
Scaling Up Proactive Enforcement

François Hublet
francois.hublet@inf.ethz.ch

Leonardo Lima
leonardo@di.ku.dk

David Basin
basin@inf.ethz.ch

Srđan Krstić
srdan.krstic@inf.ethz.ch

Dmitriy Traytel
traytel@di.ku.dk

International Conference on Computer-Aided Verification — Zagreb, July 23, 2025

The Fairytale of Complex Systems

Forest of software

Mountains of hardware

Hydra of non-compliance

Our new
runtime enforcement tool

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 1 / 16

The Fairytale of Complex Systems

Forest of software

Mountains of hardware

Hydra of non-compliance

Our new
runtime enforcement tool

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 1 / 16

The Fairytale of Complex Systems

Forest of software

Mountains of hardware

Hydra of non-compliance

Our new
runtime enforcement tool

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 1 / 16

The Fairytale of Complex Systems

Forest of software

Mountains of hardware

Hydra of non-compliance
Coding
mistakes

Our new
runtime enforcement tool

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 1 / 16

The Fairytale of Complex Systems

Forest of software

Mountains of hardware

Hydra of non-compliance

Specification
complexity

Coding
mistakes

Our new
runtime enforcement tool

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 1 / 16

The Fairytale of Complex Systems

Forest of software

Mountains of hardware

Hydra of non-compliance
Static

verification
costs

Specification
complexity

Coding
mistakes

Our new
runtime enforcement tool

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 1 / 16

The Fairytale of Complex Systems

Forest of software

Mountains of hardware

Hydra of non-compliance

Our new
runtime enforcement tool

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 1 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩
Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑 enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command ⟨C, S⟩
Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

First-Order Runtime Enforcement

System

Trace

{event1(2, 1, 1) , event2(0, 0, 0) } {event2(1, 3, 1) }

1 events A ⊆ E ×D∗

Enforcer


Policy 𝜑 enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command ⟨C, S⟩
Causable C ⊆ C ×D∗

Suppress S ⊆ (S ∩A) ×D∗

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Real-Time First-Order Runtime Enforcement

System

Trace
𝜏1 = 10 𝜏2 = 50

{event1(2, 1, 1) , event2(0, 0, 0) } {event2(1, 3, 1) }

1 events A ⊆ E ×D∗

Enforcer


Policy 𝜑 enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command ⟨C, S⟩
Causable C ⊆ C ×D∗

Suppress S ⊆ (S ∩A) ×D∗

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Proactive Real-Time First-Order Runtime Enforcement

System

Trace
𝜏1 = 10 𝜏2 = 50

{event1(2, 1, 1) , event2(0, 0, 0) } {event2(1, 3, 1) }

1 events A ⊆ E ×D∗

Enforcer


Policy 𝜑 enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command ⟨C, S⟩
Causable C ⊆ C ×D∗

Suppress S ⊆ (S ∩A) ×D∗

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Proactive Real-Time First-Order Runtime Enforcement

System

Trace
𝜏1 = 10 𝜏2 = 50

{event1(2, 1, 1) , event2(0, 0, 0) } {event2(1, 3, 1) }

1 events A ⊆ E ×D∗

Enforcer


Policy 𝜑 enforceable given:
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command ⟨C, S⟩
Causable C ⊆ C ×D∗

Suppress S ⊆ (S ∩A) ×D∗

2 proactive command ⟨C⟩

1 tick

≠ Runtime Monitoring:
return 3/7

instead of commands

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 2 / 16

Metric First-Order Temporal Logic (MFOTL)

Let x ∈ V be a variable, c ∈ C be a constant, e ∈ E be an event and I ∈ N × N be an interval,
▶ Syntax

t ::= x | c
𝜑 ::= e(t, . . . , t) | ⊤ | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 → 𝜑 |

∃x. 𝜑 | ∀x. 𝜑 | I𝜑 | #I𝜑 | 𝜑SI𝜑 | 𝜑UI𝜑

▶ Semantic judgments v, i |=𝜎 𝜙 for valuation v : V → D, trace 𝜎, and time-point i ∈ N: “𝜙 holds
on 𝜎 under v at time-point i”

▶ Notation “always 𝜙”: □𝜙 ≡ ¬(⊤ U[0,∞) ¬𝜙)

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 3 / 16

Metric First-Order Temporal Logic (MFOTL)

Let x ∈ V be a variable, c ∈ C be a constant, e ∈ E be an event and I ∈ N × N be an interval,
▶ Syntax

t ::= x | c
𝜑 ::= e(t, . . . , t) | ⊤ | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 → 𝜑 |

