
Available

CAV
Evaluation

Artifact

Scaling Up Proactive Enforcement:
Technical Report

François Hublet1, Leonardo Lima2, David Basin1,
Srđan Krstić1, and Dmitriy Traytel2

1 ETH Zürich, Zurich, Switzerland
{francois.hublet, basin, srdan.krstic}@inf.ethz.ch

2 University of Copenhagen, Denmark
{leonardo, traytel}@di.ku.dk

Abstract. Runtime enforcers receive events from a system and output
commands ensuring the system’s policy compliance. Proactive enforcers
extend traditional (reactive) enforcers by emitting commands at any
time, rather only as a response to system actions. However, proactive en-
forcers have so far lacked support for many useful policy features. This,
along with the existing tools’ poor performance, hinders their adoption.
We present a performance-optimized, proactive enforcement algorithm
for a rich policy language: metric first-order temporal logic with func-
tion applications, aggregations, and let bindings. We have implemented
this algorithm in EnfGuard, the first proactive enforcer tool that sup-
ports the above constructs. We evaluated our tool using a novel set of
six benchmarks containing both real-world and synthetic policies and
logs, demonstrating that it enforces realistic policies out-of-the-box and
achieves the necessary performance to be used in real-time systems.

1 Introduction

Statically certifying the behavior of large, complex systems is often impossible.
As an alternative, runtime enforcement [42] has emerged as a family of techniques
aimed at observing and correcting the behavior of systems during their execution.

In runtime enforcement, an enforcer is a policy enforcement mechanism that
observes the real-time execution of a system under enforcement (SuE) through
the sequence of events that occur in it and sends commands to the SuE to ensure
policy compliance (Figure 1). These commands instruct the system to suppress,
cause, modify, or delay specific events. In reactive enforcement, the enforcer emits
commands immediately upon receiving events (Figure 1, interactions 1.1–1.2).
In proactive enforcement [5], the enforcer can additionally give commands at any
time, rather than only after SuE events (Figure 1, interactions 2.1–2.2). This is
crucial whenever policies require action to be taken before a deadline, even in
the absence of SuE actions, as in common, e.g., in privacy regulations [25].

SuE Enforcer

1.1: events

1.2: (reactive) command

2.2: (proactive) command

policyP

1.1, 2.1: time τ

Fig. 1: Communication diagram for enforcement. R-step: 1.1, 1.2; P-step: 2.1, 2.2

https://zenodo.org/records/15316370

2 F. Hublet et al.

To be practical, enforcers must be able to process SuE events at high rates.
Moreover, they should support policies written in an expressive specification lan-
guage. As an example, consider the policy stating “an alert must be raised when-
ever, within a 30-minute window, a data center dc has seen a pattern of unin-
tended reboots of its servers that is classified as an outlier by Grubbs’s test [19]:”

let badReboot(s, dc) = reboot(s, dc) ∧ ¬ (¬reboot(s, dc) S intendReboot(s, dc)) in

let cntReboots(dc, c) = c← CNT(i; dc)(♦[0,1800)(badReboot(s, dc) ∧ tp(i))) in

□(∀dc, l. dc, l← GRUBBS(dc, c;) (cntReboots(dc, c))) ∧ l ≈ 1

−→ alert(“Data center ” ˆ int_to_string dc ˆ “ has rebooted too often”))

In this policy, the user-defined aggregation function GRUBBS takes a finite se-
quence of pairs (ki, vi) with ki an integer key and vi a floating-point value, and
returns a sequence of pairs (ki, bi), where bi = 1 iff the Grubbs test identifies vi as
an outlier in {v1, ..., vi, ...}. A special event tp is used to retrieve the current time-
point. Moreover, this policy contains: applications of a function int_to_string
and a string concatenation operator (ˆ); aggregations that use a user-defined ag-
gregation function GRUBBS and an SQL-style aggregation operator CNT (‘count’)
with grouping, e.g., cntReboots counts the number of reboots in each data cen-
ter within the last 1800 seconds (♦[0,1800) operator); and let bindings that define,
e.g., an ‘unintended reboot’ as a reboot event that does not follow (S operator)
an announce_reboot event strictly in the past (operator). To the best of our
knowledge, none of the existing proactive enforcement algorithms [5,24,25] sup-
ports any of these features. Thus, they cannot enforce policies like the above.

In this paper, we present the first proactive enforcement algorithm that sup-
ports metric first-order temporal logic (MFOTL) with function applications, ag-
gregations, and let bindings. We implement this algorithm in EnfGuard, a new
tool building on an existing proactive enforcement algorithm for simple MFOTL
policies [25]. The original algorithm works as follows: (1) it maintains a queue of
temporal obligations with deadlines (e.g., “fulfill P (5) within three hours”); (2) it
checks if newly observed events fulfill pending obligations (e.g., if P(5) occurred),
proactively causing events when any deadline risks being missed; and (3) it sup-
presses and causes events reactively. In addition to supporting a more expres-
sive policy language, EnfGuard achieves up to 30× speedup over prior work.

We evaluate EnfGuard on six benchmarks involving a combination of both
real-world and synthetic policies and system logs. Our evaluation shows that our
tool, unlike previous work [24,25], directly supports all policies from these bench-
marks and can enforce them at high event rates (up to 1,000–10,000 events/s).

After reviewing prior work (Section 2), we make the following contributions:
– We extend prior work to support function applications, aggregations, and let

bindings (Section 3). This extension fundamentally changes the underlying
data structures, the enforcement algorithm, and the enforceable formulae.

– We describe our enforcement algorithm’s optimizations (Section 4). These
involve the lazy evaluation of Boolean operators, skipping unnecessary sub-
formulae evaluation, and memoization of subformula evaluation results.

– We implement our algorithm in the EnfGuard enforcer. We validate our

Scaling Up Proactive Enforcement: Technical Report 3

tool’s expressiveness and performance on six benchmarks (Section 5), show-
ing that it can be used in real-time and surpasses existing tools’ capabilities.

The proofs of all propositions can be found in the Appendix. EnfGuard is open
source and is publicly available on GitHub [26].

Related Work. Reactive enforcement was introduced by Schneider et al. using
security automata [42,14] that terminate the SuE to prevent violations. Subse-
quent research supported the suppression [10,18] and causation [31] of individ-
ual events by buffering SuE events before making decisions. This (unrealistic)
buffering capability was later dropped [35], and other capabilities, such as de-
laying events [38,15] and SuE code inspection [39], were considered.

Many enforcers use (timed) automata either as a policy language [16,17] or as
the translation target for logics such as MITL [37,41]. Controller synthesis tools
for LTL [27,13,44], Timed CTL [11,36], and MTL [30,23] also generate enforcers.

Very few works enforce first-order temporal policies: Hallé and Villemaire [20]
give an enforcer for LTL-FO+, a first-order variant of future-only LTL. Hublet
et al. [24] reactively enforce a restricted set of MFOTL policies that cannot refer
to the future. Aceto et al. [1,2] consider safety policies in Hennessy-Milner Logic
with recursion; their approach is non-metric and does not support causation.

To the best of our knowledge, only two works study proactive enforcement.
Basin et al. [5] describe a proactive enforcer for finite automata and dynamic
condition response graphs [22], which is a propositional formalism. Hublet et
al. [25] provide the only existing proactive first-order enforcement algorithm,
which we substantially extend in this paper.

2 Preliminaries

We now review proactive enforcement (Section 2.1) and metric first-order tem-
poral logic (Section 2.2). We then summarize the relevant data structures (Sec-
tion 2.3) and the enforcement algorithm (Section 2.4) by Hublet et al [25].

2.1 Proactive runtime enforcement

Let Σ be a signature (D,E, a) with an infinite domain D of values, a finite set
of event names E, each with arity a(e) ∈ N, e ∈ E. An event e(d1, . . . , da(e)) ∈
E× Da(e) is a pair of an event name e and its a(e) parameters d1, . . . , da(e).

Events encode system actions that can be observed and controlled by the
enforcer, or only observed. The enforcer can control an event by suppressing or
causing it. We partition E into suppressable event names (S ⊆ E), causable event
names (C ⊆ E), and observable event names (O = E \ (S ∪ C)). The enforcer
can cause all events with names in C and suppress all events with names in S.
The set DB of databases over Σ is P({e(d) | e ∈ E, d ∈ Da(e)}) and a trace
σ is a sequence ⟨(τi, Di)⟩0≤i≤k , k ∈ N ∪ {∞} of timestamps τi ∈ N and finite
databases Di ∈ DB, where timestamps grow monotonically (∀i < |σ|. τi ≤ τi+1)
and progress (if |σ| =∞, then limi τi =∞). An index 0 ≤ i < |σ| in a trace σ is
called a time-point. The empty trace is denoted by ε, the set of all traces by T,

4 F. Hublet et al.

1 run(s, σ, σ′, τ) = case σ′ of ε⇒ ε
2 | (τ ′, D) · σ′′ when τ ′ > τ ⇒ let (o, s′) = µ(σ, s, τ, tick) in
3 case o of PCom(DC)⇒ (τ,DC) · run(s′, σ · (τ,DC), σ

′, τ + 1)
4 | NoCom⇒ run(s′, σ, σ′, τ + 1)
5 | (τ ′, D) · σ′′ when τ ′ = τ ⇒ let (o, s′) = µ(σ, s, τ,D);D′ = (D \DS) ∪DC in
6 case o of RCom(DC, DS)⇒ (τ,D′) · run(s′, σ · (τ,D′), σ′′, τ + 1)
7 E(σ) = run(s0, ε, σ, case σ of ε⇒ 0 | (τ,D) · σ′ ⇒ τ)

Fig. 2: Enforced trace

and the set of finite (resp. infinite) traces by Tf (resp. Tω). For traces σ ∈ Tf
and σ′ ∈ T, σ · σ′ denotes their concatenation. A property is a subset P ⊆ Tω.

