Scaling Up Proactive Enforcement

Francois Hublet & Leonardo Lima David Basin

francois.hublet@inf.ethz.ch leonardo@di.ku.dk basin@inf.ethz.ch

Srdan Krstié Dmitriy Traytel
srdan.krstic@inf.ethz.ch traytel@di.ku.dk

International Conference on Computer-Aided Verification — Zagreb, July 23, 2025

ETH:zlurich
D

e EEE—
The Fairytale of Complex Systems

Forest of software

active Enforcement

e EEE—
The Fairytale of Complex Systems

Mountains of hardware

Forest of software

active Enforcement

—

The Fairytale of Complex Systems

Hydra of non-compliance
Mountains of hardware

Forest of software

Traytel — Scaling Up Proactive Enforcement

—

The Fairytale of Complex Systems

Hydra of non-compliance

‘Coding
mistakes

Mountains of hardware

Forest of software

¢, and Traytel — Scaling Up Proactive Enforcement

—

The Fairytale of Complex Systems

‘ Hydra of non-compliance
Coding
mistakes

Mountains of hardware

Specification

complexity
Forest of software

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

The Fairytale of Complex Systems

‘ Hydra of non-compliance
Coding

mistakes ,St.atlc. ’
verification

costs Mountains of hardware

Specification

complexity
Forest of software

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

The Fairytale of Complex Systems

Our new
runtime enforcement tool

Hublet, Lima, Basi rstié Traytel — Scaling Up Proactive Enforcement

—

Runtime Enforcement

System

=5 &

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Runtime Enforcement

System

=5 &

l@ events A C E

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Runtime Enforcement

System

=5 &

l@ events A C E

Trace

t
{eventl, event2} {event2}

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Runtime Enforcement

System

=5 &

l@ events A C E

Trace

t
{eventl, event2} {event2}

(Policy ¢

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Runtime Enforcement

System

=5 &

l@ events A C E

Trace

t
{eventl, event2} {event2}

(é'l'é Policy ¢
—1
Enforcer
-

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Runtime Enforcement

System

=5 &

l@ events A C E

Trace

t
{eventl, event2} {event2}

s Polic
lo (o] | ™7
| S—
Enforcer
«Y .

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Runtime Enforcement

System

(000 ——)
: >
(3) reactive command ﬁ é%

l@ events A C E

Trace

t
{eventl, event2} {event2}

s Polic
lo (o] | ™7
| S—
Enforcer
«Y .

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Runtime Enforcement

System

[e00 ——)
(3) reactive command (C, S) ﬁ

Causable C C C
Suppress S C SNA

l@ events A C E

Trace

t t
{eventl, event2} {event2}

@l

Enforcer

Policy ¢ enforceable given:
Set of causable events C C E
Set of suppressable events S C E

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

First-Order Runtime Enforcement

System

[e00 ——)
(3) reactive command (C, S) ﬁ

Causable C C Cx D’
Suppress S C (SNA)xD"

l@ events A C Ex D"

Trace

t
{eventl(2,1,1),event2(0,0,0)} {event2(1,3.1)}

(Policy ¢ enforceable given:
l@ é-l_é Set of causable events C C E
— Set of suppressable events S C E
Enforcer
N
. il

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Real-Time First-Order Runtime Enforcement

System

[e00 ——)
(3) reactive command (C, S) ﬁ

Causable C € Cx D"
Suppress S C (SNA)xD”

l@ events A C Ex D"

Trace
71 =10 79 =50

{eventl(2,1,1),event2(0,0,0)} {event2(1,3.1)}

(Policy ¢ enforceable given:
l@ é-l_é Set of causable events C C E
— Set of suppressable events S C E
Enforcer

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Proactive Real-Time First-Order Runtime Enforcement

(2) proactive command (C)