∃x. 𝜑 | ∀x. 𝜑 | I𝜑 | #I𝜑 | 𝜑SI𝜑 | 𝜑UI𝜑

▶ Semantic judgments v, i |=𝜎 𝜙 for valuation v : V → D, trace 𝜎, and time-point i ∈ N: “𝜙 holds
on 𝜎 under v at time-point i”

▶ Notation “always 𝜙”: □𝜙 ≡ ¬(⊤ U[0,∞) ¬𝜙)

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 3 / 16

Metric First-Order Temporal Logic (MFOTL)

Let x ∈ V be a variable, c ∈ C be a constant, e ∈ E be an event and I ∈ N × N be an interval,
▶ Syntax

t ::= x | c
𝜑 ::= e(t, . . . , t) | ⊤ | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 → 𝜑 |

∃x. 𝜑 | ∀x. 𝜑 | I𝜑 | #I𝜑 | 𝜑SI𝜑 | 𝜑UI𝜑

▶ Semantic judgments v, i |=𝜎 𝜙 for valuation v : V → D, trace 𝜎, and time-point i ∈ N: “𝜙 holds
on 𝜎 under v at time-point i”

▶ Notation “always 𝜙”: □𝜙 ≡ ¬(⊤ U[0,∞) ¬𝜙)

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 3 / 16

Metric First-Order Temporal Logic (MFOTL)

Let x ∈ V be a variable, c ∈ C be a constant, e ∈ E be an event and I ∈ N × N be an interval,
▶ Syntax

t ::= x | c
𝜑 ::= e(t, . . . , t) | ⊤ | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 → 𝜑 |

∃x. 𝜑 | ∀x. 𝜑 | I𝜑 | #I𝜑 | 𝜑SI𝜑 | 𝜑UI𝜑

▶ Semantic judgments v, i |=𝜎 𝜙 for valuation v : V → D, trace 𝜎, and time-point i ∈ N: “𝜙 holds
on 𝜎 under v at time-point i”

▶ Notation “always 𝜙”: □𝜙 ≡ ¬(⊤ U[0,∞) ¬𝜙)

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 3 / 16

Metric First-Order Temporal Logic (MFOTL)

Let x ∈ V be a variable, c ∈ C be a constant, e ∈ E be an event and I ∈ N × N be an interval,
▶ Syntax

t ::= x | c
𝜑 ::= e(t, . . . , t) | ⊤ | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 → 𝜑 |

∃x. 𝜑 | ∀x. 𝜑 | I𝜑 | #I𝜑 | 𝜑SI𝜑 | 𝜑UI𝜑

▶ Semantic judgments v, i |=𝜎 𝜙 for valuation v : V → D, trace 𝜎, and time-point i ∈ N: “𝜙 holds
on 𝜎 under v at time-point i”

▶ Notation “always 𝜙”: □𝜙 ≡ ¬(⊤ U[0,∞) ¬𝜙)

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 3 / 16

Metric First-Order Temporal Logic (MFOTL)

Let x ∈ V be a variable, c ∈ C be a constant, e ∈ E be an event and I ∈ N × N be an interval,
▶ Syntax

t ::= x | c
𝜑 ::= e(t, . . . , t) | ⊤ | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 → 𝜑 |

∃x. 𝜑 | ∀x. 𝜑 | I𝜑 | #I𝜑 | 𝜑SI𝜑 | 𝜑UI𝜑

▶ Semantic judgments v, i |=𝜎 𝜙 for valuation v : V → D, trace 𝜎, and time-point i ∈ N: “𝜙 holds
on 𝜎 under v at time-point i”

▶ Notation “always 𝜙”: □𝜙 ≡ ¬(⊤ U[0,∞) ¬𝜙)

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 3 / 16

Metric First-Order Temporal Logic (MFOTL)

Let x ∈ V be a variable, c ∈ C be a constant, e ∈ E be an event and I ∈ N × N be an interval,
▶ Syntax

t ::= x | c
𝜑 ::= e(t, . . . , t) | ⊤ | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 → 𝜑 |

∃x. 𝜑 | ∀x. 𝜑 | I𝜑 | #I𝜑 | 𝜑SI𝜑 | 𝜑UI𝜑

▶ Semantic judgments v, i |=𝜎 𝜙 for valuation v : V → D, trace 𝜎, and time-point i ∈ N: “𝜙 holds
on 𝜎 under v at time-point i”