Given a prefix of a SuE trace, a proactive enforcer can either perform a (re-
active) R-step (Figure 1, interactions 1.1 and 1.2), where it reads a new times-
tamp τ and database D, or a (proactive) P-step (interactions 2.1 and 2.2) where
it reads a τ only. In both cases, it returns an appropriate command. In R-steps, a
command is of the form RCom(DC, DS) whereDC andDS ⊆ D are databases over
the signatures (D,C, a) and (D,S, a), respectively. Such a command instructs the
SuE to cause DC and suppress a subset DS of D. In P-steps, a command is of
the form PCom(DC) or NoCom. In the former case, DC is caused; in the latter,
no event is caused or suppressed. Cmd denotes the set of all commands.

Definition 1. A (proactive) enforcer E is a triple (S, s0, µ), where S is a set of
states, s0 ∈ S is an initial state, and µ : Tf ×S ×N× (DB∪ {tick})→ Cmd×S
is a computable update function, such that the following two conditions hold:

∀σ, τ,D ̸= tick, s. ∃DC, DS, s
′. µ(σ, s, τ,D) = (RCom(DC, DS), s

′) ∧DS ⊆ D
∀σ, s, τ. ∃DC, s

′. µ(σ, s, τ, tick) ∈ {(PCom(DC), s
′), (NoCom, s′)}.

The first three arguments of µ are the trace prefix σ (containing all of the past ex-
cluding the present), the state of the enforcer s, and the current timestamp τ . In
R-steps, µ’s fourth argument is a new database D and µ returns RCom(DC, DS).
In P-steps, µ’s fourth argument is the special symbol tick and the enforcer can
return either PCom(DC) or NoCom. This induces a trace transduction:

Definition 2. For any σ ∈ T and enforcer E = (S, s0, µ), the enforced trace
E(σ) is defined co-recursively in Figure 2.

To compute the enforced trace E(σ) from the original SuE trace σ, the update
function µ is called once on every time-point to generate an R-command (lines
6–7) and once before each clock tick to generate a P-command (lines 3–5).

The enforcer’s correctness with respect to a target property P is typically ex-
pressed in terms of soundness and transparency [31]. A sound enforcer ensures
that the modified trace always complies with P , while a transparent enforcer
modifies the system’s behavior only when necessary to ensure compliance.

Definition 3. An enforcer E is sound with respect to a property P iff for any
σ ∈ Tω, E(σ) ∈ P . An enforcer E = (S, s0, µ) is transparent with respect to a
property P iff for any σ ∈ P , E(σ) = σ. A property P (resp. a formula φ) is
enforceable iff there exists a sound enforcer with respect to P (resp. L(φ)).

Scaling Up Proactive Enforcement: Technical Report 5

2.2 Metric first-order temporal logic

Metric first-order temporal logic (MFOTL) [9,12] is an expressive logic for spec-
ifying trace properties. In this paper, we extend MFOTL with function applica-
tions in terms, aggregations [8], and non-recursive let bindings [45]. Our MFOTL
syntax is defined by the following grammar (extensions highlighted):

t ::= c | x | f(t, . . . , t)

φ ::= e(t, . . . , t) | t ≈ c | ¬φ | φ ∧ φ | ∃x. φ | #I φ | I φ | φ UI φ | φ SI φ

| x, . . . , x← ω(t, . . . , t;x, . . . , x) φ | let e(x, . . . , x) = φ in φ .

In the above, e ∈ E, c ∈ D, i ∈ N, x ranges over a set V of variables, f over a
set F of function names, and ω over a set Ω ⊇ {SUM, AVG, STD, MED, CNT, MIN, MAX}
of aggregation operators. In a subformula let e(t) = φ1 in φ2, the event e is
not allowed to appear in φ1. We extend the arity function a to functions and
aggregation operators so that for any f ∈ F, a(f) ∈ N is the number of arguments
of f , and for any ω ∈ Ω, a(ω) is a pair in N2 such that a(ω)1 and a(ω)2 are the
input and output arities of ω, respectively. We define the shorthands ⊤ := p∨¬p,
⊥ := ¬⊤, φ −→ ψ := ¬φ ∨ ψ, and the operators “once” (♦I φ := ⊤ SI φ),
“eventually” (♢I φ := ⊤ UI φ), “always” (□I φ := ¬♢I ¬φ), and “historically”
(■I φ := ¬♦I ¬φ).The interval [0,∞) can be omitted in subscripts.

Next, we present the semantics of MFOTL, deferring the semantics of our
extensions to Section 3. A valuation v : V → D maps variables to domain
elements in D. Under a valuation v, a variable x evaluates to Jx Kv = v(x) and a
constant c ∈ D to J c Kv = c. We write v[x 7→ d] for the mapping v updated with
the assignment x 7→ d, where x ∈ V and d ∈ D. The sequent v, i ⊨σ φ (defined
in Figure 3 for a fixed, infinite σ) denotes that φ is satisfied at time-point i of
trace σ under valuation v (i.e., v is a satisfaction). The property induced by a
formula φ is L(φ) = {σ ∈ Tω | ∃v. v, 0 ⊨σ φ}, and we say that a formula φ is
enforceable when there exists a sound enforcer for L(φ).

We write fv(φ) and const(φ) for the set of free variables and constants of
formula φ, respectively. The active domain ADσ,E(φ) of a formula φ over a
finite trace σ = ⟨(τi, Di)0≤i<|σ|⟩ and set of event names E ⊆ E is const(φ) ∪(⋃

0≤j<|σ|{d | d is one of dk in e(d1, ..., da(e))∈Dj and e ∈ E}
)
. Intuitively, the

active domain consists of all domain values present in the trace as well as all
constants occurring in the formulae.

2.3 Partitioned decision trees

Let Satφ(v, i, σ) be a function that returns true iff v, i ⊨σ φ, i.e., iff a trace σ
satisfies φ at i under v, and false otherwise. A monitor for a formula φ is an al-
gorithm that computes Satφ(v, i, σ) by incrementally observing σ’s prefixes.

Inspired by binary decision diagrams [34], Lima et al. [33] introduce parti-
tioned decision trees (PDTs) to compactly represent sets of valuations. PDTs

6 F. Hublet et al.

v, i ⊨ t ≈ c iff J t Kv = c | v, i ⊨ e(t1, ..., ta(e)) iff e([[t1]]v, ..., [[ta(e)]]v) ∈ Di

v, i ⊨ ∃x. φ iff v[x 7→ d], i ⊨ φ for some d ∈ D v, i ⊨ ¬φ iff v, i ̸⊨ φ
v, i ⊨ #I φ iff v, i+ 1 ⊨ φ and τi+1 − τi ∈ I v, i ⊨ φ ∧ ψ iff v, i ⊨ φ and v, i ⊨ ψ
v, i ⊨ I φ iff i > 0 and v, i− 1 ⊨ φ and τi − τi−1 ∈ I
v, i ⊨ φ UI ψ iff v, j ⊨ ψ for some j ≥ i with τj − τi ∈ I and v, k ⊨ φ for all i ≤ k < j
v, i ⊨ φ SI ψ iff v, j ⊨ ψ for some j ≤ i with τi − τj ∈ I and v, k ⊨ φ for all j < k ≤ i

Fig. 3: MFOTL semantics for a fixed, infinite trace σ

x

y

⊤

{3}

⊥

D \ {3}

{1, 2}

⊥

D \ {1, 2}

φ := A(x) ∧ B(y)

σ := (0, {A(1), A(2), B(3)})...

(a) PDT of φ’s satisfactions on σ

1 let find d parts = case parts of
2 [(D, pdt)] ⇒ (D, pdt)

3 | (D, pdt) :: parts ⇒
4 if d ∈ D then (D, pdt) else find d parts

5 let specialize pdt v = case pdt of Leaf ℓ⇒ ℓ
6 | Nodex parts ⇒
7 let (_, pdt′) = find (v x) parts in
8 specialize pdt′

(b) Specialization of PDTs

Fig. 4: Partitioned decision trees (PDTs)

are trees whose internal nodes are labeled with free variables, whose edges are
marked with sets of elements that partition D, and whose leaves contain data of
interest, e.g., Boolean values. The corresponding algebraic data type is Pdt a =
Leaf a | Node V (Pc(D) × Pdt a)), where Pc(X) denotes the set of finite or co-
finite subsets of X. An example of a PDT storing the satisfactions of the formula
φ := A(x)∧B(y) on a trace σ := (0, {A(1), A(2), B(3)})... is shown in Figure 4a.
Given a specific valuation v, the value Satφ(v, i, σ) (indicating if v is a satisfac-
tion) can be extracted from a PDT of Satφ(•, i, σ) using the specialize function
shown in Figure 4b: for any leaf, the stored value is immediately returned (l.
8); for any node labeled by a variable x, the child whose edge label contains the
value v(x) is selected, and specialization continues from that child (l. 9–10).

Lima et al. [33] describe a monitoring algorithm for MFOTL based on PDTs.
They first define a series of functional operations on PDTs, and then describe
a monitoring algorithm combining these operations. For example, to compute
Satφ1∧φ2

(•, i, σ), they apply a function apply2 (λb1 b2. b1 ∧ b2) on the PDTs p1
and p2 of Satφ1

(•, i, σ) and Satφ2
(•, i, σ). This function is such that

∀f, p1, p2, v. specialize (apply2 f p1 p2) v = f (specialize p1 v) (specialize p2 v).

Hence, applying apply2 (λb1 b2. b1 ∧ b2) correctly evaluates the conjunction.
Compared to table-based monitoring algorithms [9], PDT-based algorithms lift
many of the restrictions on the supported MFOTL fragment imposed in previ-
ous work [9,40], thus significantly increasing expressivity.

Scaling Up Proactive Enforcement: Technical Report 7

2.4 Enforcement algorithm

Not all MFOTL formulae are enforceable, e.g., ∀x. A(x) −→ B(x) is enforce-
able only if A is suppressable or B is causable. MFOTL enforceability is unde-
cidable [24], yet there are syntactic fragments that guarantee enforceability.

