the
scope of the research questions.

For simplicity, in what follows we refer to Phases I and II as
the Implementation Phases, to Phase III as the Repair Phase, and to
Phase IV as the Evolution Phase. Also, whenever we compare AG
and Flask directly, we exclude all the tests that have the Lib role as
the caller role. The reason is that the corresponding functionality
is assumed to be correct in Flask and hence it is never tested.

5.1 Metrics
Table 2 displays an overview of the students’ performance through-
out the project. Each project phase is represented by a row contain-
ing the total number of submissions for that phase, followed by the
number of failed test cases for each caller role executing the test
and each tool used, averaged over all the submissions in the phase.
The caller roles used to classify the failed test cases are those in the
columns in Appendix B.

In Phase IV, we separately show the average number of failed
test cases testing the new requirements (in the last column). We
combine these new test cases across all roles and calculate the
average number of failed test cases as explained above.

The pie chart in Figure 2 represents the ratio between the number
of AG and Flask failed test cases summed across all submissions
and phases. Since there are different numbers of AG and Flask tests,

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Basin, Juan Guarnizo, Srđan Krstić, Hoang Nguyen, & Martín Ochoa

Table 2: Average number of failed cases by submission and tool for each caller role

Visitor Freeuser Premiumuser Moderator Admin Evolution (all roles)

Submissions AG Flask AG Flask AG Flask AG Flask AG Flask AG Flask

Phase I 75 0.88 11.15 2.31 11.32 4.62 12.37 4.65 13.17 8.71 14.02 - -
Phase II 74 2.05 12.29 4.35 10.23 7.70 10.94 7.77 11.61 11.87 10.97 - -
Phase III 69 0.02 1.53 0.36 0.81 0.53 0.82 0.62 1.00 1.02 0.85 - -
Phase IV 68 0.02 2.11 0.32 1.79 1.07 1.75 1.29 1.89 1.20 1.63 2.05 3.25

Figure 2: Ratio between AG and Flask failed tests across all
submissions and phases

we normalize the ratio by calculating a weight factor based on the
number of test cases. More specifically, each AG test case has weight
1, while each Flask test case has weight 455

548 , i.e., the ratio between
the number of AG and Flask tests. Then, for each tool, we multiply
the total number of failed test cases by the corresponding weight.

Figure 3 presents the average percentage of failed test cases per
project phase and student group. Specifically, we compare AG and
Flask in three different phases (implementation, repair, and evolu-
tion) and for the distinct student groups A and B. Recall that Group
A implemented the AG version of the application in Phase I and
the Flask version of the application in Phase II, whereas Group B
did it in the opposite order. We separately show percentages for
the newly added test cases for Phase IV. The average percentage
is computed by adding up the percentage of failed test cases per
submission (i.e., number of failed test cases divided by the total
number of test cases) and dividing it by the total number of sub-
missions. The two dotted lines depict the average percentage for
AG and Flask over all the phases.

Figure 4 shows the average percentage of failed test cases per
role. Namely, we compare AG and Flask for all roles in each of the
four phases. For each phase and caller role, we calculate the average
percentage by adding up the percentage of failed test cases for that
caller role per submission (i.e., number of failed test cases of the
caller role divided by the total number of test cases of the caller role)

Figure 3: Average percentage of failed tests case by phase

and dividing it by the total number of submissions. As we show the
average percentage of test failures, smaller values are better.

Figure 5 shows the average number of failed test cases grouped
by the violated principles of least privilege and complete media-
tion. This allows us to evaluate the extent to which these principles
were violated. As explained in Section 4.1, multiple Flask tests may
correspond to a single AG one as we must test multiple endpoints.
We call such a group of Flask tests subtests. Subtests are not nec-
essary for AG as it achieves complete mediation by design. As a
consequence, any AG test failure can be attributed to the violation
of least privilege. In the case of Flask, determining which princi-
ple was violated is not as clear cut. A student may implement an
authorization check correctly as a routine, but then fail to call it
before all the relevant actions, which constitutes a complete me-
diation violation. In contrast, the check itself may be incorrect, or
even implemented multiple times inconsistently. To this end, when
some, but not all, subtests fail, we classify this as a complete media-
tion violation. Otherwise, we consider it a least privilege violation
when all subtests fail. Using this criteria for each phase, we calcu-
lated the number of failed test cases grouped by the principle they
violated, averaged over the phase’s submissions. We have validated
the criteria manually on 10% of the projects sampled randomly. It
predicts the complete mediation and least privilege violations with
a 3.02% margin of error at a 95% confidence level.

Is Modeling Access Control Worth It? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Figure 4: Average percentage of failed test cases per role

Figure 6 illustrates the time needed for completing the project
using AG and Flask. The figure contains data collected from the
survey responses (Questions 9 – 18 in Appendix A) and it shows the
standard five-number summary of the distribution of time that the
students required to implement all the project phases. In particular,
the boxes delimit the 25th and 75th percentiles, the green line is the
median value, with whiskers bounded by 1.5 of the interquartile
range.We received 16 survey responses, which represents 23% of the
total number of project participants. Among the participants, half
of them were assigned to use Flask in Phase I, among which only
25% of them implement security requirements using an existing
Flask authorization library.

Figure 7 depicts the time required for requirements engineering
based on the survey responses (Question 8 in Appendix A).