System

Causable C € Cx D"
Suppress S C (SNA)xD"
l@ events A C E x D*

Trace
71 =10 79 =50

{eventl(2,1,1),event2(0,0,0)} {event2(1,3.1)}

@l

Enforcer

[e00 ——)
(3) reactive command (C, S) ﬁ

Policy ¢ enforceable given:
Set of causable events C C E
Set of suppressable events S C E

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Proactive Real-Time First-Order Runtime Enforcement

(2) proactive command (C)

System

Causable C € Cx D"
Suppress S C (SNA)xD”

l@ events A C Ex D"

Trace
71 =10 79 =50

{eventl(2,1,1),event2(0,0,0)} {event2(1,3.1)}

@l

Enforcer

[e00 ——)
(3) reactive command (C, S) ﬁ

Runtime Monitoring:
return v'/X

instead of commands

Policy ¢ enforceable given:
Set of causable events C C E
Set of suppressable events S C E

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Metric First-Order Temporal Logic (MFOTL)

Let x € V be a variable, ¢ € C be a constant, e € Ebe an eventand I € N X N be an interval,

> Syntax

x|c
e(t,....t) [Tl-olorp|le— ¢
Ix. o | Vx. 0| @190 | O10 | ¢S190 | 9ULY

S
|

Hublet, Lima, Basin, d Traytel — Scaling Up Proactive Enforcement

—

Metric First-Order Temporal Logic (MFOTL)

Let x € V be a variable, ¢ € C be a constant, e € Ebe an eventand I € N X N be an interval,

> Syntax

x|c
e(t,....t) [Tl-olorp|le— ¢
Ix o |Vx. 0| @@ | Oro | oSie | el

S
|

Hublet, Lima, Basi rsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Metric First-Order Temporal Logic (MFOTL)

Let x € V be a variable, ¢ € C be a constant, e € Ebe an eventand I € N X N be an interval,

> Syntax

x|c
e(t,....t) [Tl-olerg|le— ¢
x| Vx. 0| @@ | Oro | eSie | Ui

S
|

Hublet, Lima, Basi rsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Metric First-Order Temporal Logic (MFOTL)

Let x € V be a variable, ¢ € C be a constant, e € Ebe an eventand I € N X N be an interval,

> Syntax

x|c
e(t,....t) [Tl-olerg|le— ¢
x| Vx. 0| @190 | O10 | @S190 | U1

S
|

Hublet, Lima, Basi rsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Metric First-Order Temporal Logic (MFOTL)

Let x € V be a variable, ¢ € C be a constant, e € Ebe an eventand I € N X N be an interval,

> Syntax

x|c
e(t,....t) [Tl-olorp|le— ¢
Ix. o | Vx. 0| @190 | O10 | ¢S190 | 9ULY

S
|

Hublet, Lima, Basin, d Traytel — Scaling Up Proactive Enforcement

—

Metric First-Order Temporal Logic (MFOTL)

Let x € V be a variable, ¢ € C be a constant, e € Ebe an eventand I € N X N be an interval,

> Syntax

x|c
e(t,....t) [Tl-olorp|le— ¢
Ix. o | Vx. 0| @190 | O10 | ¢S190 | 9ULY

S
|

» Semantic judgments v, i |=, ¢ for valuation v : V — D, trace o, and time-point i € N: “¢ holds
on o under v at time-point i’

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Metric First-Order Temporal Logic (MFOTL)

Let x € V be a variable, ¢ € C be a constant, e € Ebe an eventand I € N X N be an interval,

> Syntax

x|c
e(t,....t) [Tl-olorp|le— ¢
Ix. o | Vx. 0| @190 | O10 | ¢S190 | 9ULY

S
|

» Semantic judgments v, i |=, ¢ for valuation v : V — D, trace o, and time-point i € N: “¢ holds
on o under v at time-point i’

> Notation “always ¢”: O¢ = (T U[o,c0) =)

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Last year in Montréal (CAV'24)