▶ Notation “always 𝜙”: □𝜙 ≡ ¬(⊤ U[0,∞) ¬𝜙)

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 3 / 16

Last year in Montréal (CAV’24)

First algorithm & tool for Proactive Real-Time
First-Order Enforcement

1. EMFOTL, an enforceable fragment of MFOTL
2. Enforcement algorithm for EMFOTL
3. WHYENF enforcement tool

Limitations:
▶ Expressiveness: “only” basic MFOTL
▶ Performance: 1–2 OOMs slower than monitors

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 4 / 16

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
▶ Function applications in terms (built-in or user-defined functions)
▶ Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
▶ Non-recursive let bindings

For each extension: monitorability, monitoring, enforceability, enforcement
2. We optimize our algorithm and implement it in a new tool, ENFGUARD
3. We comprehensively evaluate ENFGUARD’s performance
▶ Novel benchmark set
▶ Improved performance: 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 5 / 16

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications

▶ Function applications in terms (built-in or user-defined functions)
▶ Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
▶ Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD
3. We comprehensively evaluate ENFGUARD’s performance
▶ Novel benchmark set
▶ Improved performance : 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 5 / 16

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
▶ Function applications in terms (built-in or user-defined functions)

▶ Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
▶ Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD
3. We comprehensively evaluate ENFGUARD’s performance
▶ Novel benchmark set
▶ Improved performance : 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 5 / 16

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
▶ Function applications in terms (built-in or user-defined functions)
▶ Aggregations (SQL-style SUM, MAX, CNT... or user-defined)

▶ Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD
3. We comprehensively evaluate ENFGUARD’s performance
▶ Novel benchmark set
▶ Improved performance : 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 5 / 16

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
▶ Function applications in terms (built-in or user-defined functions)
▶ Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
▶ Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD
3. We comprehensively evaluate ENFGUARD’s performance
▶ Novel benchmark set
▶ Improved performance : 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 5 / 16

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
▶ Function applications in terms (built-in or user-defined functions)
▶ Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
▶ Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD
3. We comprehensively evaluate ENFGUARD’s performance
▶ Novel benchmark set
▶ Improved performance : 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 5 / 16

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
▶ Function applications in terms (built-in or user-defined functions)
▶ Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
▶ Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD

3. We comprehensively evaluate ENFGUARD’s performance
▶ Novel benchmark set
▶ Improved performance : 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 5 / 16

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
▶ Function applications in terms (built-in or user-defined functions)
▶ Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
▶ Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD
3. We comprehensively evaluate ENFGUARD’s performance

▶ Novel benchmark set
▶ Improved performance : 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 5 / 16

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
▶ Function applications in terms (built-in or user-defined functions)
▶ Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
▶ Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD
3. We comprehensively evaluate ENFGUARD’s performance
▶ Novel benchmark set

▶ Improved performance : 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 5 / 16

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
▶ Function applications in terms (built-in or user-defined functions)
▶ Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
▶ Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD
3. We comprehensively evaluate ENFGUARD’s performance
▶ Novel benchmark set
▶ Improved performance : 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 5 / 16

Functions: Monitorability

Function symbols f ∈ F each associated with a computable function f̂ : Da(f) → D.
Standard semantics given a valuation v : V → D:

[[c]]v = c [[x]]v = v(x) [[f (t1, . . . , ta(f))]]v = f̂ ([[t1]]v, . . . , [[ta(f)]]v)

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) → B(f (x)) 3 for all v, if ¬A(v(x)), then ⊤, else B(f̂ (v(x)))
A(f (x)) → B(x) 7 what if f̂−1 is not computable?

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 6 / 16

Functions: Monitorability

Function symbols f ∈ F each associated with a computable function f̂ : Da(f) → D.
Standard semantics given a valuation v : V → D:

[[c]]v = c [[x]]v = v(x) [[f (t1, . . . , ta(f))]]v = f̂ ([[t1]]v, . . . , [[ta(f)]]v)

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) → B(f (x)) 3 for all v, if ¬A(v(x)), then ⊤, else B(f̂ (v(x)))
A(f (x)) → B(x) 7 what if f̂−1 is not computable?

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 6 / 16

Functions: Monitorability

Function symbols f ∈ F each associated with a computable function f̂ : Da(f) → D.
Standard semantics given a valuation v : V → D:

[[c]]v = c [[x]]v = v(x) [[f (t1, . . . , ta(f))]]v = f̂ ([[t1]]v, . . . , [[ta(f)]]v)

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) → B(f (x))

3 for all v, if ¬A(v(x)), then ⊤, else B(f̂ (v(x)))
A(f (x)) → B(x) 7 what if f̂−1 is not computable?