Figure 8 shows the amount of effort needed in terms of lines of
code (LoC) in each project phase grouped by the tool. It is computed
as the ratio between the number of changed lines of code between
two consecutive phases and the corresponding difference in the
passed test cases, averaged over the submissions. For example, in
the implementation phase (Phases I and II) for each submission, we
consider the number of its LoC that are different than the provided
template and divide that by the difference in the number of passed
test cases. We focus on the difference in the number of passed test
cases as a proxy for the relative security achieved with the LoC
change. Note that a changemaymake an application less secure, and
hence this metric may have a negative value. Finally we report the
average and standard deviation of this metric across all submissions.

Figure 9 provides additional information on the amount of ef-
fort needed in terms of lines of code to achieve a perfectly secure
application (i.e., an application that passes all test cases). To mea-
sure this accurately, only perfect submissions in Phases III and IV
are considered. In Phase III, there were 55 perfect submissions in
AG and 54 in Flask, while in Phase IV, there were 19 and 12, re-
spectively. We computed the average number of changed lines of
code as the difference between these submissions and the provided
template (in Phase III), and similarly, between the submissions in

Figure 5: Least privilege and complete mediation violations

Phases IV and III. In this, case we can guarantee that the metric
does not assume a negative value for any of the submissions.

5.2 Answers to Research Questions
RQ1: Can, and to what extent, modeling access control help achieve

least privilege? We use the metric shown in Figure 5 as a proxy
for the achieved degree of least privilege. It shows that the least
privilege principle is equally well enforced in both AG and Flask.
However, AG preserves this property better than Flask during the
repair and evolution phase. We hypothesize that with the model
analysis tools that are able to automatically check for least privilege,
the benefit of using models would be significantly greater.

Figure 3 also demonstrates the benefits of modeling access con-
trol. Here a lower percentage of failed tests is a proxy for improved
least privilege.We see that AG outperforms Flask in all of the phases.
Modeling access control is particularly beneficial in the implemen-
tation and evolution phases where access control is developed only
based on the requirements (not based on tests).

RQ2: Can, and to what extent, modeling access control help achieve
complete mediation? The metric in Figure 5 serves as a proxy for
the degree of complete mediation achieved. As AG provides com-
plete mediation by design and Flask lacks this property, AG is supe-
rior to Flask in this respect as demonstrated in Figure 5. Generally
speaking, as long as access control models have a formal semantics
and are accompanied with semantic-preserving model transforma-
tions, MDS can be used to achieve complete mediation by design.

RQ3: What is the effort needed to implement, fix, and evolve secu-
rity in terms of lines of code? Figure 8 shows the metric that approx-
imates the effort (LoC difference) needed to secure the application
normalized by the degree of the achieved security (difference in the
number of passed tests). Similarly, Figure 9 shows the effort needed,
in terms of the number of changed LoC, to produce a perfectly se-
cure implementation. In both figures, the metric is consistently bet-
ter for AG than for Flask across the phases. This suggests imple-
mentation, repair, and evolution of security requirements in AG

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Basin, Juan Guarnizo, Srđan Krstić, Hoang Nguyen, & Martín Ochoa

Figure 6: Time distribution for implementation

requires less code than in Flask. We hypothesize that the concise-
ness of models compared to code improves system maintainability,
as it requires less time to read. Nevertheless, number of LoC is only
an approximation of the effort, as writing a line of code in different
tools may require different effort. We therefore also consider RQ4.

RQ4: What is the effort needed to implement, fix, and evolve se-
curity in terms of time? Figure 6 shows the time needed for each
phase as well as the overall time for each of the tools. In general,
AG required on average 3 hours less time. The time required for
the students to perform Phase II is less than in Phase I. This can be
attributed to the fact that the requirements were clarified and be-
came sufficiently clear after the requirements engineering step in
Phase I. Furthermore, in the repair and evolution phases, it takes less
time for the students to refine their AG security models compared
to (re-)implementing the security checks in Flask, indicating that
adaptation to changes in AG is less time-consuming than in Flask.

RQ5: Is implementing (resp., designing) access control more effec-
tive given an existing design (resp., reference implementation)? The
difference between the percentage of test failures in Phase I and II
in Figure 3 can be used as a proxy for determining the effect of the
existing artifacts on the effectiveness of the implementation and de-
sign. The question of why AG implementations in Phase II are, on
average, worse than those in Phase I cannot be answered conclu-
sively using data from the project submissions alone. Nevertheless,
based on survey responses, we can observe that students in Group
A are more proficient with AG based on prior experience with this
tool than students in Group B. A potential disparity in the student
proficiency between the two groups may affect the outcome. The
survey data reveals that all but one respondent has no prior experi-
ence with AG, whereas 75% of the students have used Flask before.
Additionally, more than half of the respondents did not participate
in the relevant training before the project.

RQ6: What are the most challenging aspects of access control to
specify (resp., implement)? Figure 4 indicates that Flask tests exe-
cuted with the caller role Visitor had the highest failure ratio in
all project phases. Further analysis of the students’ submissions re-

Figure 7: Time distribution for requirements engineering

veals that a likely cause is Flask-User API misuse. Specifically, in
all these tests the current_user.is_authenticated property al-
ways returns false and the current_user object is not initialized
to any user. Inappropriate attribute lookup of the uninitialized ob-
ject accounted for 46% of all unsuccessful test cases for the Visitor
caller role. Although this is predominantly an error for the Visitor
role, participants made the similar implementation mistake multi-
ple times for other roles. In total, attribute errors accounted for 17%
of all failed test cases in Flask.