Proactive Real-Time First-Order Enforcement

First algorithm & tool for Proactive Real-Time
First-Order Enforcement

1. EMFOTL, an enforceable fragment of MFOTL
2. Enforcement algorithm for EMFOTL

3. WaYENF enforcement tool

1 Introduction

Limitations:
> Expressiveness: “only” basic MFOTL

» Performance: 1-2 OOMs slower than monitors

aytel — Scaling Up Proactive Enforcement

—

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

¢, and Traytel — Scaling Up Proactive Enforcement

—

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications

> Function applications in terms (built-in or user-defined functions)

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications

> Function applications in terms (built-in or user-defined functions)
> Aggregations (SQL-style SUM, MAX, CNT... or user-defined)

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
> Function applications in terms (built-in or user-defined functions)

> Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
> Non-recursive let bindings

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

e EEE—
This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
> Function applications in terms (built-in or user-defined functions)

> Aggregations (SQL-style SUM, MAX, CNT... or user-defined)

> Non-recursive let bindings
For each extension: monitorability , monitoring, enforceability , enforcement

Krsti¢, and Traytel — Scaling Up Proactive Enforcement

Hublet, Lima, Basi

—

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications

> Function applications in terms (built-in or user-defined functions)

> Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
> Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
> Function applications in terms (built-in or user-defined functions)

> Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
> Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD

3. We comprehensively evaluate ENFGUARD's performance

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
> Function applications in terms (built-in or user-defined functions)

> Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
> Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement
2. We optimize our algorithm and implement it in a new tool, ENFGUARD

3. We comprehensively evaluate ENFGUARD's performance

> Novel benchmark set

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

This year in Zagreb (CAV’25)

We extend and optimize our Proactive Real-Time First-Order Enforcement algorithm

1. We extend our approach to support more expressive specifications
> Function applications in terms (built-in or user-defined functions)

> Aggregations (SQL-style SUM, MAX, CNT... or user-defined)
> Non-recursive let bindings

For each extension: monitorability , monitoring, enforceability , enforcement

2. We optimize our algorithm and implement it in a new tool, ENFGUARD

3. We comprehensively evaluate ENFGUARD's performance

> Novel benchmark set

» Improved performance : 1 OOM speed-up over previous work

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability

Function symbols f € FF each associated with a computable function f:pa® - p.
Standard semantics given a valuation v : V — D:

[[clly = ¢ ([xTly = v(x) (£t ta) v = ECTEaDlvs - - [Eacn D1V

Hublet, Lima, Basi rsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability

Function symbols f € FF each associated with a computable function f:pa® - p.
Standard semantics given a valuation v : V — D:

[[clly = ¢ ([xTly = v(x) (£t ta) v = ECTEaDlvs - - [Eacn D1V

Can we always compute the satisfactions of MFOTL formulae with function applications?

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability

Function symbols f € FF each associated with a computable function f:pa® - p.
Standard semantics given a valuation v : V — D:

[[clly = ¢ ([xTly = v(x) (£t ta) v = ECTEaDlvs - - [Eacn D1V

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) = B(f(x))

Hublet, Lima, Basin, d Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability

Function symbols f € FF each associated with a computable function f:pa® - p.
Standard semantics given a valuation v : V — D:

[[clly = ¢ ([xTly = v(x) (£t ta) v = ECTEaDlvs - - [Eacn D1V

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) — B(f(x)) v

Hublet, Lima, Basin, d Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability

Function symbols f € FF each associated with a computable function f:pa® - p.
Standard semantics given a valuation v : V — D:

[[clly = ¢ ([xTly = v(x) (£t ta) v = ECTEaDlvs - - [Eacn D1V

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) - B(f(x)) v for all v, if =~A(v(x)), then T, else B(f(v(x)))

Hublet, Lima, Basin, d Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability

Function symbols f € FF each associated with a computable function f:pa® - p.
Standard semantics given a valuation v : V — D:

[[clly = ¢ ([xTly = v(x) (£t ta) v = ECTEaDlvs - - [Eacn D1V

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) - B(f(x)) v for all v, if =~A(v(x)), then T, else B(f(v(x)))
A(f(x)) = B(x)