Hublet et al. [25, Section 4] define such an enforceable fragment, called EM-
FOTL. EMFOTL is defined using type sequents Γ ⊢ φ : α, where the context Γ :
E→ {C,S} is a mapping from event names to {C,S}, φ is an MFOTL formula,
and α ∈ {C,S} is a type. Intuitively, a formula types to C under Γ (“φ is caus-
able under Γ ”) if it can be enforced by causing events ec(...) such that Γ (ec) = C
and suppressing events es(...) such that Γ (es) = S. Conversely, it types to S un-
der Γ (“φ is suppressable under Γ ”) if ¬φ can be enforced under the same condi-
tions on Γ . EMFOTL is defined as the set of all φ for which ∃Γ. Γ ⊢ φ : C. The
types C and S overload the names of the sets of suppressable and causable event
names so that only events e(...) with e ∈ C (resp. e ∈ S) can type to C (resp. S).

The complete set of typing rules by Hublet et al. is given in Appendix A.

Example 1. Consider the formula φ = □(∀x. A(x) −→ ♢[0,30]B(x)) with A ∈ O
and B ∈ C. The formula φ can be shown enforceable using the rules

⊢ φ : PG(x)− Γ ⊢ φ : C
Γ ⊢ ∀x. φ : C ∀C

Γ (e) = C e ∈ C
Γ ⊢ e(t1, ..., ta(e)) : C

EC
⊢ e(..., x, ...) : PG(x)+

E+
PG

Γ ⊢ φ : C
Γ ⊢ □φ : C□C

a <∞ Γ ⊢ φ : C
Γ ⊢ ♢[0,a] φ : C ♢C Γ ⊢ ψ : C

Γ ⊢ φ −→ ψ : C−→
CR

⊢ φ : PG(x)+

⊢ φ −→ ψ : PG(x)−
−→−

PG

as follows:

⊢ A(x) : PG(x)+
E+

PG

⊢ A(x) −→ ♢[0,30]B(x) : PG(x)−
−→−

PG

30 <∞
B ∈ C

B : C ⊢ B(x) : C EC

B : C ⊢ ♢[0,30]B(x) : C ♢C

B : C ⊢ A(x) −→ ♢[0,30]B(x) : C −→
CR

B : C ⊢ ∀x. A(x) −→ ♢[0,30]B(x) : C ∀C

B : C ⊢ □(∀x. A(x) −→ ♢[0,30]B(x)) : C □C .

Each rule shows how to enforce the corresponding MFOTL operator. The ∀C
rule expresses that to cause ∀x. φ (i.e., Γ ⊢ ∀x. φ : C), it is sufficient to (i) cause
φ for any valuation (i.e., Γ ⊢ φ : C) and (ii) ensure that all x’s values for which
φ must be caused can be computed from the arguments of present or past events
(i.e., ⊢ φ : PG(x)−). Condition (ii), called past-guardedness, excludes formulas
for which an infinite number of events must be caused. It is checked by other past-
guardedness rules that derive sequents ⊢ φ : PG(x)+ (resp. ⊢ φ : PG(x)−) that
mean “whenever φ is true (resp. false) for some valuation v, then v(x) must be
the argument of an event in the trace in the past or present”. The E+

PG rule is the
base case, whereas the −→−PG rule states that when φ’s satisfactions provide such
values for x, then φ −→ ψ’s violations also do (since ¬(φ −→ ψ) implies φ). The
□C, −→CR, and ♢C rules show how to enforce the other operators: to cause □φ,
one must cause φ (at all times); to cause φ −→ ψ, one must cause ψ (when φ is
false); to cause ♢[0,a] φ where a <∞, one must cause φ (in at most b time units).

8 F. Hublet et al.

1 let enf (σ,X, ts,D) =
2 if D ̸= tick then ▷ R-step
3 let Φ =

∧
(ξ,v,+)∈X ξ(ts)[v] ∧

∧
(ξ,v,−)∈X ¬ξ(ts)[v] in

4 let (DC , DS , X
′) = enf+ts,⊥(Φ, σ · (ts,D ∪ {TP}), ∅, ∅) in

5 (RCom(DC , DS), X
′)

6 else ▷ P-step
7 let Φ =

∧
(ξ,v,+)∈X ξ(ts)[v] ∧

∧
(ξ,v,−)∈X ¬ξ(ts)[v] in

8 let (DC , DS , X
′) = enf+ts,⊤(Φ, σ · (ts, ∅), ∅, ∅) in

9 if TP ∈ DC then (PCom(DC \ {TP}), X ′) else (NoCom, X)

10 let enf+ts,b (φ, σ,X, v) = case φ of
11 e(t) ⇒ ({e(J t Kv)}, ∅, ∅)
12 | φ1−→CRφ2 ⇒ enf+ts,b(φ2, σ,X, v)

13 | ∀Cx. φ1 ⇒ fp(σ,X, enf+all,φ1,v,ts,b
)

14 | ♢C
[0,a] φ1 ⇒

15 if a = 0 ∧ b then
16 enf+ts,b(φ1, σ,X, v)
17 else
18 (∅, ∅, {(λτ ′.♢[0,a−(τ ′−τ)]

19 (TP ∧ φ1), v,+)})
20 | □C φ1 ⇒
21 enf+ts,b(φ1, σ,X, v) ⋓
22 (∅, ∅, {(λτ ′.□φ1, v,+)})
23 . . .
24 let enf−ts,b (φ, σ,X, v) = . . .

25 let (⋓) (DC , DS , X) (D′
C , D

′
S , X

′) =
26 (DC ∪D′

C , DS ∪D′
S , X ∪X ′)

27 let fp (σ · (τ,D), X, f) =
28 (DC , DS)← (∅, ∅); r ← None
29 while (DC , DS , X) ̸= r do
30 r ← (DS , DC , X)
31 (DC , DS , X)← r ⋓
32 f(σ · (τ, (D \DS) ∪DC), X)

33 (DC , DS , X)

34 let enf+all,φ1,v,ts,b
(σ,X) =

35 r ← (∅, ∅, ∅)
36 for d ∈ ADσ,E(φ1) do
37 if ¬Sat∗

¬φ1
(v[d/x], |σ| − 1, σ,X)

38 then r ← r ⋓
39 enf+ts,b(φ1, σ,X, v[d/x])

40 r

Fig. 5: Proactive real-time first-order enforcement algorithm [25, Algorithm 2]

The EMFOTL enforcement algorithm [25, Algorithm 2] is shown in Figure 5.
Its state is a set X ⊆ fo of future obligations. The set fo of future obligations
contains all triples (ξ, v, p) where ξ is a function N→ EMFOTL, v a valuation,
and p ∈ {+,−}. At every time-point i with timestamp ts, the algorithm en-
forces Φ =

∧
(ξ,v,+) ξ(ts)[v] ∧

∧
(ξ,v,−) ¬ξ(ts)[v] by causing or suppressing events

and updating the future obligations to be enforced at i+ 1.
The algorithm uses a Sat∗ monitor extending Sat (Section 2.3) over finite

traces in two ways: (1) Sat∗ inputs a set X of obligations assumed to hold after
the last time-point. For example, Sat∗□A(v, 0, (0, {A}), {(λτ. □A, ∅,+)}) holds:
if A holds at time-point 0 and □A is assumed to hold at time-point 1, then □A
holds at time-point 0; and (2) Sat∗ always returns a conservative evaluation of
the formula when future information is lacking. For example, if A occurs at time-
point 0, we can conclude that ♢A holds (Sat∗♢A(v, 0, (0, {A}), ∅)), but not nec-
essarily that □A holds (¬Sat∗□A(v, 0, (0, {A}), ∅)) at time-point 0. A fixpoint
computation is used in cases that require recursively enforcing multiple subfor-
mulae (e.g., causing ∀x. φ or φ1 ∧ φ2). A special causable event TP denotes the
existence of a time-point. Such an event is always present in R-steps, where a
time-point already exists, but not in P-steps. In P-steps, causation of TP leads
to the insertion of a time-point (i.e., a PCom).

Scaling Up Proactive Enforcement: Technical Report 9

Example 2. The algorithm from Figure 5 enforces the formula φ in Example 1
over the trace σ = ⟨(0, {A(1)}), (50, {B(2)})⟩ as follows.

Initially, ts = 0, D = {A(1)}, and we have one future obligation correspond-
ing to φ, namely fo = (λτ. φ, ∅,+). The algorithm performs an R-step on the
first time-point; the formula to be enforced is Φ = φ (l. 3). Since φ = □ψ
with ψ = ∀x. A(x) −→ ♢[0,30]B(x), the algorithm generates the same future
obligation fo and proceeds with enforcing ψ (l. 20–22). Next, since ψ = ∀x. χ
where χ = A(x) −→ ♢[0,30]B(x), the algorithm performs a fixpoint computa-
tion (l. 13; 27–33). In each iteration of this computation, the algorithm enforces
χ under all valuations {x 7→ d}d∈D for which χ is not yet satisfied (l. 34–40).
Here, the only such valuation is v = {x 7→ 1}. Since χ = A(x) −→ χ′ where
χ′ = ♢[0,30]B(x) and the rule −→CR was used to type χ in Example 1, the algo-
rithm enforces χ′ under v (l. 12). It does so by generating the future obligation
fo′ = (λτ. ♢[0,30−τ](TP ∧B(x)), {x 7→ 1},+) (l. 19). After generating fo and fo′,
the formula Φ holds and the computation terminates, returning RCom(∅, ∅).

Next, the algorithm performs a P-step with ts = 0. The formula to be en-
forced, computed from fo and fo′, is Φ = □ψ ∧ ♢[0,30](TP ∧B(1)) (l. 7). To sat-
isfy Φ’s two conjuncts, the future obligations fo and fo′′ = (λτ. ♢[0,30−τ](TP ∧
B(1)), ∅,+) are generated. The logic used to enforce □ and ♢ is the same as
above; the enforcement of ∧ uses a fixpoint computation (omitted in Figure 5).
As generating fo and fo′ suffices to satisfy Φ, the algorithm returns NoCom.