AG tests executed with the caller role Admin had a higher failure
ratio compared to Flask in Phases II and III. This is mainly due to
insufficiently restrictive authorization constraints in permissions
for updating roles and for maintaining data model invariants (e.g.,
preventing moderators from changing roles if they are currently
moderating). In particular, the Admin role may update any user
role to one of the authenticated user roles, but not to a Visitor, Lib,
or even the null value. A typical pitfall was that the GUI model
only offered authenticated user roles as possible values, which does
not excuse the developer from performing the appropriate checks.

After an object is created, all its collection attributes and associ-
ation ends are initially empty and non-collection fields are initially
null. This fact is often used in update permissions to distinguish
between attribute initialization and its subsequent modification. As
a consequence, null values must never be assigned, which caused a
significant number of test failures in AG. Nevertheless, MDS tools
in general may consider initialization actions separately to allevi-
ate this burden on the designer.

Overall, AG consistently outperforms Flask across all phases for
the security implementation of all other user roles.

5.3 General Remarks
We summarize some remarks beyond the posed research questions:

• The majority of the requirements engineering effort was un-
surprisingly spent during the project Phase I (Figure 7), when
the students analyzed the project description (Requirements)
and the templates (TemplateAG and TemplateFlask). Accord-
ing to the survey, during the first phase, requirements took

Is Modeling Access Control Worth It? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Figure 8: Average LoC with standard deviation per passed
test case

between two to twelve hours to complete, with a median
of six hours. As the requirements became clearer in the sec-
ond phase, less time was needed, with a median of one hour
of work. During the repair phase, some students needed to
revisit the requirements to fix incorrect constraints/checks
after the tests were released, resulting in a slight increase
in requirements effort. Finally, in the evolution phase, the
effort increased again to account for the new requirements.

• In the implementation phases, none of the submissions passed
all the test cases. In particular, students had the most diffi-
culty in correctly implementing the FGAC permissions for
the Admin, Premiumuser, andModerator roles Table 2). This
is because these roles inherit permissions from the Freeuser
role, which adds complexity to both security model design
and manual implementation.

• In the repair phase, there was a significant decrease in the
average number of failed test cases across all roles. This in-
dicates that the students effectively fixed the enforcement
errors in the implementation phases, regardless of the tech-
nology used. It also shows that it is more difficult to inter-
pret requirements phrased in natural language than tests.

• In the evolution phase, introducing new requirements re-
sulted in a slight increase in the average number of failures
in the old set of test cases. In addition, the average number
of failed test cases for the new requirements is consistent
with the data from the previous phases.

• According to the results of our survey, only 6% of students
had prior experience with AG, while 75% had prior experi-
ence with Flask. Conversely, only 6% of students submitted
the course assignments related to AG and Flask. Due to the
high proportion of individuals with prior experience, one
might imagine that the students would perform better carry-
ing out manual implementations using Flask. However, re-
gardless of their lack of experience prior to the course, the
students required less time and effort to complete the as-
signed tasks in AG in terms of overall hours.

Figure 9: Average LoC with standard deviation for perfect
implementation and evolution

6 RELATEDWORK
There are several research areas related to our work that include the
empirical comparison of model-driven and code-centric approaches.
Particularly relevant is research making such comparisons together
with evolution, maintenance, and access control. In the following,
we organize this section along these different themes.

Empirical evidence on model-driven development benefits. A re-
cent paper by Domingo et al. [11] surveys work on empirically
measuring the benefits of model-driven development against code-
centric approaches and propose a new experiment where a domain-
specific language for video game development is compared to a
code-centric approach. This work shows that in a model-driven
approach, aside from advantages in efficiency previously reported
in the literature, there are also advantages in terms of correctness
with respect to a specification. In contrast to our work, which ad-
dresses web applications and access control, Domingo et al. focuses
on a domain-specific language specific for developing videogames
and general functional correctness.

Empirical studies on access control. Parkinson et al. [24] recently
survey the literature for empirical assessments of the security of
access control mechanisms. Among their key findings is that only
relatively little research in access control focuses on empirical eval-
uations (key finding number 3, which lists only 30 works in the lit-
erature on the empirical analysis of access control). Many of these
works use synthetically generated datasets and when using real-
world datasets ground-truth is often unknown (finding number 7).
The survey does not consider the comparison of code-centric and
model-driven approaches for access control policies.

Empirical studies on access control and evolution. The research by
Hwang et al. [18] and Han et al. [16] studies the evolution of access
control policies over time using industrial data and shows that
such policies tend to increase in complexity over time, which often
results in errors and less security. They do not however compare
the level of security or code complexity resulting from a model-
driven approach versus a code-centric approach, as we do.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Basin, Juan Guarnizo, Srđan Krstić, Hoang Nguyen, & Martín Ochoa

Model-inference applied to web-applications for maintenance of
security policies. Gauthier et al. [14] have studied model-inference
based on an existing web application to illustrate how reasoning at
the model level can help with evolution and maintenance tasks. Al-
though this study argues in favor of model-driven approaches over
code-centric approaches, the discussion is not based on empirical
measurements but on experts’ experience when carrying out main-
tenance and evolution tasks. In contrast, we provide a direct compar-
ison between the two approaches on the same development project.

Academic competitions on secure coding. The line of work started
with “Build It, Break It, Fix It” [13, 28, 36] studies the result of a
student competition where participants are asked to implement a
software project and iteratively test and fix security vulnerabilities.
These works shows that mistakes in implementing access control
policies are common and they attempt to understand why certain
vulnerabilities are introduced or go undetected. Interestingly, [13]
found that misunderstandings are common when coding access
control requirements, and that teams with a more detailed system
design made fewer errors. However, this line of work does not
compare a code-centric approach against a model-driven approach.