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability

Function symbols f € FF each associated with a computable function f:pa® - p.
Standard semantics given a valuation v : V — D:

[[clly = ¢ ([xTly = v(x) (£t ta) v = ECTEaDlvs - - [Eacn D1V

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) - B(f(x)) v for all v, if =~A(v(x)), then T, else B(f(v(x)))
A(f(x)) = B(x) X

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability

Function symbols f € FF each associated with a computable function f:pa® - p.
Standard semantics given a valuation v : V — D:

[[clly = ¢ ([xTly = v(x) (£t ta) v = ECTEaDlvs - - [Eacn D1V

Can we always compute the satisfactions of MFOTL formulae with function applications?

A(x) - B(f(x)) v for all v, if ~A(v(x)), then T, else B(f(v(x)))
A(f(x)) = B(x) X what if f =" is not computable?

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability (cont’d)

How to ensure that the satisfactions can always be computed with finitely many function evaluations?

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability (cont’d)

How to ensure that the satisfactions can always be computed with finitely many function evaluations?

Idea: the formula must evaluate to T of L for values not present in the trace

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability (cont’d)

How to ensure that the satisfactions can always be computed with finitely many function evaluations?
Idea: the formula must evaluate to T of L for values not present in the trace

We introduced ‘past-guardedness’ typing of formulae such that

F¢: PG"(x) = if v,i Eo ¢, then v(x) must be in o with time-point < i

F¢: PG (x) = ifv,i [t ¢, then v(x) must be in o with time-point < i

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Monitorability (cont’d)

How to ensure that the satisfactions can always be computed with finitely many function evaluations?
Idea: the formula must evaluate to T of L for values not present in the trace

We introduced ‘past-guardedness’ typing of formulae such that

F¢: PG"(x) = if v,i Eo ¢, then v(x) must be in o with time-point < i

F¢: PG (x) = ifv,i [t ¢, then v(x) must be in o with time-point < i

Definition: Monitorability

A closed MFOTL formula ¢ is monitorable iff for any of its quantified subformulae Qx. i, where
Q € {V, 3}, either + ¢ : PG*(x), or F ¥ : PG™(x), or x does not appear in any function argument in .

Hublet, Lima, Basin i¢ Traytel — Scaling Up Proactive Enforcement

—

Functions: Enforceability - EMFOTL (CAV’24)

> Typing judgements I" F ¢ : C (“¢ can be made true”) or I' + ¢ : S (“¢p can be made false”)

+ I' : E — {C, S} fixes events that the enforcer will cause or suppress

Hublet, Lima, Basin, d Traytel — Scaling Up Proactive Enforcement

—

Functions: Enforceability - EMFOTL (CAV’24)

> Typing judgements I" F ¢ : C (“¢ can be made true”) or I' + ¢ : S (“¢p can be made false”)
+ I' : E — {C, S} fixes events that the enforcer will cause or suppress
> ¢ € EMFOTL iff there exists I" such thatI' + ¢ : C

Hublet, Lima, Basin, d Traytel — Scaling Up Proactive Enforcement

—

Functions: Enforceability - EMFOTL (CAV’24)

> Typing judgements I" F ¢ : C (“¢ can be made true”) or I' + ¢ : S (“¢p can be made false”)
+ I' : E — {C, S} fixes events that the enforcer will cause or suppress
> ¢ € EMFOTL iff there exists I" such thatI' + ¢ : C

> (Selected) rules

F@=C ecC . _TryC
Fl—e(t1,...,ta(e))2c 'rg -y :C
'r¢:C Fo:PG (x) Tro:C
—— 0O ve
I'rog:C I'rvx.¢:C

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

['(e)=C eeC EC I'ry:C _cr
T ket .. ta@) : C Frg—-y:C
'r¢:C . Fo:PG(x)™ Tr¢p:C
———— 0O vC
'rog:C 'rvx.¢:C

Does this work with functions?