Since there is no time-point with timestamp 1 in the trace, the enforcer
then performs a P-step with ts = 1. The formula to be enforced is Φ = □ψ ∧
♢[0,29](TP∧B(1)); note the smaller bound on ♢ due to the new ts. The algorithm
again generates the future obligations {fo, fo′′}. Similarly, a P-step is performed
for ts = 2, . . . , 29, propagating {fo, fo′′}. Each of these P-steps returns NoCom.

When ts reaches 30, the algorithm enforces Φ = □ψ∧♢[0,0](TP∧B(1)). Since
♢’s interval is [0, 0], this conjunct can only be enforced by causing TP ∧ B(1)
(l. 16), i.e., causing both TP and B(1). The future obligation fo is also generated.
The algorithm returns PCom({B(1)}), inserting a time-point (30, {B(1)}) in σ.

Beyond this time-point, the trace always satisfies ψ and the set of future obli-
gations is just {fo}. Therefore, the trace is not further modified.

3 An Extended Enforceable Fragment of MFOTL

We now describe the semantics, typing rules, and monitoring and enforcement
algorithms for our three extensions. All proofs of soundness and transparency
are given in Appendix A.

3.1 Function applications

Assume that every function symbol f ∈ F is associated with a (terminating)
function f̂ : Da(f) → D. Our semantics of terms is standard:

[[c]]v = c [[x]]v = v(x) [[f(t1, . . . , ta(f))]]v = f̂([[t1]]v, . . . , [[ta(f)]]v)

10 F. Hublet et al.

Monitorability. To ensure that only finitely many function calls are needed to
decide whether a given formula is satisfied, restrictions must be imposed. In
contrast to classical monitorability which focuses on informative prefixes [29],
our definition focuses on ensuring finite evaluation steps of first-order formulae.

Example 3. Given a binary function eq∈F such that eq(x, y) := if x = y then 1
else 0 used to compare two variables, and some f ∈ F, consider the formulae

φ1 := ∀x, y. B(x) ∧B(y) ∧ ¬(eq(x, y) ≈ 1) −→ A(f(x, y))

φ2 := ∀x, y. A(f(x, y)) −→ B(x) ∧B(y) ∧ ¬(eq(x, y) ≈ 1).

The formula φ1 is monitorable: whenever two B events occur for different values
of x and y, the event A(f(x, y)) also occurs. In contrast, the formula φ2 cannot
be monitored without further assumptions about f : when some A(z) is true, the
set of pairs (x, y) such that z = f(x, y) may be neither finite nor co-finite.

The key difference between the formulae is that, when φ1 is false, there are
always events in the present that contain x and y as parameters. There are
finitely many such events, and hence the full set of satisfactions can be obtained
by filtering satisfactions of B(x) ∧B(y) ∧ ¬(eq(x, y) ≈ 1) based on the value of
A(f(x, y)). In contrast, when φ2 is false, all values of x and y for which A(f(x, y))
is true (or, alternatively, B(x) ∧ B(y) ∧ ¬(eq(x, y) ≈ 1) is false) would need to
be checked, but the set of such values may be infinite.

Based on these observations, we adopt the following notion of monitorability:

Definition 4. A closed MFOTL formula φ is monitorable iff for any of its
quantified subformulae Qx. ψ, where Q ∈ {∀,∃}, either ⊢ ψ : PG+(x), or ⊢ ψ :
PG−(x), or x does not appear inside any function argument in ψ.

Note that the definition of rule E+
PG shown in Example 1 is unchanged, i.e.,

a variable is only past-guarded when it occurs directly as an argument of a
predicate, and not within a function application.

Monitoring. We now describe how to extend the PDTs from Section 2.3 to
efficiently monitor formulae with function applications. Instead of trees labeled
by variable names, we consider trees labeled with elements of the type

lbl = LVar ident | LEx ident | LAll ident | LClos ident (term list),

containing either free variables (LVar), existentially quantified variables (LEx),
universally quantified variables (LAll), or closures with a function name and a
list of terms (LClos). An example of an extended PDT is shown in Figure 6a.

We call a PDT well-formed with respect to a set of variables V iff:

1. Any LClos f t node with z ∈ fv(t)∩ V has an LEx z or LAll z node higher up.

This condition ensures that the value of all terms with free variables in V labeling
a node can be computed using the knowledge of the value of variables higher up.

Given a PDT representing satisfactions Satφ(•, i, σ) well-formed with respect
to the set of all variables in φ, a valuation v can be checked as in Figure 6b. In
Appendix A, we extend Lima et al.’s [33] algorithm to use the new PDTs and
show that it monitors all formulae covered by Definition 4.

Scaling Up Proactive Enforcement: Technical Report 11

LAllx

LAll y

LClos eq [x, y]

⊥
{1}

LClos f [x, y]

⊥
{3}

⊤
D \ {3}

D \ {1}

{1, 2}

⊥

D \ {1, 2}

{1, 2}

⊥

D \ {1, 2}

φ := φ1 from Example 3

σ := (0, {A(1), A(2), B(3)})...

(a) PDT of φ’s satisfactions on σ

1 let specialize pdt v = case pdt of Leaf ℓ⇒ ℓ
2 | Node (LVar x) parts ⇒
3 let (_, pdt ′) = find parts (v x) in
4 specialize pdt ′ v

5 | Node (LExx) parts ⇒
6

∨(D,pdt′)∈parts

|D|<∞
∨

d∈D specialize pdt ′ v[x 7→ d]

7 ∨
∨(D,pdt′)∈parts

|D|=∞ specialize pdt ′ v

8 | Node (LAllx) parts ⇒
9

∧(D,pdt′)∈parts

|D|<∞
∧

d∈D specialize pdt ′ v[x 7→ d]

10 ∧
∧(D,pdt′)∈parts

|D|=∞ specialize pdt ′ v

11 | LClos f t ⇒ specialize (find parts [[f(t))]]v) v

(b) Specialization of extended PDTs

Fig. 6: Extended PDTs

Example 4. Consider the formula φGrubbs from Section 1. Let φ′Grubbs := dc, l ←
GRUBBS(dc, c;)(cntReboots(dc, c))) ∧ l≈1 and φ′′Grubbs :=φ

′
Grubbs−→alert(msg(dc)),

where msg(dc) abbreviates the string term in φGrubbs’s alert event. Note that
only variable dc occurs within a function argument. By Definition 4, the formula
φGrubbs is monitorable iff ∀l. φ′′Grubbs is either PG+(dc) or PG−(dc). In Exam-
ple 7, we will show that φ′Grubbs is PG+(dc). Using rules −→−PG and ∀PG (see (i)
below), we show that ∀l. φ′′Grubbs is also PG+(dc). Thus, φGrubbs is monitorable.

Suppose that φ′Grubbs holds for (dc, l) ∈ {(0, 1), (1, 1)} and alert(m) holds iff
m = msg(1). Monitoring φ′′Grubbs, our extended Sat computes the PDT below (ii).

x ̸= z Γ ⊢ φ : PGp(z)

Γ ⊢ ∀x. φ : PGp(z)
∀PG

(i) ∀PG rule

(ii) PDT

t0 t1

LVar dc

LVar l

LClos msg [dc]

⊥
{msg(1)}

⊤
D \ {msg(1)}

{1}

⊤
D \ {1}

{0}

LVar l

LClos msg [dc]

⊥
{msg(1)}

⊤
D \ {msg(1)}

{1}

⊤
D \ {1}

{1}
⊤

D \ {0, 1}

To enumerate the values of dc for which φ′′Grubbs is violated, we evaluate the
closures. In the subtree marked with t0, dc is equal to 0. We obtain msg(0) ∈ D\
{msg(1)} and t0 reduces to ⊤. In the subtree marked with t1, dc is equal to 1 and
hence t1 reduces to ⊥. The formula is thus violated only for v = {dc 7→ 1, l 7→ 1}.

Enforceability. Our enforcement algorithm (Figure 5) does not terminate in
general if functions are naïvely applied. Consider □(∀x. A(x) −→ A(x + 1)),
where A is causable. If A(i) occurs in the present, the algorithm causes A(i+1),
then A(i+2), A(i+3), etc. This formula would thus require infinitely many events
to be caused once some A(x) occurs. Hence, further restrictions must be intro-
duced to define a fragment of extended EMFOTL that is realistically enforceable.

Key to these restrictions is the notion of a stable function:

12 F. Hublet et al.

Definition 5. Let ⪯ be a well-founded relation on D. A function f : Dk → D
is ⪯-stable iff there exists a finite Cf ⊆ D such that for any dsup ∈ D and
d1, . . . , da(f) ⪯ dsup, either f(d1, . . . , da(f)) ⪯ dsup or f(d1, . . . , da(f)) ∈ Cf .
A ⪯-stable function can only produce outputs that are smaller than one of its
inputs with respect to some well-founded relation ⪯, or are in some finite set
Cf . This guarantees that the number of distinct domain elements obtainable by
repeatedly applying stable functions to an initial, finite set of domain elements
is finite. For example, if D = N, then f1 = λx. max(x − 1, 2) is ≤-stable, but
f2 = λx. x+1 is not. Applying f1 repeatedly to elements in a set {d1, . . . , dk} ⊆ N
only produces natural numbers in {0, . . . ,max1≤i≤k di} or the natural number
2, while applying f2 repeatedly to {0} reaches all of N.

Formally, for F ⊆ F, X ⊆ D, and n ≥ 0, define cln inductively as follows:

cl0(F,X) = X ∀i ≥ 0. cli+1(F,X) = X ∪
⋃
f∈F

f((cli(F,X))a(f)).

Further, define cl(F,X) as limn∞ cln(F,X). We have:

Lemma 1. cl(F,X) is finite for a finite set of stable functionsF and a finiteX.