Evaluations of model-driven development in academic settings.
Roussev [27] studies model-driven approaches to software devel-
opment versus code-centric approaches in an academic settings
with the goal of measuring impact on learning outcomes. Although
it is interesting that students develop better overall programming
skills when confronted with model-driven approaches, we focus
our work on the comparison of both approaches in terms of secu-
rity and maintenance.

Model-driven security in industrial settings Clavel et al. [10] report
on the experience of using model-driven security in industrial set-
tings. They use a transformation function from SecureUML [21] and
Component UML to C++ code. They report on lessons learned from
this experience, including the potential for re-usability and evolu-
tion of the models. They do not however provide empirical evidence
of the advantage of this approach compared to a code-centric one.

To the best of our knowledge, our work is the first to empirically
compare a model-driven approach with a code-centric approach
when developing secure web-applications.

7 CONCLUSIONS
We have compared the outcome of implementing the same security
requirements multiple times, with groups of developers using a
model-driven approach and with other groups using a code-centric
approach. This experiment was carried out in a graduate course
in security engineering. We show that, on average, model-driven
implementations were both more secure (with respect to a set of
predefined test cases) andmore concise (with respect to code-centric
implementations). These results support a longstanding claim about
the benefits of model-driven security for which empirical support
in the literature was previously lacking.

As future work, we plan to collect more data from additional
courses to further strengthen this claim. We also plan to test a
version of ActionGUI that can be integrated with Python and Flask
and supports enforcing privacy requirements.

ACKNOWLEDGMENTS
Hoang Nguyen is supported by the Swiss National Science Founda-
tion grant 204796 (“Model-driven Security & Privacy”). Felix Linker
contributed to the design of the previous versions of the Event Plat-
form web application. Andris Suter-Dörig helped design the code
templates and the training material for the students. Over the past
decade, security engineering course staff at ETH Zürich have con-
tributed to the ActionGUI training material. Finally, we thank the
students who participated in our study and the anonymous review-
ers for their helpful comments.

REFERENCES
[1] Amazon. 2023. Cedar Authorization Language. https://www.cedarpolicy.com/en.
[2] Colin Atkinson and Thomas Kühne. 2003. Model-Driven Development: A Meta-

modeling Foundation. IEEE Softw. 20, 5 (2003), 36–41. https://doi.org/10.1109/
MS.2003.1231149

[3] Authorize. 2023. Flask Authorize Authorization library. https://flask-authorize.
readthedocs.io/en/latest/.

[4] David Basin, Manuel Clavel, Jürgen Doser, and Marina Egea. 2009. Automated
analysis of security-design models. Inf. Softw. Technol. 51, 5 (2009), 815–831.
https://doi.org/10.1016/j.infsof.2008.05.011

[5] David Basin, Manuel Clavel, Marina Egea, Miguel Angel García de Dios, and
Carolina Dania. 2014. A Model-Driven Methodology for Developing Secure
Data-Management Applications. IEEE Trans. Software Eng. 40, 4 (2014), 324–337.
https://doi.org/10.1109/TSE.2013.2297116

[6] David Basin, Jürgen Doser, and Torsten Lodderstedt. 2006. Model driven security:
From UML models to access control infrastructures. ACM Trans. Softw. Eng.
Methodol. 15, 1 (2006), 39–91. https://doi.org/10.1145/1125808.1125810

[7] David Basin, Juan Guarnizo, Srđan Krstić, Hoang Nguyen, and Martín Ochoa.
2023. Case study web application for access control implementation. https:
//anonymous.4open.science/r/MDS-study-7546.

[8] Bastian Best, Jan Jürjens, and Bashar Nuseibeh. 2007. Model-Based Security En-
gineering of Distributed Information Systems Using UMLsec. In 29th Interna-
tional Conference on Software Engineering (ICSE). IEEE, USA, 581–590. https:
//doi.org/10.1109/ICSE.2007.55

[9] Alan W. Brown. 2004. Model driven architecture: Principles and practice. Softw.
Syst. Model. 3, 4 (2004), 314–327. https://doi.org/10.1007/s10270-004-0061-2

[10] Manuel Clavel, Viviane Torres da Silva, Christiano Braga, and Marina Egea. 2008.
Model-Driven Security in Practice: An Industrial Experience. In 4th European
Conference on Model Driven Architecture - Foundations and Applications (ECMDA-
FA) (LNCS, Vol. 5095), Ina Schieferdecker and Alan Hartman (Eds.). Springer,
Berlin, Heidelberg, 326–337. https://doi.org/10.1007/978-3-540-69100-6_22

[11] África Domingo, Jorge Echeverría, Oscar Pastor, and Carlos Cetina. 2020. Eval-
uating the Benefits of Model-Driven Development - Empirical Evaluation Pa-
per. In 32nd International Conference on Advanced Information Systems Engi-
neering (CAiSE) (LNCS, Vol. 12127), Schahram Dustdar, Eric Yu, Camille Sali-
nesi, Dominique Rieu, and Vik Pant (Eds.). Springer, Berlin, Heidelberg, 353–367.
https://doi.org/10.1007/978-3-030-49435-3_22

[12] Flask. 2023. Flask Web Framework. https://flask.palletsprojects.com/en/2.3.x/.
[13] Kelsey R. Fulton, Daniel Votipka, Desiree Abrokwa, Michelle L. Mazurek, Michael

Hicks, and James Parker. 2022. Understanding the How and the Why: Exploring
Secure Development Practices through a Course Competition. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM, New York, NY, USA, 1141–
1155. https://doi.org/10.1145/3548606.3560569

[14] François Gauthier, Ettore Merlo, Eleni Stroulia, and David Turner. 2014. Sup-
porting Maintenance and Evolution of Access Control Models in Web Applica-
tions. In 30th IEEE International Conference on Software Maintenance and Evolu-
tion (ICSM). IEEE, USA, 506–510. https://doi.org/10.1109/ICSME.2014.83

[15] Object Management Group. 2014. Object Constraint Language (OCL) 2.4 Specifi-
cation. https://www.omg.org/spec/OCL/2.4/.