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

['(e)=C eeC EC I'ry:C _cr
T ket .. ta@) : C Frg—-y:C
'r¢:C . Foé:PG(x)™ FI—¢:CVC

FH:|¢:CD 'rvx.¢:C
Does this work with functions? Assume A, B € C.

O(vVx. A(x) - B(x+1))

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

['(e)=C eeC EC I'ry:C _cr
T ket .. ta@) : C Frg—-y:C
'r¢:C . Foé:PG(x)™ FI—¢:CVC

FH:|¢:CD 'rvx.¢:C
Does this work with functions? Assume A, B € C.

O(vVx. A(x) - B(x+1)) v

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C eeC EC 'ry :C _cR
I'ke(t,... tae)) : C r'rg -y :C
'r¢:C . Fo:PG(x)™ Tr¢p:C
= —,; =~ O vC
'rog:C 'rvx.¢:C
Does this work with functions? Assume A, B € C.
O(vVx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C ecC EC 'ry:C _cR
I'ke(t,... tae)) : C 'rg -y :C
'r¢:C . Fo:PG(x)™ Tr¢p:C
— O V(C
I'rog¢:C I'rvx.¢:C
Does this work with functions? Assume A, B € C.
O(vVx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)

O(vVx. A(x) = A([x/2])

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C ecC EC 'ry:C _cR
I'ke(t,... tae)) : C 'rg -y :C
'r¢:C . Fo:PG(x)™ Tr¢p:C
— O V(C
I'rog¢:C I'rvx.¢:C
Does this work with functions? Assume A, B € C.
O(vVx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)

o(vx. A(x) = A(|x/2])) v

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C ecC EC 'ry:C _cR
I'ke(t,... tae)) : C 'rg -y :C
'r¢:C . Fo:PG(x)™ Tr¢p:C
— O V(C
I'rog¢:C I'rvx.¢:C
Does this work with functions? Assume A, B € C.
O(vVx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)

o(vx. A(x) = A(lx/2)) v Cause A(|x/2]), A(|x/4]),...,A(0) for each A(x)

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C ecC EC 'ry:C _cR
I'ke(t,... tae)) : C 'rg -y :C
'r¢:C . Fo:PG(x)™ Tr¢p:C
— O VC
I'rog¢:C I'rvx.¢:C
Does this work with functions? Assume A, B € C.
O(vVx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)

o(vx. A(x) = A(lx/2)) v Cause A(|x/2]), A(|x/4]),...,A(0) for each A(x)
o(vVx. A(x) —» A(x+1))

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C ecC EC 'ry:C _cR
I'ke(t,... tae)) : C 'rg -y :C
'r¢:C . Fo:PG(x)™ Tr¢p:C
— O VC
I'rog¢:C I'rvx.¢:C
Does this work with functions? Assume A, B € C.
O(vVx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)

o(vx. A(x) = A(lx/2)) v Cause A(|x/2]), A(|x/4]),...,A(0) for each A(x)
o(vVx. A(x) > A(x+1)) X

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C ecC EC 'ry:C _cR
I'ke(t,... tae)) : C 'rg -y :C
'r¢:C . Fo:PG(x)™ Tr¢p:C
— O VC
I'rog¢:C I'rvx.¢:C
Does this work with functions? Assume A, B € C.

O(vVx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)
o(vx. A(x) = A(lx/2)) v Cause A(|x/2]), A(|x/4]),...,A(0) for each A(x)
o(vVx. A(x) > A(x+1)) X Must insert infinitely many A events

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C ecC EC 'ry:C _cR
I'ke(t,... tae)) : C 'rg -y :C
'r¢:C . Fo:PG(x)™ Tr¢p:C
— O VC
I'rog¢:C I'rvx.¢:C
Does this work with functions? Assume A, B € C.