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 6 / 16

Functions: Monitorability

Function symbols f ∈ F each associated with a computable function f̂ : Da(f) → D.
Standard semantics given a valuation v : V → D:

[[c]]v = c [[x]]v = v(x) [[f (t1, . . . , ta(f))]]v = f̂ ([[t1]]v, . . . , [[ta(f)]]v)

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) → B(f (x)) 3

for all v, if ¬A(v(x)), then ⊤, else B(f̂ (v(x)))
A(f (x)) → B(x) 7 what if f̂−1 is not computable?

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 6 / 16

Functions: Monitorability

Function symbols f ∈ F each associated with a computable function f̂ : Da(f) → D.
Standard semantics given a valuation v : V → D:

[[c]]v = c [[x]]v = v(x) [[f (t1, . . . , ta(f))]]v = f̂ ([[t1]]v, . . . , [[ta(f)]]v)

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) → B(f (x)) 3 for all v, if ¬A(v(x)), then ⊤, else B(f̂ (v(x)))

A(f (x)) → B(x) 7 what if f̂−1 is not computable?

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 6 / 16

Functions: Monitorability

Function symbols f ∈ F each associated with a computable function f̂ : Da(f) → D.
Standard semantics given a valuation v : V → D:

[[c]]v = c [[x]]v = v(x) [[f (t1, . . . , ta(f))]]v = f̂ ([[t1]]v, . . . , [[ta(f)]]v)

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) → B(f (x)) 3 for all v, if ¬A(v(x)), then ⊤, else B(f̂ (v(x)))
A(f (x)) → B(x)

7 what if f̂−1 is not computable?

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 6 / 16

Functions: Monitorability

Function symbols f ∈ F each associated with a computable function f̂ : Da(f) → D.
Standard semantics given a valuation v : V → D:

[[c]]v = c [[x]]v = v(x) [[f (t1, . . . , ta(f))]]v = f̂ ([[t1]]v, . . . , [[ta(f)]]v)

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) → B(f (x)) 3 for all v, if ¬A(v(x)), then ⊤, else B(f̂ (v(x)))
A(f (x)) → B(x) 7

what if f̂−1 is not computable?

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 6 / 16

Functions: Monitorability

Function symbols f ∈ F each associated with a computable function f̂ : Da(f) → D.
Standard semantics given a valuation v : V → D:

[[c]]v = c [[x]]v = v(x) [[f (t1, . . . , ta(f))]]v = f̂ ([[t1]]v, . . . , [[ta(f)]]v)

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) → B(f (x)) 3 for all v, if ¬A(v(x)), then ⊤, else B(f̂ (v(x)))
A(f (x)) → B(x) 7 what if f̂−1 is not computable?

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 6 / 16

Functions: Monitorability (cont’d)

How to ensure that the satisfactions can always be computed with finitely many function evaluations?

Idea: the formula must evaluate to⊤ of⊥ for values not present in the trace

We introduced ‘past-guardedness’ typing of formulae such that

⊢ 𝜙 : PG+ (x) =⇒ if v, i |=𝜎 𝜙, then v(x) must be in 𝜎 with time-point ≤ i
⊢ 𝜙 : PG− (x) =⇒ if v, i ̸ |=𝜎 𝜙, then v(x) must be in 𝜎 with time-point ≤ i

Definition: Monitorability

A closed MFOTL formula 𝜙 is monitorable iff for any of its quantified subformulae Qx. 𝜓, where
Q ∈ {∀, ∃}, either ⊢ 𝜓 : PG+ (x), or ⊢ 𝜓 : PG− (x), or x does not appear in any function argument in 𝜓.

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 7 / 16

Functions: Monitorability (cont’d)

How to ensure that the satisfactions can always be computed with finitely many function evaluations?

Idea: the formula must evaluate to⊤ of⊥ for values not present in the trace

We introduced ‘past-guardedness’ typing of formulae such that

⊢ 𝜙 : PG+ (x) =⇒ if v, i |=𝜎 𝜙, then v(x) must be in 𝜎 with time-point ≤ i
⊢ 𝜙 : PG− (x) =⇒ if v, i ̸ |=𝜎 𝜙, then v(x) must be in 𝜎 with time-point ≤ i

Definition: Monitorability

A closed MFOTL formula 𝜙 is monitorable iff for any of its quantified subformulae Qx. 𝜓, where
Q ∈ {∀, ∃}, either ⊢ 𝜓 : PG+ (x), or ⊢ 𝜓 : PG− (x), or x does not appear in any function argument in 𝜓.