[16] Zhuobing Han, Xiaohong Li, Guangquan Xu, Naixue Xiong, Ettore Merlo, and
Eleni Stroulia. 2020. An Effective Evolutionary Analysis Scheme for Industrial
Software Access Control Models. IEEE Trans. Ind. Informatics 16, 2 (2020), 1024–
1034. https://doi.org/10.1109/TII.2019.2925422

[17] Martin Höst, Björn Regnell, and Claes Wohlin. 2000. Using Students as Subjects-
A Comparative Study of Students and Professionals in Lead-Time Impact Assess-
ment. Empir. Softw. Eng. 5, 3 (2000), 201–214.

[18] JeeHyun Hwang, Laurie A. Williams, and Mladen A. Vouk. 2014. Access control
policy evolution: an empirical study. In Symposium and Bootcamp on the Science
of Security, (HotSoS), Laurie A. Williams, David M. Nicol, and Munindar P. Singh
(Eds.). ACM, New York, NY, USA, 28. https://doi.org/10.1145/2600176.2600204

https://www.cedarpolicy.com/en
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/MS.2003.1231149
https://flask-authorize.readthedocs.io/en/latest/
https://flask-authorize.readthedocs.io/en/latest/
https://doi.org/10.1016/j.infsof.2008.05.011
https://doi.org/10.1109/TSE.2013.2297116
https://doi.org/10.1145/1125808.1125810
https://anonymous.4open.science/r/MDS-study-7546
https://anonymous.4open.science/r/MDS-study-7546
https://doi.org/10.1109/ICSE.2007.55
https://doi.org/10.1109/ICSE.2007.55
https://doi.org/10.1007/s10270-004-0061-2
https://doi.org/10.1007/978-3-540-69100-6_22
https://doi.org/10.1007/978-3-030-49435-3_22
https://flask.palletsprojects.com/en/2.3.x/
https://doi.org/10.1145/3548606.3560569
https://doi.org/10.1109/ICSME.2014.83
https://www.omg.org/spec/OCL/2.4/
https://doi.org/10.1109/TII.2019.2925422
https://doi.org/10.1145/2600176.2600204

Is Modeling Access Control Worth It? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

[19] Anneke Kleppe, Jos Warmer, and Wim Bast. 2003. MDA explained - the
Model Driven Architecture: practice and promise. Addison-Wesley, USA. http:
//www.informit.com/store/mda-explained-the-model-driven-architecture-
practice-9780321194428

[20] Charlie Lai, Li Gong, Larry Koved, Anthony J. Nadalin, and Roland Schemers.
1999. User Authentication and Authorization in the Java(tm) Platform. In 15th
Conference on Computer Security Applications (ACSAC). IEEE, USA, 285–290.
https://doi.org/10.1109/CSAC.1999.816038

[21] Torsten Lodderstedt, David Basin, and Jürgen Doser. 2002. SecureUML: A UML-
Based Modeling Language for Model-Driven Security. In 5th International Con-
ference on The Unified Modeling Language (UML) (LNCS, Vol. 2460), Jean-Marc
Jézéquel, Heinrich Hußmann, and Stephen Cook (Eds.). Springer, Berlin, Heidel-
berg, 426–441. https://doi.org/10.1007/3-540-45800-X_33

[22] Microsoft. 2023. Policy-based authorization in ASP.NET Core. https://learn.
microsoft.com/en-us/aspnet/core/security/authorization/policies.

[23] OSO. 2023. Flask OSO Authorization library. https://docs.osohq.com/python/
reference/frameworks/flask.html.

[24] Simon Parkinson and Saad Khan. 2023. A Survey on Empirical Security Analysis
of Access-control Systems: A Real-world Perspective. ACM Comput. Surv. 55, 6
(2023), 123:1–123:28. https://doi.org/10.1145/3533703

[25] Principal. 2023. Flask Principal Authorization library. https://pythonhosted.org/
Flask-Principal/.

[26] Open Worldwide Application Security Project. 2021. OWASP Top 10. https:
//owasp.org/Top10/.

[27] Borislav Roussev. 2003. Empirical Evidence Justifying the Adoption of a Model-
Based Approach in the Course Web Applications Development. J. Inf. Technol.
Educ. 2 (2003), 73–90. https://doi.org/10.28945/314

[28] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L. Mazurek, and
Piotr Mardziel. 2016. Build It, Break It, Fix It: Contesting Secure Development. In
ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM,
New York, NY, USA, 690–703. https://doi.org/10.1145/2976749.2978382

[29] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo Juzgado. 2015. Are Stu-
dents Representatives of Professionals in Software Engineering Experiments?. In
37th IEEE/ACM International Conference on Software Engineering (ICSE), Antonia
Bertolino, Gerardo Canfora, and Sebastian G. Elbaum (Eds.). IEEE, USA, 666–676.
https://doi.org/10.1109/ICSE.2015.82

[30] Jerome H. Saltzer and Michael D. Schroeder. 1975. The protection of information
in computer systems. Proc. IEEE 63, 9 (1975), 1278–1308. https://doi.org/10.1109/
PROC.1975.9939

[31] Richard E. Smith. 2012. A Contemporary Look at Saltzer and Schroeder’s 1975
Design Principles. IEEE Secur. Priv. 10, 6 (2012), 20–25. https://doi.org/10.1109/
MSP.2012.85

[32] SQLAlchemy. 2023. Flask SQLAlchemy SQL toolkit and Object Relational Mapper.
https://flask-sqlalchemy.palletsprojects.com/en/2.x/.