o(vVx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)
o(vx. A(x) = A(|x/2)]) v Cause A(|x/2]), A(|x/4]),...,A(0) for each A(x)
o(vVx. A(x) » A(x+1)) X Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C ecC EC 'ry:C _cR
I'ke(t,... tae)) : C 'rg -y :C
'r¢:C . Fo:PG(x)™ Tr¢p:C
— O VC
I'rog¢:C I'rvx.¢:C
Does this work with functions? Assume A, B € C.

o(vx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)
o(vx. A(x) = A(|x/2)]) v Cause A(|x/2]), A(|x/4]),...,A(0) for each A(x)
o(vVx. A(x) » A(x+1)) X Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C eeC EC 'ry :C R
I'ke(t,... tae)) : C r'rg -y :C

'r¢:C . Fo:PG(x)™ Tr¢p:C

= — 7. ~ O vC

'rog:C 'rvx.¢:C

Does this work with functions? Assume A, B € C.

o(vx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)
o(vx. A(x) = A(lx/2]) v Cause A(|x/2]), A(lx/4]), ..., A(0) for each A(x)
o(vVx. A(x) » A(x+1)) X Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Function: Enforceability

I'e)=C eeC EC 'ry :C R
I'ke(t,... tae)) : C r'rg -y :C

'r¢:C . Fo:PG(x)™ Tr¢p:C

= — 7. ~ O vC

'rog:C 'rvx.¢:C

Does this work with functions? Assume A, B € C.

o(vx. A(x) - B(x+1)) v Cause B(x + 1) for each A(x)
o(vx. A(x) = A(lx/2]) v Cause A(|x/2]), A(lx/4]), ..., A(0) for each A(x)
o(vVx. A(x) » A(x+1)) X Must insert infinitely many A events

Observe: events that guard x, functions that can generate infinitely many values, functions that can
generate only finitely many values — the problem is the interaction guard + ‘unstable’ functions

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Enforceability (cont’'d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Hublet, Lima, Basi rsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Enforceability (cont’'d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let < be a well-founded relation on D. A function f : DX — D is <-stable iff there exists a finite
Ct¢ C D such that for any dsyp € Dand dy, ..., das) = dsup, either f(dy, ..., dacr)) = dsup or
f(dl, ey da(f)) € Cf.

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Enforceability (cont’'d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let < be a well-founded relation on D. A function f : DX — D is <-stable iff there exists a finite
Ct¢ C D such that for any dsyp € Dand dy, ..., das) = dsup, either f(dy, ..., dacr)) = dsup or
f(dl, ey da(f)) € Cf.

Now,I' : E — {C,,C,,S}.

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Enforceability (cont’'d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let < be a well-founded relation on D. A function f : DX — D is <-stable iff there exists a finite
Ct¢ C D such that for any dsyp € Dand dy, ..., das) = dsup, either f(dy, ..., dacr)) = dsup or
f(dl, ey da(f)) € Cf.

Now,I' : E — {C,,C,,S}.

> I'(e) = S: the enforcer can suppress e events

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Enforceability (cont’'d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let < be a well-founded relation on D. A function f : DX — D is <-stable iff there exists a finite
Ct¢ C D such that for any dsyp € Dand dy, ..., das) = dsup, either f(dy, ..., dacr)) = dsup or
f(dl, ey da(f)) € Cf.

Now, I': E — {C,,C,, S}.
> I'(e) = S: the enforcer can suppress e events

> I'(e) = Cy: the enforcer can use e events as guards + cause e events containing stable functions

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Functions: Enforceability (cont’'d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let < be a well-founded relation on D. A function f : DX — D is <-stable iff there exists a finite
Ct¢ C D such that for any dsyp € Dand dy, ..., das) = dsup, either f(dy, ..., dacr)) = dsup or
f(dl, ey da(f)) € Cf.

Now,I' : E — {C,,C,,S}.
> I'(e) = S: the enforcer can suppress e events
> I'(e) = Cy: the enforcer can use e events as guards + cause e events containing stable functions

> I'(e) = C,: the enforcer can generate ¢ events containing arbitrary functions

Hublet, Lima, Basi i¢ Traytel — Scaling Up Proactive Enforcement

—

Functions: Enforceability (cont’'d)

Solution: If A(x) is used as a guard, prevent A(t) to be caused if t contains ‘unstable’ functions.