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 7 / 16

Functions: Monitorability (cont’d)

How to ensure that the satisfactions can always be computed with finitely many function evaluations?

Idea: the formula must evaluate to⊤ of⊥ for values not present in the trace

We introduced ‘past-guardedness’ typing of formulae such that

⊢ 𝜙 : PG+ (x) =⇒ if v, i |=𝜎 𝜙, then v(x) must be in 𝜎 with time-point ≤ i
⊢ 𝜙 : PG− (x) =⇒ if v, i ̸ |=𝜎 𝜙, then v(x) must be in 𝜎 with time-point ≤ i

Definition: Monitorability

A closed MFOTL formula 𝜙 is monitorable iff for any of its quantified subformulae Qx. 𝜓, where
Q ∈ {∀, ∃}, either ⊢ 𝜓 : PG+ (x), or ⊢ 𝜓 : PG− (x), or x does not appear in any function argument in 𝜓.

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 7 / 16

Functions: Monitorability (cont’d)

How to ensure that the satisfactions can always be computed with finitely many function evaluations?

Idea: the formula must evaluate to⊤ of⊥ for values not present in the trace

We introduced ‘past-guardedness’ typing of formulae such that

⊢ 𝜙 : PG+ (x) =⇒ if v, i |=𝜎 𝜙, then v(x) must be in 𝜎 with time-point ≤ i
⊢ 𝜙 : PG− (x) =⇒ if v, i ̸ |=𝜎 𝜙, then v(x) must be in 𝜎 with time-point ≤ i

Definition: Monitorability

A closed MFOTL formula 𝜙 is monitorable iff for any of its quantified subformulae Qx. 𝜓, where
Q ∈ {∀, ∃}, either ⊢ 𝜓 : PG+ (x), or ⊢ 𝜓 : PG− (x), or x does not appear in any function argument in 𝜓.

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 7 / 16

Functions: Enforceability – EMFOTL (CAV’24)

▶ Typing judgements Γ ⊢ 𝜙 : C (“𝜙 can be made true”) or Γ ⊢ 𝜙 : S (“𝜙 can be made false”)
+ Γ : E → {C, S} fixes events that the enforcer will cause or suppress

▶ 𝜙 ∈ EMFOTL iff there exists Γ such that Γ ⊢ 𝜙 : C
▶ (Selected) rules

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG− (x) Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 8 / 16

Functions: Enforceability – EMFOTL (CAV’24)

▶ Typing judgements Γ ⊢ 𝜙 : C (“𝜙 can be made true”) or Γ ⊢ 𝜙 : S (“𝜙 can be made false”)
+ Γ : E → {C, S} fixes events that the enforcer will cause or suppress

▶ 𝜙 ∈ EMFOTL iff there exists Γ such that Γ ⊢ 𝜙 : C

▶ (Selected) rules

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG− (x) Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 8 / 16

Functions: Enforceability – EMFOTL (CAV’24)

▶ Typing judgements Γ ⊢ 𝜙 : C (“𝜙 can be made true”) or Γ ⊢ 𝜙 : S (“𝜙 can be made false”)
+ Γ : E → {C, S} fixes events that the enforcer will cause or suppress

▶ 𝜙 ∈ EMFOTL iff there exists Γ such that Γ ⊢ 𝜙 : C
▶ (Selected) rules

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG− (x) Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 8 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions?

Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1))

3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3

Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)

□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋)

3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3

Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)

□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1))

7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7

Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Function: Enforceability

Γ(e) = C e ∈ C
Γ ⊢ e(t1, . . . , ta(e)) : C EC

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C
Γ ⊢ □𝜙 : C

□C ⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C
Γ ⊢ ∀x. 𝜙 : C ∀C

Does this work with functions? Assume A,B ∈ C.

□ (∀x. A(x) → B(x+ 1)) 3 Cause B(x + 1) for each A(x)
□ (∀x. A(x) → A(⌊x / 2⌋) 3 Cause A(⌊x/2⌋),A(⌊x/4⌋), . . . ,A(0) for each A(x)
□ (∀x. A(x) → A(x+ 1)) 7 Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values→ the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 9 / 16

Functions: Enforceability (cont’d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let ⪯ be a well-founded relation onD. A function f : Dk → D is ⪯-stable iff there exists a finite
Cf ⊆ D such that for any dsup ∈ D and d1, . . . , da(f) ⪯ dsup, either f (d1, . . . , da(f)) ⪯ dsup or
f (d1, . . . , da(f)) ∈ Cf .