[33] Mikael Svahnberg, Aybüke Aurum, and Claes Wohlin. 2008. Using students as
subjects - an empirical evaluation. In 2nd International Symposium on Empirical
Software Engineering and Measurement (ESEM), H. Dieter Rombach, Sebastian G.
Elbaum, and Jürgen Münch (Eds.). ACM, New York, NY, USA, 288–290. https:
//doi.org/10.1145/1414004.1414055

[34] User. 2023. Flask User Authentication Library. https://flask-user.readthedocs.io.
[35] Vaadin. 2023. Vaadin Web Framework. https://vaadin.com/.
[36] Daniel Votipka, Kelsey R. Fulton, James Parker, Matthew Hou, Michelle L.

Mazurek, and Michael Hicks. 2020. Understanding Security Mistakes Developers
Make: Qualitative Analysis from Build It, Break It, Fix It. In 29th USENIX Confer-
ence on Security Symposium (SEC). USENIX Association, USA, Article 7, 18 pages.

[37] WIRED. 2019. Hack Brief: 885Million Sensitive Financial Records Exposed Online.
https://www.wired.com/story/first-american-data-exposed/.

A SURVEY QUESTIONS
Below we provide the complete list of questions intended for the
survey participants. The questions are organized into different cat-
egories: background knowledge, requirements engineering, imple-
mentation effort, and approach preference. Each question includes
an answer format (shown in parentheses).

Background knowledge.
(1) Have you done the Object Constraint Language assignment

before the project? (Yes/No)
(2) Have you done the Model-driven security assignment before

the project? (Yes/No)
(3) Have you done the Flask authorization assignment before

the project? (Yes/No)

(4) Have you had any experience with AG before the course?
(Yes/No)

(5) Have you had any experience with Python and Flask before
the course? (Yes/No)

(6) In Phase I of the project, which approach were you assigned
to? (AG/Flask)

Requirements engineering.
(7) Project requirements were sufficiently clear. (Strongly dis-

agree/Disagree/Neither agree nor disagree/Agree/Strongly
agree)

(8) In Phase IV of the project, which of the two approaches did
you choose to evolve first? (AG/Flask)

Implementation effort.
(9) How many hours did you effectively spend on requirements

engineering in Phase I of the project? (in hours)
(10) How many hours did you effectively spend to implement

Phase I of the project? (in hours)
(11) How many hours did you effectively spend on requirements

engineering in Phase II of the project? (in hours)
(12) How many hours did you effectively spend to implement

Phase II of the project? (in hours)
(13) How many hours did you effectively spend on requirements

engineering in Phase III of the project? (in hours)
(14) How many hours did you effectively spend to implement

Phase III of the project in AG? (in hours)
(15) How many hours did you effectively spend to implement

Phase III of the project in Flask? (in hours)
(16) How many hours did you effectively spend on requirements

engineering in Phase IV of the project? (in hours)
(17) How many hours did you effectively spend to implement

Phase IV of the project in AG? (in hours)
(18) How many hours did you effectively spend to implement

Phase III of the project in Flask? (in hours)

Approach preference.
(19) For the Flask implementation, did you use an existing au-

thorization library, or implement the security manually? (Li-
brary/Manual)

(20) If you would have to code a similar project in the future us-
ing one technology of your choice, which approach would
you choose? Justify your choice in the previous answer.
(AG/Flask with short text)

B TEST CASES
In Table 3, we summarize the test cases used to systematically eval-
uate the participants’ submissions. The test cases are organized into
groups based on scenarios inspired by the capabilities of different
roles. Each test case is associated with a unique identifier, a textual
description, a list of Flask endpoints, and the expected authoriza-
tion decisions for each caller role: a checkmark (✓) means that the
scenario is authorized, a cross (×) means that it is unauthorized,
and a hyphen (−) means that the scenario is not applicable. Caller
roles are abbreviated in the rightmost six columns. An example of
latter is test 34 when executed with a Visitor caller role (abbrevi-
ated as V): a non-authenticated user does not have a representation
in the data model, and hence they cannot be an event attendant.

http://www.informit.com/store/mda-explained-the-model-driven-architecture-practice-9780321194428
http://www.informit.com/store/mda-explained-the-model-driven-architecture-practice-9780321194428
http://www.informit.com/store/mda-explained-the-model-driven-architecture-practice-9780321194428
https://doi.org/10.1109/CSAC.1999.816038
https://doi.org/10.1007/3-540-45800-X_33
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/policies
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/policies
https://docs.osohq.com/python/reference/frameworks/flask.html
https://docs.osohq.com/python/reference/frameworks/flask.html
https://doi.org/10.1145/3533703
https://pythonhosted.org/Flask-Principal/
https://pythonhosted.org/Flask-Principal/
https://owasp.org/Top10/
https://owasp.org/Top10/
https://doi.org/10.28945/314
https://doi.org/10.1145/2976749.2978382
https://doi.org/10.1109/ICSE.2015.82
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1109/MSP.2012.85
https://doi.org/10.1109/MSP.2012.85
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://doi.org/10.1145/1414004.1414055
https://doi.org/10.1145/1414004.1414055
https://flask-user.readthedocs.io
https://vaadin.com/
https://www.wired.com/story/first-american-data-exposed/