Definition: Stable function

Let < be a well-founded relation on D. A function f : DX — D is <-stable iff there exists a finite
Ct¢ C D such that for any dsyp € Dand dy, ..., das) = dsup, either f(dy, ..., dacr)) = dsup or
f(dl, ey da(f)) € Cf.

Now,I' : E — {C,,C,,S}.
> I'(e) = S: the enforcer can suppress e events
> I'(e) = Cy: the enforcer can use e events as guards + cause e events containing stable functions

> I'(e) = C,: the enforcer can generate ¢ events containing arbitrary functions

— details in the paper

Hublet, Lima, Basi i¢ Traytel — Scaling Up Proactive Enforcement

Implementation

> New open-source tool

Enf

proactive enforcer

» Code base: ~10k loc (OCaml)

» Includes optimizations — details in paper

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Evaluation

RQI. Can ENFGuarp’s EMFOTL fragment formalize real-world policies?
RQ2. At what maximum event rate can ENFGUARD perform real-time enforcement?
RQ3. Does ENFGUARD'’s performance improve upon the state-of-the-art?

Log statistics Formulae statistics Tool support
wn
% S 2 .
SE8E f|Ezd
— £ g 8 Elo % & &
E S8 &S|t E g8
Name Real #logs max |log| maxer| 8 2 < & *|lm 2 A =
GDPR v 1 5,631 107%[72 66 6 2 6
GPDR™ 1 5631 107*|108 A 6|6
NOKIA v 19,458,824 109| 44 v 1111 11 5 11
1c v 3 634,789 147|179 v v 8|8 8
AGG 2 100,000 34 v v 6|6 6
CLUSTER 1 5,000 2 v & Vv 2|2
Total: 39 39 17 7 31

Rewriting required:

=3
o

no yes yes

The largest benchmark suite for runtime enforcement!

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Evaluation: Expressiveness (RQ1)

ENrFGuUARD supports more policies (39/39) than the SOTA MFOTL monitor MonPory [Basin et al.,
2017] (31/39) and significantly more than WayENF (17/39).

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

https://people.inf.ethz.ch/basin/pubs/rvcubes17.pdf
https://people.inf.ethz.ch/basin/pubs/rvcubes17.pdf
https://doi.org/10.1007/978-3-031-27481-7_22

—

Evaluation: Expressiveness (RQ1)

ENrFGuUARD supports more policies (39/39) than the SOTA MFOTL monitor MonPory [Basin et al.,
2017] (31/39) and significantly more than WayENF (17/39).

“Block validation latency” (from 1c benchmark [Basin et al., 2023])

AND subnet_size(subnet_id, n_subnet)
AND (float_of_int(n_validated) > 2. *. float_of_int(n_subnet) /. 3.) IN

1| LET node_added_to_subnet(node_id, node_addr, subnet) = ... IN

2| LET node_removed_from_subnet(node_id, node_addr) = ... IN

3| LET in_subnet(node_id, node_addr, subnet) = ... IN

4| LET subnet_size(subnet_id, n) = ... IN

5| LET block_added(node_id, subnet_id, block, t_add) = ... IN

6| LET validated(block, subnet_id, t_add) =

7 EXISTS n_validated, n_subnet. (n_validated <- CNT (valid_node; block, subnet_id, t_add; ...)
8

9

10| LET time_per_block(block, subnet_id, time) = ... IN

11| LET subnet_type_assoc(subnet_id, subnet_type) = ... IN
12| LET subnet_type_map(subnet_id, subnet_type) = ... IN
13| FORALL block, subnet_id, time.