Now, Γ : E → {Cs,Cn, S}.
▶ Γ(e) = S: the enforcer can suppress e events
▶ Γ(e) = Cs: the enforcer can use e events as guards + cause e events containing stable functions
▶ Γ(e) = Cn: the enforcer can generate e events containing arbitrary functions

→ details in the paper

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 10 / 16

Functions: Enforceability (cont’d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let ⪯ be a well-founded relation onD. A function f : Dk → D is ⪯-stable iff there exists a finite
Cf ⊆ D such that for any dsup ∈ D and d1, . . . , da(f) ⪯ dsup, either f (d1, . . . , da(f)) ⪯ dsup or
f (d1, . . . , da(f)) ∈ Cf .

Now, Γ : E → {Cs,Cn, S}.
▶ Γ(e) = S: the enforcer can suppress e events
▶ Γ(e) = Cs: the enforcer can use e events as guards + cause e events containing stable functions
▶ Γ(e) = Cn: the enforcer can generate e events containing arbitrary functions

→ details in the paper

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 10 / 16

Functions: Enforceability (cont’d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let ⪯ be a well-founded relation onD. A function f : Dk → D is ⪯-stable iff there exists a finite
Cf ⊆ D such that for any dsup ∈ D and d1, . . . , da(f) ⪯ dsup, either f (d1, . . . , da(f)) ⪯ dsup or
f (d1, . . . , da(f)) ∈ Cf .

Now, Γ : E → {Cs,Cn, S}.

▶ Γ(e) = S: the enforcer can suppress e events
▶ Γ(e) = Cs: the enforcer can use e events as guards + cause e events containing stable functions
▶ Γ(e) = Cn: the enforcer can generate e events containing arbitrary functions

→ details in the paper

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 10 / 16

Functions: Enforceability (cont’d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let ⪯ be a well-founded relation onD. A function f : Dk → D is ⪯-stable iff there exists a finite
Cf ⊆ D such that for any dsup ∈ D and d1, . . . , da(f) ⪯ dsup, either f (d1, . . . , da(f)) ⪯ dsup or
f (d1, . . . , da(f)) ∈ Cf .

Now, Γ : E → {Cs,Cn, S}.
▶ Γ(e) = S: the enforcer can suppress e events

▶ Γ(e) = Cs: the enforcer can use e events as guards + cause e events containing stable functions
▶ Γ(e) = Cn: the enforcer can generate e events containing arbitrary functions

→ details in the paper

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 10 / 16

Functions: Enforceability (cont’d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let ⪯ be a well-founded relation onD. A function f : Dk → D is ⪯-stable iff there exists a finite
Cf ⊆ D such that for any dsup ∈ D and d1, . . . , da(f) ⪯ dsup, either f (d1, . . . , da(f)) ⪯ dsup or
f (d1, . . . , da(f)) ∈ Cf .

Now, Γ : E → {Cs,Cn, S}.
▶ Γ(e) = S: the enforcer can suppress e events
▶ Γ(e) = Cs: the enforcer can use e events as guards + cause e events containing stable functions

▶ Γ(e) = Cn: the enforcer can generate e events containing arbitrary functions

→ details in the paper

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 10 / 16

Functions: Enforceability (cont’d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let ⪯ be a well-founded relation onD. A function f : Dk → D is ⪯-stable iff there exists a finite
Cf ⊆ D such that for any dsup ∈ D and d1, . . . , da(f) ⪯ dsup, either f (d1, . . . , da(f)) ⪯ dsup or
f (d1, . . . , da(f)) ∈ Cf .

Now, Γ : E → {Cs,Cn, S}.
▶ Γ(e) = S: the enforcer can suppress e events
▶ Γ(e) = Cs: the enforcer can use e events as guards + cause e events containing stable functions
▶ Γ(e) = Cn: the enforcer can generate e events containing arbitrary functions

→ details in the paper

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 10 / 16

Functions: Enforceability (cont’d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let ⪯ be a well-founded relation onD. A function f : Dk → D is ⪯-stable iff there exists a finite
Cf ⊆ D such that for any dsup ∈ D and d1, . . . , da(f) ⪯ dsup, either f (d1, . . . , da(f)) ⪯ dsup or
f (d1, . . . , da(f)) ∈ Cf .