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Basin, Juan Guarnizo, Srđan Krstić, Hoang Nguyen, & Martín Ochoa

Table 3: Test cases

ID Textual description Flask endpoints L V F P M A

Lib inspired

1 Create a Person instance update_user ✓ × × × × ×
2 Update a Person’s username from null to something update_user ✓ × × × × ×
3 Update a Person’s username from something to something else update_user × × × × × ×
4 Update a Person’s password from null to something update_user ✓ × × × × ✓
5 Update a Person’s password from something to something else update_user × × × × × ✓
6 Update a Person’s role from null to null update_user × × × × × ×
7 Update a Person’s role from null to Freeuser update_user ✓ × × × × ✓
8 Update a Person’s role from null to Lib update_user × × × × × ×
9 Update a Person’s role from null to Admin update_user × × × × × ✓
10 Update a Person’s role from Freeuser to null update_user × × × × × ×
11 Update a Person’s role from Freeuser to Lib update_user × × × × × ×
12 Update a Person’s role from Freeuser to Premiumuser update_user × × × × × ✓
13 Update a Person’s role from Freeuser to Admin update_user × × × × × ✓
14 Read a Person’s username field user ✓ × ✓ ✓ ✓ ✓
15 Read a Person’s password field user ✓ × × × × ×
16 Read a Person’s role field user ✓ × ✓ ✓ ✓ ✓

Visitor inspired

17 Read a Person’s moderates field view_event,edit_event × ✓ ✓ ✓ ✓ ✓
18 Read a public Event’s private flag view_event,edit_event × ✓ ✓ ✓ ✓ ✓
19 Read an Event’s categories field view_event × ✓ ✓ ✓ ✓ ✓
20 Read a public Event’s title field events,profile,view_event,edit_event,view_category × ✓ ✓ ✓ ✓ ✓
21 Read a private Event’s title field events,profile,view_event,edit_event,view_category × × × × × ×
22 Read a public Event’s description field view_event,edit_event × ✓ ✓ ✓ ✓ ✓
23 Read a private Event’s description field view_event,edit_event × × × × × ×
24 Read a public Event’s owner field events,view_category × ✓ ✓ ✓ ✓ ✓
25 Read a private Event’s owner field events,view_category × × × × × ×
26 Read a Category’s name field view_category,categories,view_event,events,

edit_event,edit_category,user
× ✓ ✓ ✓ ✓ ✓

27 Read a Category’s moderators field edit_category × ✓ ✓ ✓ ✓ ✓
28 Read a Category’s events field categories,view_category × ✓ ✓ ✓ ✓ ✓

Freeuser inspired

29 Create a public Event create_event − × ✓ ✓ ✓ ✓
30 Read a public Event’s core information owned by someone else view_category,view_event,edit_event,events × ✓ ✓ ✓ ✓ ✓
31 Read a private Event’s core information owned by someone else without attending it view_category,view_event,edit_event,events × × × × × ×
32 Read the attendants of a public Event owned by someone else view_event,manage_event × × ✓ ✓ ✓ ✓
33 Read the attendants of a private Event owned by someone else without attending it view_event,manage_event × × × × × ×
34 Read the attendants of a private Event owned by someone else while attending it view_event,manage_event − − − ✓ ✓ ✓
35 Edit an Event owned by someone else while managing it update_event − − ✓ ✓ ✓ ✓
36 Edit an Event owned by someone else without managing it update_event × × × × × ×
37 Edit the owner of an Event update_event × × × × × ×
38 Promote an attendant to a manager in an Event that one owns promote_manager − − ✓ ✓ ✓ ✓
39 Demote a manager in an Event that one owns demote_manager − − ✓ ✓ ✓ ✓
40 Demote a manager in an Event that one does not own demote_manager × × × × × ×
41 Accept an attendance request for an Event that one owns accept_request − − ✓ ✓ ✓ ✓
42 Accept an attendance request for an Event that one manages accept_request − − ✓ ✓ ✓ ✓
43 Accept one’s own attendance request, without being the Event’s owner or manager accept_request − − × × × ×
44 Promote oneself as a manager of an Event that one does not own promote_manager − − × × × ×
45 Reject an attendance request to an Event that one owns reject_request − − ✓ ✓ ✓ ✓
46 Reject an attendance request to an Event that one manages reject_request − − ✓ ✓ ✓ ✓
47 Remove oneself from attending an Event that one does not own remove_attendee,leave − − ✓ ✓ ✓ ✓
48 Remove others from attending an Event that one manages remove_attendee − − ✓ ✓ ✓ ✓
49 Remove oneself from attending an Event that one owns remove_attendee − − × × × ×
50 Remove others from attending an Event that one does not manage remove_attendee × × × × × ×
51 Request to join a public Event join − × ✓ ✓ ✓ ✓
52 Request to join a private Event join − × × ✓ ✓ ✓
53 Reject other’s attendance request without being the Event’s manager nor owner reject_request × × × × × ×
54 Cancel one’s own attendance request reject_request − − ✓ ✓ ✓ ✓
55 Request to join an Event on behalf of someone else events,view_event,manage_event,users,user × × × × × ×
56 Read core information of other users view_category,edit_category, × × ✓ ✓ ✓ ✓
57 Read one’s own core information view_category,users,edit_category,

view_event,user,manage_event,events
− − ✓ ✓ ✓ ✓

58 Edit one’s own core information update_user − − ✓ ✓ ✓ ✓
59 Edit others core information update_user × × × × × ×
60 View the events one owns profile − − ✓ ✓ ✓ ✓
61 View the events one manages profile − − ✓ ✓ ✓ ✓
62 View the events one attends profile − − ✓ ✓ ✓ ✓
63 Change one’s own role update_user − × × × × ✓
64 View one’s own attendance requests manage_event − − ✓ ✓ ✓ ✓
65 View one’s own subscribed categories profile − − ✓ ✓ ✓ ✓