Back to our enforcement setup, if the parameters of all caused events are obtained
by applying stable functions to existing domain elements, then only finitely many
events may be caused and the enforcement algorithm terminates. In fact, we can
be slightly more permissive: causation of events with parameters not obtained
by applying stable functions is admissible as long as these parameters cannot be
further used to derive parameters of caused events. Denoting by Fs the subset
of all stable functions in F, we get our final lemma:
Lemma 2. Let D ∈ DBω, k ≥ 1, and disjoint Cs,Cn ⊆ C such that ∀i ≥ 2,

Di−Di−1⊆{e(d1, ..., da(e)) | e∈C ∧ ∀i∃f ∈ cl(Fs, Di−1), d′ ∈ADDi,Cn
(φ)a(f). di=f̂(d′)}

∪ {e(d1, ..., da(e)) | e∈Cs ∧ ∀i∃f ∈ clk(F, Di−1), d′ ∈ADDi,Cn
(φ)a(f). di=f̂(d′)},

where ADDi,E(φ) :=AD⟨(0,Di)⟩,E(φ), then D is eventually constant.

This lemma ensures that if we can (i) partition the set of causable events C
into two sets of strict causable events Cs and nonstrict causable events Cn, (ii)
ensure that the parameters of existing nonstrict causable events cannot be used
to compute the parameters of newly caused events, and (iii) ensure that the
parameters of newly caused, strict causable events are obtained from existing
domain elements by applying only stable functions, then only finitely many new
domain elements can be generated through causation. As a consequence, the
enforcement loop fp(σ,X, enf+all,φ,v,ts,b) in Figure 5 terminates.

To check (i)–(iii), we type event names to elements in {Cn,Cs,Sn,Ss}, rather
than just {C,S}, and store additional typing judgments x : PG+

E if the current
value of x is the parameter of some event e ∈ E in the past or present. The
type lattice is modified as shown in Figure 7, with solid lines representing ⊑
(oriented bottom-up) and dotted lines representing an operator ¬ that exchanges
causability and suppressability. We then replace the rules ∀C from Example 1 by
the rules in Figure 8, where Cα matches Cs or Cn and fn(φ) denotes the set of
all functions symbols in φ. All PG rules are updated with the subscript E.

Scaling Up Proactive Enforcement: Technical Report 13

O

C S

CS

⊑

¬

O

Cs Cn SsSn

C S

CS

⊑

¬
¬
¬

Fig. 7: Hublet et al.’s type lattice [25] (left) and our extended type lattice (right)

Γ ⊢ φ : τ ′ τ ⊑ τ ′

Γ ⊢ φ : τ
cast

Γ, x : PG+
E ⊢ φ : Cα ⊢ φ : PG−

E(x)

Γ ⊢ ∀x. φ : Cα
∀C

ti = x

⊢ e(t) : PG+
{e}(x)

E+
PG

Γ ⊢ φ : Cα

Γ ⊢ □φ : Cα
□C

a <∞ Γ ⊢ φ : Cα

Γ ⊢ ♢[0,a] φ : Cα
♢C Γ ⊢ ψ : Cα

Γ ⊢ φ−→ψ : Cα
−→CR

⊢ φ : PG+
E(x)

⊢ φ−→ψ : PG−
E(x)

−→−
PG

e ∈ C Γ (e) = Cα ∀x ∈
⋃k

i=1 fv(ti). ∃E ⊆ Γ
−1(Cn). Γ (x) = PG+

E

⋃k
i=1 fn(ti)⊆ Fs

Γ ⊢ e(t1, ..., tk) : Γ (e) ECα

e ∈ C Γ (e) = Cn ∀x ∈
⋃k

i=1 fv(ti). ∃E ⊆ Γ
−1(Cn). Γ (x) = PG+

E

Γ ⊢ e(t1, ..., tk) : Cn
ECn

Fig. 8: Selected modified typing rules for function applications (cf. Example 1)

Example 5. In φGrubbs, the concatenation function (ˆ) within the term in alert is
not stable. However, φGrubbs is still enforceable by causing alert(msg(dc)) when-
ever φ′Grubbs holds. In our type system, this is reflected by the fact that if alert
types to Cn in Γ , the ECn rule can be applied to derive Γ ⊢ alert(msg(dc)) : Cn.
This rule accepts non-stable functions such as (ˆ) in the argument of alert. How-
ever, it still requires some non-Cn event to guard the variable dc in the argument.
The non-causable reboot event provides such a guard, as we show in Example 7.

In contrast, a formula such as □(∀x. alert(x) −→ alert(x ˆx)) cannot be typed
to C by causing alert(x ˆx): using alert as a guard for x precludes alert : Cn, but
alert : Cn would be required to cause the right-hand side as it contains (ˆ).

Enforcement. With the additional restrictions that we just introduced and
our extended monitor, the enforcement algorithm proposed by Hublet et al. [25,
Algorithm 2] can be reused when function applications are introduced. The mod-
ified termination and correctness proofs rely on Lemma 2 (see Appendix A).

3.2 Aggregations

Assume that every aggregation operator ω ∈ Ω is associated with a (terminating)
function ω̂ : (Da(ω)1)∗ → (Da(ω)2)∗ that maps a multiset of a(ω)1-tuples into a
multiset of a(ω)2-tuples. Our semantics of MFOTL aggregations is as follows:

v, i ⊨σ x← ω(t; y) φ iff v(x) ∈ ω(M) where z = fv(φ) \ y and

M =
[
[[t]]v[z 7→d] | v[z 7→ d], i ⊨σ φ, d ∈ D|z|

]
and |y| > 0 implies M ̸= [],

14 F. Hublet et al.

where v(x) := (v(x1), . . . , v(x|x|)) and [[t]]v := ([[t1]]v, . . . , [[t|t|]]v). Note the last
condition, which specifies that when there is at least one group variable, the ag-
gregation is only satisfied when at least one valuation satisfies φ. A similar ap-
proach is followed in most SQL implementations: aggregation over an empty set
without grouping returns a default value (such as 0 for sums), whereas aggrega-
tion over an empty set with grouping returns an empty result set. Our defini-
tion of aggregation generalizes over that of past monitoring tools [9] by support-
ing operators that return tuples, rather than a single value. Various algorithms
(e.g., clustering algorithms) can thus be implemented as aggregation operators.

Monitorability. Monitoring an aggregation x ← ω(t; y) φ, where t is a se-
quence of terms that may contain function applications, requires that the above
set M is finite. Hence, there must exist only finitely many valuations of z :=
fv(φ) \ y satisfying φ. We modify Definition 4 accordingly.

Definition 6. An MFOTL formula φ is monitorable iff the condition in Defini-
tion 4 holds, and, additionally, for any subformula x← ω(t; y) ψ of φ, we have
⊢ ψ : PG+(z) for all variables z ∈ fv(ψ) \ y.

Monitoring. We now show how to transform a PDT of φ into a PDT of
x← ω(t; y) φ, imposing the following additional constraint on the PDT of φ:

2. All LVar y nodes with y in y appear above all LVar y′ nodes with y′ ∈ fv(φ)\y.

This condition allows collecting values to be placed in the PDT below all nodes
labeled with the group variables. Our algorithm (Figure 9) inputs x, t, and y, a
PDT pdt for φ, and a list z containing a linearization of the set x∪y. The variable
appearing in nodes of pdt are assumed to form, top-down, a subsequence of z.

The algorithm proceeds in three steps, exemplified in Figure 10. First, the
original PDT with Boolean leaves is transformed into a PDT with nodes in
{LVar y | y ∈ y} and leaves containing the multiset M . This is done using the
gather function (l. 7–18) that uses standard concat : list list a → list a and map :
(a → b) → list a → list b functions as well as a function applyn that provides an
analogue of apply2 for lists of PDTs. The function traverses the tree top-down,
collecting constraints on the value of different variables and terms in a list sv. At
the leaves, that list is converted into a list of satisfactions vs that are then used
to compute all possible evaluations of t. In a second step, the aggregation oper-
ator ω is applied at the leaves using apply to obtain a PDT with leaves carry-
ing ω(M). The function agg (l. 19) wraps ω to map any empty multiset to None
when |y| > 0. Third and finally, this PDT is transformed into a Boolean PDT,
inserting the new variables x at their correct position in z using insert (l. 20–29),
which relies on a function all_leaves (see Appendix A) that gathers all elements
stored in the leaves of a PDT. Being able to insert the x at any position is im-
portant, since the monitoring algorithm requires free variables in a PDT to be
ordered according to their De Bruijn indices in the overall formula. We show:

Lemma 3. Let x← ω(t; y) φ be monitorable and z = fv(φ) \ y. Let pdt be well-
formed with respect to the bound variables in φ. Further assume that condition 2.
above holds for pdt and that pdt stores Satφ(•, i, σ). Then aggregate x t y z pdt
stores Satx←ω(t;y) φ(•, i, σ).