Now, Γ : E → {Cs,Cn, S}.
▶ Γ(e) = S: the enforcer can suppress e events
▶ Γ(e) = Cs: the enforcer can use e events as guards + cause e events containing stable functions
▶ Γ(e) = Cn: the enforcer can generate e events containing arbitrary functions

→ details in the paper

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 10 / 16

Implementation

▶ New open-source tool

▶ Code base: ∼10k loc (OCaml)
▶ Includes optimizations→ details in paper

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 11 / 16

Evaluation

RQ1. Can ENFGUARD’s EMFOTL fragment formalize real-world policies?
RQ2. At what maximum event rate can ENFGUARD perform real-time enforcement?
RQ3. Does ENFGUARD’s performance improve upon the state-of-the-art?

The largest benchmark suite for runtime enforcement!
Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 12 / 16

Evaluation: Expressiveness (RQ1)

ENFGUARD supports more policies (39/39) than the SOTA MFOTL monitor MONPOLY [Basin et al.,
2017] (31/39) and significantly more than WHYENF (17/39).

“Block validation latency” (from IC benchmark [Basin et al., 2023])
1 LET node_added_to_subnet (node_id , node_addr , subnet) = ... IN
2 LET node_removed_from_subnet (node_id , node_addr) = ... IN
3 LET in_subnet (node_id , node_addr , subnet) = ... IN
4 LET subnet_size (subnet_id , n) = ... IN
5 LET block_added (node_id , subnet_id , block , t_add) = ... IN
6 LET validated (block , subnet_id , t_add) =
7 EXISTS n_validated , n_subnet . (n_validated <- CNT (valid_node ; block , subnet_id , t_add ; ...)
8 AND subnet_size (subnet_id , n_subnet)
9 AND (float_of_int (n_validated) > 2. *. float_of_int (n_subnet) /. 3.) IN

10 LET time_per_block (block , subnet_id , time) = ... IN
11 LET subnet_type_assoc (subnet_id , subnet_type) = ... IN
12 LET subnet_type_map (subnet_id , subnet_type) = ... IN
13 FORALL block , subnet_id , time.
14 time_per_block (block , subnet_id , time)
15 AND ((subnet_type_map (subnet_id , " System ") AND (time > 3000))
16 OR ((subnet_type_map (subnet_id , " Application ")
17 OR subnet_type_map (subnet_id , " VerifiedApplication ")) AND (time > 1000)))
18 IMPLIES alert_validation_latency (block , subnet_id , time)

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 13 / 16

https://people.inf.ethz.ch/basin/pubs/rvcubes17.pdf
https://people.inf.ethz.ch/basin/pubs/rvcubes17.pdf
https://doi.org/10.1007/978-3-031-27481-7_22

Evaluation: Expressiveness (RQ1)

ENFGUARD supports more policies (39/39) than the SOTA MFOTL monitor MONPOLY [Basin et al.,
2017] (31/39) and significantly more than WHYENF (17/39).
“Block validation latency” (from IC benchmark [Basin et al., 2023])

1 LET node_added_to_subnet (node_id , node_addr , subnet) = ... IN
2 LET node_removed_from_subnet (node_id , node_addr) = ... IN
3 LET in_subnet (node_id , node_addr , subnet) = ... IN
4 LET subnet_size (subnet_id , n) = ... IN
5 LET block_added (node_id , subnet_id , block , t_add) = ... IN
6 LET validated (block , subnet_id , t_add) =
7 EXISTS n_validated , n_subnet . (n_validated <- CNT (valid_node ; block , subnet_id , t_add ; ...)
8 AND subnet_size (subnet_id , n_subnet)
9 AND (float_of_int (n_validated) > 2. *. float_of_int (n_subnet) /. 3.) IN

10 LET time_per_block (block , subnet_id , time) = ... IN
11 LET subnet_type_assoc (subnet_id , subnet_type) = ... IN
12 LET subnet_type_map (subnet_id , subnet_type) = ... IN
13 FORALL block , subnet_id , time.
14 time_per_block (block , subnet_id , time)
15 AND ((subnet_type_map (subnet_id , " System ") AND (time > 3000))
16 OR ((subnet_type_map (subnet_id , " Application ")
17 OR subnet_type_map (subnet_id , " VerifiedApplication ")) AND (time > 1000)))
18 IMPLIES alert_validation_latency (block , subnet_id , time)

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 13 / 16

https://people.inf.ethz.ch/basin/pubs/rvcubes17.pdf
https://people.inf.ethz.ch/basin/pubs/rvcubes17.pdf
https://doi.org/10.1007/978-3-031-27481-7_22

Evaluation: Performance (RQ2–3)