14 time_per_block(block, subnet_id, time)

15 AND ((subnet_type_map(subnet_id, "System") AND (time > 3000))

16 OR ((subnet_type_map (subnet_id, "Application")

17 OR subnet_type_map(subnet_id, "VerifiedApplication")) AND (time > 1000)))
18| IMPLIES alert_validation_latency(block, subnet_id, time)

aytel — Scaling Up P e Enforcement

https://people.inf.ethz.ch/basin/pubs/rvcubes17.pdf
https://people.inf.ethz.ch/basin/pubs/rvcubes17.pdf
https://doi.org/10.1007/978-3-031-27481-7_22

—

Evaluation: Performance (RQ2-3)

> Event rate er: number of events in the trace per time unit (timestamp time)

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Evaluation: Performance (RQ2-3)

> Event rate er: number of events in the trace per time unit (timestamp time)

> Acceleration a = trace timestamp step / real time step

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Evaluation: Performance (RQ2-3)

> Event rate er: number of events in the trace per time unit (timestamp time)
> Acceleration a = trace timestamp step / real time step

> Latency ¢: time difference (real time) between event input and command output

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Evaluation: Performance (RQ2-3)

> Event rate er: number of events in the trace per time unit (timestamp time)
> Acceleration a = trace timestamp step / real time step
> Latency ¢: time difference (real time) between event input and command output

> max,(a): maximum latency at acceleration a

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Evaluation: Performance (RQ2-3)

Event rate er: number of events in the trace per time unit (timestamp time)
Acceleration a = trace timestamp step / real time step
Latency ¢: time difference (real time) between event input and command output

max,(a): maximum latency at acceleration a

vV vy vy VvYyy

Real-time condition: max¢(a) < 1/a

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Evaluation: Performance (RQ2-3)

> Event rate er: number of events in the trace per time unit (timestamp time)

> Acceleration a = trace timestamp step / real time step

> Latency ¢: time difference (real time) between event input and command output
> max,(a): maximum latency at acceleration a

> Real-time condition: max,(a) < 1/a

> We report avg,, at the maximum latency fulfilling the real-time condition

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

—

Evaluation: Performance (RQ2-3)

Comparison with WaYENF, ENFPoLy [Hublet et al., 2022], MonPoLy (monitor).
Note: ENFPoLyY covers only 7/39 formulae.

GPDR benchmarks:
ENFGuUARD WnyENF EnrPory MonPory
Policy ¢ |¢| avg.,, avg, maxg avg, avg, maxgavg., avg, Mmaxy avg, avg, maxe
consent 22 1619 .39 2 101 7.6 30 6480 .17 1 6934 .20 1
deletion 14 3238 .28 2 3238 .20 1 6934 .20 1
gdpr 72 810 .87 3 25 33 110 3465 .13 1
information 16 1619 .33 2 810 1.1 5.2 6934 .15 1
lawfulness 17 1619 .35 2 810 1.3 4.4 6480 .17 1 6934 .15 1
sharing 19 1619 .32 2 405 3.0 15 6934 .20 1

Consistent findings on other benchmarks (not shown here):
» ENFGUARD 2-10X faster than WHYENF
» Slightly slower but much better coverage than ENFPoLy
» Difference with MonPoLy: PDT- rather than table-based

Hublet, Lima, Basin, Krsti¢, and Traytel — Scaling Up Proactive Enforcement

https://doi.org/10.1007/978-3-031-17146-8_11

—

Thank you for your attention!

If you are interested in this work, feel free to drop us an e-mail:

Scaling Up Proactive Enforcement

Francois Hublet & francois.hublet@inf.ethz.ch
Srdan Krstié srdan.krstic@inf.ethz.ch

Hublet aytel — Scaling Up Proactive Enforcement

—

Thank you for your attention!

If you are interested in this work, feel free to drop us an e-mail:

Scaling Up Proactive Enforcement

Francois Hublet & francois.hublet@inf.ethz.ch
Srdan Krstié srdan.krstic@inf.ethz.ch

Any questions?

1 Introduction

aytel — Scaling Up Proactive Enforcement