Scaling Up Proactive Enforcement: Technical Report 15

1 let distribute f x (D, pdt) = if |D| <∞ then [({d}, f d pdt) | d ∈ D] else [(D,x)]

2 let tabulate t sv vs = case sv of []⇒
[
[[t]]v | v ∈ vs

]
3 | (x,D) :: sv′ where x ∈ V ⇒ tabulate t sv′ [v[x 7→ d] | d ∈ D, v ∈ vs]
4 | (t,D) :: sv′ ⇒ tabulate t sv′ [v | v ∈ vs, [[t]]v ∈ D]

5 let gather sv t y pdt = let f t (D, pdt) = (D, gather (sv · (t,D)) t y pdt) in
6 case pdt of Leaf ℓ⇒ if ℓ = ⊤ then Leaf (tabulate t sv [∅]) else Leaf []
7 | Node (LVar x) parts ⇒ if x /∈ y then applyn (∪) (map (f x) parts) else
8 let g d pdt = gather {v[x 7→ d] | v ∈ vs} t y pdt in
9 Node (LVar v) (concat (map (distribute g []) parts)

10 | Node (LExx) parts ⇒ applyn (∪) (map (f x) parts)

11 | Node (LAllx) parts ⇒ applyn (∩) (map (f x) parts)

12 | Node (LClosh t_) parts ⇒ applyn (∪) (map (h(t)) parts)

13 let agg y ω M = if |y| > 0 ∧M = [] then None else ωM
14 let insert v x z pdt = case z, pdt of
15 x :: z′,_where x ∈ x ⇒ letD = map (λv. v x) (all_leaves pdt) in
16 if D = [] then Leaf ⊥
17 else Node (LVar y, distribute (λd pdt. insert v[x 7→ d] x z′ pdt) ⊥ (D, pdt))

18 | y :: z′,Node (LVar y′, parts)where y = y′ ⇒
19 Node (LVar y′,map (λ(D, pdt). (D, insert x z pdt))) parts

20 | _ :: z′,Node _ ⇒ insert v x z′ pdt

21 | _, Leaf (Some vs) ⇒ if ∃v′ ∈ vs. ∀x ∈ dom v. v x = v′ x then ⊤ else ⊥
22 | _, Leaf None ⇒ ⊥
23 let aggregate ω x t y z pdt = insert ∅ x z (apply (agg y ω) (gather [] t y pdt))

Fig. 9: Computing aggregations in PDTs

Example 6. In φGrubbs, let cntReboots hold for (dc, c) ∈ {(0, 2), (1, 2), (2, 5), (3, 7)}.
Assume that the GRUBBS function maps data centers 0 and 1 to cluster l = 0 and
data centers 2 and 3 (as outliers) to l = 1. Our algorithm (Figure 9) computes:

LVar dc

LVar c

⊤
{2}

⊥
D \ {2}

{0, 1}

LVar c

⊤
{5}

⊥
D \ {5}

{2}
LVar c

⊤
{7}

⊥
D \ {7}

{3}
⊥

D \ {0, 1, 2, 3}

[[0, 2], [1, 2], [2, 5], [3, 7]] [[0, 0], [1, 0], [2, 1], [3, 1]]

LVar dc

LVar l

⊤
{0}

⊥
D \ {0}

{0, 1}

LVar c

⊤
{1}

⊥
D \ {1}

{2, 3}
⊥

D \ {0, 1, 2, 3}

gather
apply (app [] GRUBBS) insert

Note that the intermediate PDTs are just leaves as there is no grouping variable.

Enforceability. Aggregations are generally not causable. Formula x←ω(t; y) φ
is suppressable iff y is non-empty and ∃z1, . . . , zk. φ is suppressable, where z =
fv(φ) \ y (rule aggS in Figure 11). Aggregations can provide past-guardedness in
two ways: x← ω(t; y) φ types to PGp(v) iff either (a) v ∈ x, p = +, all free vari-
ables of t are past-guarded in φ, and the events used to guard these free vari-
ables are not used for causation in Γ (rule aggPG,x) or (b) v ∈ y and v is past-
guarded in f (rule aggPG,y). The last condition in (a) means that Γ is now rel-
evant for past-guardedness; it excludes non-enforceable formulae (e.g., ∀x. x ←

16 F. Hublet et al.

LVar y

LVar z

⊤

{2}

⊥

D \ {2}

{1}

LVar z

⊤

{2, 3}

⊥

D \ {2, 3}

{2}
⊥

D \ {1, 2}
LVar y

[[3]]

{1}

[[3], [4]]

{2}
[]

D \ {1, 2}

LVar y

[[3]]

{1}

[[7]]

{2}

None

D \ {1, 2}
LVar y

LVar x

⊤

{3}

⊥

D \ {3}

{1}

LVar x

⊤

{7}

⊥

D \ {7}

{2}
⊥

D \ {1, 2}

gather

apply (agg [y] ω)

insert

Fig. 10: Formula x← SUM(z + 1; y) A(y, z) with D = {A(1, 2), A(2, 2), A(2, 3)}

∀z ∈ fv(φ) \ y. ⊢ φ : PG(z)+Ez
Γ,∀z. z : PG+

Ez
⊢ φ : Sα |y| > 0

Γ ⊢ x← ω(t; y) φ : Sα
aggS

v ∈ x ∀u ∈ fv(t). ∃Eu ⊆ Γ−1(C). Γ ⊢ φ : PG+
Eu

(u)

Γ ⊢ x← ω(t; y) φ : PG+⋃
u∈fv(t) Eu

aggPG,x

v ∈ y Γ ⊢ φ : PGp
E(v)

Γ ⊢ x← ω(t; y) φ : PGp
E(v)

aggPG,y

Fig. 11: Additional typing rules for aggregations

SUM(y;)A(y) −→ A(x)). Other past-guardedness rules have the same Γ on the
LHS of all of their sequents. The rules in Figure 11 are sound (Appendix A).

Enforcement. To support the suppression of aggregations as given by rule
aggS above, an additional case is added to the function enf−:

| x← ω(t; y) φ1 ⇒ enf+ts,b(¬(∃z1, . . . , zk. φ1), σ,X, v).

3.3 let bindings

We adopt the semantics of let bindings introduced by Zingg et al. [45]:

v, i ⊨σ let e(x) = φ in ψ iff v, i ⊨σ[e⇛(λi.{d∈D|x||v[x 7→d],i⊨φ})] ψ.

where σ[e⇛ R] denotes the trace obtained from σ by adding, at each time-point
i, all events e(d) such that d ∈ R(i). With this semantics, let bindings can be
soundly unrolled by substituting every occurrence of e(t) in ψ with φ[x 7→ t].
The enforcement algorithm requires no extension if unrolling is performed prior
to typing and enforcement. In fact, with memoization (Section 4) such unrolling
should not lead to any significant runtime overhead.

When applied naïvely after unrolling, type inference for the enforcement
type system becomes prohibitively slow. To avoid this issue, we introduce the
typing rules in Figure 12, proved sound in Appendix A. The rule let allows φ1’s
enforceability type to be reused in φ2. Additionally, it extends Γ with judgments
of the form lete : ⊥ and lete,i,p : E denoting the existence of a let-bound predicate
e and past-guardedness of e’s ith argument, respectively. The letPG rule extracts
past-guardedness information for let-bound predicates from Γ .

Scaling Up Proactive Enforcement: Technical Report 17

lete ∈ domΓ Γ (lete,i,p) = E ti = x

Γ ⊢ e(t) : PGp
E(x)

letPG

Γ ⊢ φ1 : τ1 Γ ∪ {lete,i,p : E | Γ ⊢ φ1 : PGp
E(xi)}, lete : ⊥, e : τ1 ⊢ φ2 : τ2

Γ ⊢ let e(x1, . . . , xk) = φ1 in φ2 : τ2
let

Fig. 12: Additional typing rules for let bindings

The full typing of the formula in Section 1 is given in Appendix B.

Example 7. Rule aggPG,x proves that dc is past-guarded by cntReboots in φ′′Grubbs
if cntReboots is not in C. It also proves that dc is past-guarded by badReboot
in c ← CNT(i; dc)(♦[0,1800)(badReboot(s, dc) ∧ tp(i))) if badReboot is not in C.
Note that dc is past-guarded by reboot in reboot(s, dc) ∧ ¬ (¬reboot(s, dc) S
intendReboot(s, dc)). We can then use let, letPG, and the past-guardedness facts
established above to show that dc is past-guarded by reboot in φ′′Grubbs.

Theorem 1. Let φ be a closed EMFOTL formula with function applications,
aggregations, and let bindings. Let enf ′ be the extended enf function. Denote
unroll(φ) the formula obtained by unrolling let in φ. Then the enforcer Eφ =
(P(fo), {(unroll(φ), ∅,+)}, enf ′) is sound with respect to L(φ).

We also prove Eφ’s transparency for a fragment of EMFOTL in Appendix A.

4 Implementation and Optimizations

We have implemented our extensions in an open-source tool, called EnfGuard
(available at [26]), consisting of about 11,000 lines of OCaml code. To ease code
reuse, all MFOTL-related function are packaged into a separate library.

EnfGuard support two types of functions: built-in functions, such as arith-
metic operations, and user-defined functions. In addition to SQL-style aggrega-
tions, EnfGuard also supports user-defined aggregations. User-defined func-
tions and aggregations are provided by the user in a Python file. The user must
specify each function’s signature and whether it is stable, and ensure that it ter-
minates. The enforcer calls Python functions via the pyml bindings during moni-
toring. Support for Python functions makes EnfGuard more easily extendable.

EnfGuard’s implementation includes three main optimizations:
Associative and commutative (AC) rewriting. Multiple binary conjunctions

and disjunctions are replaced by n-ary ones and standard AC-rewriting is applied
before enforcement starts. When enforcing an n-ary operator, the enforcement
algorithm is called only once on each conjunct or disjunct inside the fixpoint
computation, which exponentially reduces the number of calls in the best case.

Memoization. When the trace changes due to causation or suppression, a
naïve algorithm drops the previously computed truth values and recomputes
new ones. Given φ, we compute the set of relevant event names RE(φ) and rel-
evant future obligations RFO(φ) that can affect the truth value of φ under as-
sumptions (see Appendix C). When enforcement causes new events D+ or future
obligations O, we compute the sets {e | e(v) ∈ D+} ∩ RE(φ) and O ∩ RFO(φ)
first. If both are empty, the previous verdict is still valid and can be returned.

https://github.com/ocamllibs/pyml

18 F. Hublet et al.

Subformulae skipping. Our algorithm does not evaluate subformulae known
to be true whenever certain event names do not presently exist. For every sub-
formula φ, we precompute the present filter fφ := F⊤(φ) such that

Fb(⊤) = λD. b F⊤(e(t)) = λD. ∃t. e(t) ∈ D
Fb(¬φ) = F¬b(φ) F⊤(φ ∧ ψ) = λD. F⊤(φ)(D) ∧ F⊤(ψ)(D)

Fb(∃x. φ) = Fb(φ) F⊥(φ ∧ ψ) = λD. F⊥(φ)(D) ∨ F⊥(ψ)(D)

Fb(φ) = λD. ⊤ for any φ = I ψ,#I ψ,ψ1 UI ψ2, ψ1 SI ψ2.