▶ Event rate er: number of events in the trace per time unit (timestamp time)

▶ Acceleration a = trace timestamp step / real time step
▶ Latency ℓ: time difference (real time) between event input and command output
▶ maxℓ (a): maximum latency at acceleration a
▶ Real-time condition: maxℓ (a) ≤ 1/a
▶ We report avger at the maximum latency fulfilling the real-time condition

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 14 / 16

Evaluation: Performance (RQ2–3)

▶ Event rate er: number of events in the trace per time unit (timestamp time)
▶ Acceleration a = trace timestamp step / real time step

▶ Latency ℓ: time difference (real time) between event input and command output
▶ maxℓ (a): maximum latency at acceleration a
▶ Real-time condition: maxℓ (a) ≤ 1/a
▶ We report avger at the maximum latency fulfilling the real-time condition

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 14 / 16

Evaluation: Performance (RQ2–3)

▶ Event rate er: number of events in the trace per time unit (timestamp time)
▶ Acceleration a = trace timestamp step / real time step
▶ Latency ℓ: time difference (real time) between event input and command output

▶ maxℓ (a): maximum latency at acceleration a
▶ Real-time condition: maxℓ (a) ≤ 1/a
▶ We report avger at the maximum latency fulfilling the real-time condition

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 14 / 16

Evaluation: Performance (RQ2–3)

▶ Event rate er: number of events in the trace per time unit (timestamp time)
▶ Acceleration a = trace timestamp step / real time step
▶ Latency ℓ: time difference (real time) between event input and command output
▶ maxℓ (a): maximum latency at acceleration a

▶ Real-time condition: maxℓ (a) ≤ 1/a
▶ We report avger at the maximum latency fulfilling the real-time condition

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 14 / 16

Evaluation: Performance (RQ2–3)

▶ Event rate er: number of events in the trace per time unit (timestamp time)
▶ Acceleration a = trace timestamp step / real time step
▶ Latency ℓ: time difference (real time) between event input and command output
▶ maxℓ (a): maximum latency at acceleration a
▶ Real-time condition: maxℓ (a) ≤ 1/a

▶ We report avger at the maximum latency fulfilling the real-time condition

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 14 / 16

Evaluation: Performance (RQ2–3)

▶ Event rate er: number of events in the trace per time unit (timestamp time)
▶ Acceleration a = trace timestamp step / real time step
▶ Latency ℓ: time difference (real time) between event input and command output
▶ maxℓ (a): maximum latency at acceleration a
▶ Real-time condition: maxℓ (a) ≤ 1/a
▶ We report avger at the maximum latency fulfilling the real-time condition

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 14 / 16

Evaluation: Performance (RQ2–3)

Comparison with WHYENF, ENFPOLY [Hublet et al., 2022], MONPOLY (monitor).
Note: ENFPOLY covers only 7/39 formulae.

GPDR benchmarks:
ENFGUARD WHYENF ENFPOLY MONPOLY

Policy 𝜙 |𝜙 | avger avgℓ maxℓ avger avgℓ maxℓ avger avgℓ maxℓ avger avgℓ maxℓ
consent 22 1619 .39 2 101 7.6 30 6480 .17 1 6934 .20 1
deletion 14 3238 .28 2 3238 .20 1 6934 .20 1

gdpr 72 810 .87 3 25 33 110 3465 .13 1
information 16 1619 .33 2 810 1.1 5.2 6934 .15 1
lawfulness 17 1619 .35 2 810 1.3 4.4 6480 .17 1 6934 .15 1

sharing 19 1619 .32 2 405 3.0 15 6934 .20 1

Consistent findings on other benchmarks (not shown here):
▶ ENFGUARD 2–10× faster than WHYENF
▶ Slightly slower but much better coverage than ENFPOLY
▶ Difference with MONPOLY: PDT- rather than table-based

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 15 / 16

https://doi.org/10.1007/978-3-031-17146-8_11

Thank you for your attention!

If you are interested in this work, feel free to drop us an e-mail:

François Hublet francois.hublet@inf.ethz.ch
Srđan Krstić srdan.krstic@inf.ethz.ch

Any questions?

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 16 / 16

Thank you for your attention!

If you are interested in this work, feel free to drop us an e-mail:

François Hublet francois.hublet@inf.ethz.ch
Srđan Krstić srdan.krstic@inf.ethz.ch

Any questions?

Hublet, Lima, Basin, Krstić, and Traytel — Scaling Up Proactive Enforcement 16 / 16