Is Modeling Access Control Worth It? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

ID Textual description Flask endpoints L V F P M A

Premiumuser inspired

66 Unsubscribe from a Category unsubscribe − − − ✓ ✓ ✓
67 Subscribe to a Category subscribe − × × ✓ ✓ ✓
68 Add a Category to one’s own subscriptions subscribe − × × ✓ ✓ ✓
69 Create a private Event create_event − × × ✓ ✓ ✓

Moderator inspired

70 Remove a Category that one does not moderate from an Event remove_category,update_event × × × × × ×
71 Remove someone else from being a moderator of a Category remove_moderator × × × × × ✓
72 Remove oneself as a moderator of a Category remove_moderator − − − − ✓ −
73 Remove a Category that one moderates from an Event remove_category − − − − ✓ −
74 Read a Category’s subscribers view_category,profile × × × × ✓ ×
Admin inspired

75 Delete a Person instance user × × × × × ✓
76 Edit the password of another user user × × × × × ✓
77 Edit the role of another user user × × × × × ✓
78 Add a user as a moderator of a Category add_moderator × × × × × ✓
79 Remove a user as a moderator of a Category remove_moderator × × × × × ✓
80 Create a Category create_category × × × × × ✓
81 Delete a Category update_category × × × × × ✓
82 Change a Category’s name update_category × × × × × ✓

Miscellaneous

83 An Event’s manager adds an attendant who has not requested attendance accept_request − − × × × ×
84 An Event’s owner removes oneself from managing the Event demote_manager − − × × × ×
85 An Event’s owner removes oneself from owning the Event remove_attendee − − × × × ×
86 An Event’s manager removes oneself from attending the Event remove_attendee − − × × × ×
87 An Event’s manager removes oneself from managing the Event demote_manager − − × × × ×
88 Modify the role of a moderator while they moderate a Category update_user − − − − − ×
89 Update a Person’s role from Freeuser to Visitor update_user × × × × × ×
90 Accept an attendance request for an Event that one does not own or manage accept_request × × × × × ×
91 Edit the categories of an Event that one manages update_event − − ✓ ✓ ✓ ✓
92 Edit the categories of an Event that one does not manage update_event × × × × × ×
93 Read a private Event’s private flag view_event,edit_event × ✓ ✓ ✓ ✓ ✓
94 Read a private Event’s categories view_event × ✓ ✓ ✓ ✓ ✓

Invitation inspired

1 Read the attendants of a private Event that one does not own while not invited view_event,manage_event − − ✓ ✓ ✓ ✓
2 Read the attendants of a private Event that one does not ownwhile neither invited

nor attending
view_event,manage_event × × × × × ×

3 Read the core information of a private Event that one does not own while invited events,view_event,edit_event,view_category × × ✓ ✓ ✓ ✓
4 Read the core information of a private Event that one does not own while neither

invited nor attending
events,view_event,edit_event,view_category × × × × × ×

5 View the sent invitations of an Event that one owns profile − − ✓ ✓ ✓ ✓
6 View the sent invitations of an Event that one does not own profile × × × × × ×
7 View the received invitations of an Event that one owns profile ✓ ✓ ✓ ✓
8 View the received invitations of an Event that one does not own profile × × × × × ×
9 Invite a user to join an Event that one owns send_invitation − − ✓ ✓ ✓ ✓
10 Invite a user to join an Event that one does not own without being the event’s

manager
send_invitation − − × × × ×

11 Invite user to join an Event that one manages send_invitation − − ✓ ✓ ✓ ✓
12 Cancel an invitation to join an Event that one owns − − − ✓ ✓ ✓ ✓
13 Cancel an invitation for someone else − × × × × × ×
14 Cancel an invitation to join an Event that one manages − − − ✓ ✓ ✓ ✓
15 Accept a received invitation accept_invitation − − ✓ ✓ ✓ ✓
16 Accept an invitation received by someone else accept_invitation × × × × × ×
17 Decline a received invitation decline_invitation − − ✓ ✓ ✓ ✓
18 Change an Invite’s invitee field − × × × × × ×
19 Change an Invite’s invitedBy field − × × × × × ×
20 Change an Invite’s event field − × × × × × ×
21 Invite a user who already requested to join an Event, while being the event’s

manager
send_invitation − − × × × ×

22 Request to join an Event to which one is already invited join − − × × × ×

Abbreviated caller roles: L = Lib role; V = Visitor role; F = Freeuser role; P = Premiumuser role; M =Moderator role; A = Admin role.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Study Design
	3.1 Research Questions
	3.2 Project Timeline and Format
	3.3 Survey

	4 Web Application Case Study
	4.1 Event Platform
	4.2 Conducting the Project

	5 Data Analysis
	5.1 Metrics
	5.2 Answers to Research Questions
	5.3 General Remarks

	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	A Survey Questions
	B Test Cases