Whenever fφ(D) evaluates to false on the current database, we immediately
return without causing or suppressing any events.

5 Evaluation

Our evaluation of EnfGuard answers the following research questions:
RQ1. Can EnfGuard’s EMFOTL fragment formalize real-world policies?
RQ2. At what event rates can EnfGuard perform real-time enforcement?
RQ3. Does EnfGuard’s performance improve upon the state-of-the-art?

To evaluate EnfGuard, we introduce what is, to the best of our knowledge,
the largest set of runtime enforcement benchmarks to date. We first present these
benchmarks (Section 5.1) and then report on our results (Section 5.2).

5.1 Benchmarks and evaluation setup

We use six benchmarks, each of which pairs a set of policies and a set of logs:
gdpr: 6 formulae encoding privacy policies and a log of a job application system

produced over a period of a year [3,25].
gpdrfun: Variants of the six gdpr formulae that use custom Python functions

to store and look up data ownership and consent, with the same log.
nokia: 11 formulae encoding data usage policies of a distributed system used

in Nokia’s mobile data collection campaign [7] and a log of this system [28]
spanning one day. The system’s original event rate was about 100 events/s.

ic: 8 formulae encoding various policies of a large Web3 distributed plat-
form [43] and 3 platform execution logs [6] having 100–150 events/s.

agg: 6 fraud detection formulae [8] using aggregations and 2 synthetic logs.
cluster: 2 outlier detection formulae using aggregation operators implemented

in Python and 3 synthetic logs.
Figure 13 shows benchmark statistics. For each benchmark, we report the

number of formulae and logs, the maximal formula size (defined as its number
of operators without unrolling let), the maximal log size (defined as its number
of events), and the maximum log event rate (defined as the average number of
events per second of real-time execution). We also indicate whether the formu-
lae use let bindings (Let), aggregations (Agg.), and function applications (Fun.),
possibly defined in Python (). Appendix D lists all formulae used.

In this evaluation, we compare EnfGuard to three tools: EnfPoly [24] and
WhyEnf [25], the only existing MFOTL enforcement tools, and MonPoly [9],

Scaling Up Proactive Enforcement: Technical Report 19

Log statistics Formulae statistics Tool support

Name Source Real #logs max |log| max er m
a
x
|φ
|

le
t

bi
nd

in
gs

A
gg

re
g.

F
un

ct
io

ns

#
fo

rm
ul

ae

E
n
fG

u
a
r
d

W
h
y
E
n
f

E
n
fP

o
ly

M
o
n
P
o
ly

gdpr [3,25] ✓ 1 5,631 10−4 72 6 6 6 2 6
gpdrfun [3,25] ✓ 1 5,631 10−4 108 6 6
nokia [28,7] ✓ 1 9,458,824 109 44 ✓ 11 11 11 5 11
ic [6] ✓ 3 634,789 147 179 ✓ ✓ 8 8 8
agg [8] 2 100,000 34 ✓ ✓ 6 6 6
cluster new 1 5,000 42 ✓ ✓ 2 2

Total: 39 39 17 7 31
Rewriting required: no no yes yes

Fig. 13: Benchmarks’ logs (left), formulae (middle), and tool support (right)

a state-of-the-art MFOTL monitor with aggregations [8], let bindings [45], and
built-in functions. As monitoring is a simpler task than enforcement, MonPoly’s
performance is intended to suggest the likely ‘best achievable’ results for com-
parable expressivity, rather than a standard to achieve. All measurements are
performed on an AMD Ryzen™ 5 5600X (6 cores) with 16 GB RAM.

5.2 Results

We now present the results of our experiments and answer the research questions.
RQ1: Expressiveness. Figure 13 (right) shows the number of policies each tool

supports across all benchmarks. EnfGuard supports all 39 policies, whereas
MonPoly supports 31 formulae (all except those containing user-defined con-
structs), but requires manual rewriting of formulae into its monitorable fragment.
WhyEnf and EnfPoly support just 17 and 7 policies, respectively. Both tools
cannot enforce formulae with function applications, aggregations, or let bind-
ings. Without let, formulae can become much larger (up to 20 times in practical
examples [6]) and difficult to read and maintain. Aggregations strictly increase
the policy language’s expressiveness [21]: some requirements [6,8] cannot be ex-
pressed without them. EnfPoly is additionally restricted to past-only policies.

RQ2: Maximum event rate. Figure 14 shows each tool’s average latency
(avgℓ(a), in ms), maximum latency (maxℓ(a), in ms) and average event rate
avger for the largest trace acceleration a ∈ {20, . . . , 29} such that maxℓ(a) ≤ 1

a .
A trace acceleration is the ratio between the speed that a trace is provided to
the enforcer and the trace’s real-time behavior (captured by its timestamps).
The inequality captures that latency is smaller than the interval between two
timestamps in the accelerated trace, i.e., that a tool can process the trace in real
time. We report averages over 5 repetitions of each benchmark’s largest log.

Except for one formula in ic, EnfGuard can enforce all policies in real time,
with event rates ranging from 20–200 events/s when frequent aggregation and
causation is involved (agg, cluster, some of ic) to over 1,000–14,000 events/s
in contexts when few commands are emitted and policies are simpler (gdpr,
nokia). Our experiments show maximum latency values below 20 ms in most
cases, and below 100 ms in all but 4 benchmarks using commodity hardware.

20 F. Hublet et al.

EnfGuard WhyEnf EnfPoly MonPoly
Policy φ |φ| a avger avgℓ maxℓ a avger avgℓ maxℓ a avger avgℓ maxℓ a avger avgℓ maxℓ

g
d
pr

consent 22 12.8e6 1619 .39 2 .8e6 101 7.6 30 51.2e6 6480 .17 1 51.2e6 6934 .20 1
deletion 14 25.6e6 3238 .28 2 25.6e6 3238 .20 1 51.2e6 6934 .20 1

gdpr 72 6.4e6 810 .87 3 .2e6 25 33 110 25.6e6 3465 .13 1
information 16 12.8e6 1619 .33 2 6.4e6 810 1.1 5.2 51.2e6 6934 .15 1
lawfulness 17 12.8e6 1619 .35 2 6.4e6 810 1.3 4.4 51.2e6 6480 .17 1 51.2e6 6934 .15 1
sharing 19 12.8e6 1619 .32 2 3.2e6 405 3.0 15 51.2e6 6934 .20 1

n
o
k
ia

del-1-2 37 32 3503 5 19 not real-time 128 14035 .21 5
del-2-3 20 128 14013 .58 6 256 28026 .26 2 512 56139 .17 1
del-3-2 20 128 14013 .55 6 512 56052 .26 2 512 56139 .17 1
delete 10 128 14013 .54 5 256 28026 .25 2 512 56052 .16 1 512 56138 .17 1
ins-1-2 25 64 7007 1.1 11 error† not real-time
ins-2-3 20 32 3053 1.5 23 error† 32 3509 2.8 19
ins-3-2 20 32 3503 5.9 29 256 28026 .28 2 256 28069 .40 3
insert 10 128 14013 .65 7 256 28026 .26 2 512 56052 .22 2 512 56139 .21 1
script1 44 128 14013 .64 6 256 28026 .28 2 512 56052 .19 1 512 56139 .24 1
select 13 128 14013 .54 5 256 28026 .25 2 512 56052 .16 1 512 56139 .16 1
update 8 128 14013 .53 6 256 28026 .24 2 512 56052 .16 1 512 56139 .16 1

EnfGuard MonPoly
Policy φ |φ| a avger avgℓ maxℓ a avger avgℓ maxℓ

ic

validation 166 128 3744 .26 5 256 7489 .36 4
clean_logs 48 2 59 2.7 281 128 3744 .14 3
finalization 58 not real-time 128 3744 .14 3
divergence 50 128 3744 .23 3 128 3744 .19 3

height 162 128 3744 .24 3 not real-time
logging 179 64 1872 .23 10 2 59 .25 381
reboot 79 2 59 2.4 276 128 3744 .16 3

unauthorized 64 128 3744 .23 3 2 59 3.0 300

ag
g

p1 21 64 640 5.1 9.4 512 5120 .16 1
p2 22 32 320 13 27 512 5120 .33 1
p3 27 8 80 44 102 512 5120 .39 1
p4 31 2 20 54 392 512 5120 .48 1
p5 32 64 640 6.3 11 512 5120 .25 1
p6 34 64 640 6.8 12 512 5120 .31 1

EnfGuard
Policy φ |φ| a avger avgℓ maxℓ

g
d
pr

fu
n

fconsent 25 12.8e6 1619 .30 2
fmanagement 22 25.6e6 1619 .31 2

fdeletion 17 25.6e6 3238 .30 2
fgdpr 108 6.4e6 3238 .93 4

finformation 23 12.8e6 1619 .44 3
fsharing 20 12.8e6 1619 .32 2

c
l. dbscan 42 32 160 17 31

grubbs 42 32 160 14 32

† The tool returns incorrect results on test
cases. The formula is not correctly enforced.

Fig. 14: Latency and processing time for the largest a such that maxℓ(a) ≤ 1/a.

RQ3: Comparison with the state-of-the-art. Our comparison on the gdpr
benchmarks shows EnfGuard to be 1.5–30× faster than WhyEnf and up
to 4 times slower than the much less expressive, table-based EnfPoly. Likely
due to its more complex data structures, EnfGuard is sometimes slower than
WhyEnf on small formulae (nokia), but with a latency still below 10 ms. The
large gdpr formula exhibits EnfGuard’s performance advantage over WhyEnf:
while WhyEnf, with an event rate of only 25, suffers a significant slowdown
compared to the same benchmark’s other formulae, EnfGuard is still able to
process 810 events per second. The comparison with MonPoly reveals potential
for further optimizations, especially for aggregations (agg). However, the per-
formance gap between EnfGuard and MonPoly is smaller for large formulae
(ic), with the two tools showing incomparable performance on complex formulae.

6 Conclusions and Future Work

We presented EnfGuard, the first proactive enforcement tool for rich policies
written in metric first-order temporal logic with function applications, aggrega-
tions, and let bindings. Our evaluation shows that EnfGuard can be used in
many real-world systems, like Web3, data management, or financial systems.

In future, we will further optimize EnfGuard to benefit from MonPoly’s
efficient table-based approach on a subset of EnfGuard’s policy language.

Scaling Up Proactive Enforcement: Technical Report 21

Acknowledgments. Hublet is supported by the Swiss National Science Founda-
tion grant "Model-driven Security & Privacy" (204796). Lima and Traytel are
supported by a Novo Nordisk Fonden start package grant (NNF20OC0063462).
We thank the anonymous CAV reviewers for their insightful feedback.

Disclosure of interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Aceto, L., Cassar, I., Francalanza, A., Ingolfsdottir, A.: Bidirectional runtime en-
forcement of first-order branching-time properties. Logical Methods in Computer
Science 19 (2023)

2. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On first-order runtime
enforcement of branching-time properties. Acta Informatica pp. 1–67 (2023)

3. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: Sako, K., Schneider,
S.A., Ryan, P.Y.A. (eds.) 24th European Symposium on Research in Computer
Security (ESORICS). LNCS, vol. 11735, pp. 681–699. Springer (2019)

4. Basin, D., Dardinier, T., Hauser, N., Heimes, L., Huerta y Munive, J.J., Kaletsch,
N., Krstić, S., Marsicano, E., Raszyk, M., Schneider, J., et al.: Verimon: a formally
verified monitoring tool. In: International Colloquium on Theoretical Aspects of
Computing. pp. 1–6. Springer (2022)

5. Basin, D., Debois, S., Hildebrandt, T.: Proactive enforcement of provisions and
obligations. J. Comput. Secur. 32(3), 247–289 (2024)

6. Basin, D., Dietiker, D.S., Krstić, S., Pignolet, Y.A., Raszyk, M., Schneider, J., Ter-
Gabrielyan, A.: Monitoring the internet computer. In: International Symposium
on Formal Methods. pp. 383–402. Springer (2023)

7. Basin, D., Harvan, M., Klaedtke, F., Zalinescu, E.: Monitoring data usage in dis-
tributed systems. IEEE Transactions on Software Engineering 39(10), 1403–1426
(2013)

8. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal methods in system design 46, 262–285
(2015)

9. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. Journal of the ACM (JACM) 62(2), 1–45 (2015)

10. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Workshop
on Foundations of Computer Security (FCS). Citeseer (2002)

11. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.:
UPPAAL-Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) In-
ternational Conference Computer Aided Verification (CAV). LNCS, vol. 4590, pp.
121–125. Springer (2007)

12. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems (TODS) 20(2), 149–
186 (1995)

13. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). LNCS, vol. 6605, pp. 272–275. Springer (2011)

22 F. Hublet et al.

14. Erlingsson, Ú., Schneider, F.: SASI enforcement of security policies: a retrospective.
In: Kienzle, D., Zurko, M.E., Greenwald, S., Serbau, C. (eds.) Workshop on New
Security Paradigms. pp. 87–95. ACM (1999)

15. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regu-
lar timed properties by suppressing and delaying events. Science of Computer Pro-
gramming 123, 2–41 (2016)

16. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021)

17. Falcone, Y., Pinisetty, S.: On the runtime enforcement of timed properties. In:
Finkbeiner, B., Mariani, L. (eds.) 19th International Conference on Runtime Ver-
ification, (RV). LNCS, vol. 11757, pp. 48–69. Springer (2019)

18. Fredrikson, M., Joiner, R., Jha, S., Reps, T.W., Porras, P.A., Saïdi, H., Yeg-
neswaran, V.: Efficient runtime policy enforcement using counterexample-guided
abstraction refinement. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 548–563. Springer (2012)

19. Grubbs, F.E.: Sample criteria for testing outlying observations. Ann. Math. Statist.
21(4), 27–58 (1950)

20. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

21. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. J.
ACM 48(4), 880–907 (2001). https://doi.org/10.1145/502090.502100

22. Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. The Journal
of Logic and Algebraic Programming 82(5-7), 164–185 (2013)

23. Hofmann, T., Schupp, S.: TACoS: A tool for MTL controller synthesis. In: Cali-
nescu, R., Pasareanu, C.S. (eds.) International Conference on Software Engineer-
ing and Formal Methods (SEFM). LNCS, vol. 13085, pp. 372–379. Springer (2021)

24. Hublet, F., Basin, D., Krstić, S.: Real-time policy enforcement with metric first-
order temporal logic. In: European Symposium on Research in Computer Security.
pp. 211–232. Springer (2022)

25. Hublet, F., Lima, L., Basin, D., Krstić, S., Traytel, D.: Proactive real-time first-
order enforcement. In: International Conference on Computer Aided Verification.
pp. 156–181. Springer (2024)

26. Hublet, François and Lima, Leonardo and Basin, David and Krstić, Srđan and
Traytel, Dmitriy: EnfGuard (2025), https://github.com/runtime-enforcement/
enfguard

27. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: International Con-
ference Formal Methods in Computer-Aided Design (FMCAD). pp. 117–124. IEEE
(2006)

28. Kiukkonen, N., Blom, J., Dousse, O., Gatica-Perez, D., Laurila, J.: Towards rich
mobile phone datasets: Lausanne data collection campaign. Proc. ICPS, Berlin
68(7) (2010)

29. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Meth-
ods Syst. Des. 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723,
https://doi.org/10.1023/A:1011254632723

30. Li, G., Jensen, P., Larsen, K., Legay, A., Poulsen, D.: Practical controller synthesis
for MTL0,∞. In: Erdogmus, H., Havelund, K. (eds.) ACM SIGSOFT International
SPIN Symposium on Model Checking of Software. pp. 102–111. ACM (2017)

31. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-
time security policies. International Journal of Information Security 4, 2–16 (2005)

https://doi.org/10.1145/502090.502100
https://doi.org/10.1145/502090.502100
https://github.com/runtime-enforcement/enfguard
https://github.com/runtime-enforcement/enfguard
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1023/A:1011254632723

Scaling Up Proactive Enforcement: Technical Report 23

32. Lima, L., Herasimau, A., Raszyk, M., Traytel, D., Yuan, S.: Explainable online
monitoring of metric temporal logic. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 473–491. Springer
(2023)

33. Lima, L., Huerta y Munive, J.J., Traytel, D.: Explainable online monitoring of
metric first-order temporal logic. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 288–307. Springer (2024)

34. Minato, S.i.: Binary decision diagrams and applications for VLSI CAD, vol. 342.
Springer Science & Business Media (1995)

35. Ngo, M., Massacci, F., Milushev, D., Piessens, F.: Runtime enforcement of security
policies on black box reactive programs. In: Rajamani, S.K., Walker, D. (eds.) 42nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). pp. 43–54. ACM (2015)

36. Peter, H., Ehlers, R., Mattmüller, R.: Synthia: Verification and synthesis for timed
automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) International Conference on
Computer Aided Verification (CAV). LNCS, vol. 6806, pp. 649–655. Springer
(2011)

37. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: TiPEX: A tool chain for timed
property enforcement during execution. In: International Conference on Runtime
Verification (RV). pp. 306–320. Springer (2015)

38. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena Timo, O.:
Runtime enforcement of timed properties revisited. Formal Methods Syst. Des. 45,
381–422 (2014)

39. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.:
Predictive runtime enforcement. Formal Methods Syst. Des. 51(1), 154–199 (2017)

40. Raszyk, M., Basin, D., Krstić, S., Traytel, D.: Efficient evaluation of arbitrary
relational calculus queries. Logical Methods in Computer Science 19 (2023)

41. Renard, M., Rollet, A., Falcone, Y.: GREP: games for the runtime enforcement
of properties. In: Yevtushenko, N., Cavalli, A., Yenigün, H. (eds.) International
Conference on Testing Software and Systems (ICTSS). LNCS, vol. 10533, pp. 259–
275. Springer (2017)

42. Schneider, F.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–
50 (2000)

43. The DFINITY Team: The Internet Computer for geeks. Cryptology ePrint Archive,
Paper 2022/087 (2022), https://eprint.iacr.org/2022/087

44. Zhu, S., Tabajara, L., Li, J., Pu, G., Vardi, M.: A symbolic approach to safety LTL
synthesis. In: Strichman, O., Tzoref-Brill, R. (eds.) International Haifa Verification
Conference (HVC). LNCS, vol. 10629, pp. 147–162. Springer (2017)

45. Zingg, S., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.: Verified first-order
monitoring with recursive rules. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 236–253. Springer (2022)

A Additional Definitions and Proofs

A.1 Past-guarded fragment

We defined the extended active domain AD∗σ,E(φ) as AD∗σ,E(φ) := {0}∪cl
δ(φ)(Ω,ADσ,E(φ)),

where δ(φ) is the maximum depth of nested aggregations in φ.

https://eprint.iacr.org/2022/087

24 F. Hublet et al.

ti = x

⊢ e(t) : PG(x)+
E+

PG
⊢ φ : PG(x)¬p

⊢ ¬φ : PG(x)p
¬PG

x ̸= z ⊢ φ : PG(z)p

⊢ ∃x. φ : PG(z)p
∃PG

⊢ φ : PG(x)+

⊢ φ ∧ ψ : PG(x)+
∧L+

PG

⊢ ψ : PG(x)+

⊢ φ ∧ ψ : PG(x)+
∧R+

PG

⊢ φ : PG(x)− ⊢ ψ : PG(x)−

⊢ φ ∧ ψ : PG(x)−
∧−

PG

0 /∈ I ⊢ φ : PG(x)+

⊢ φ SI ψ : PG(x)+
SL+
PG

⊢ ψ : PG(x)+

⊢ φ SI ψ : PG(x)+
SR+
PG

0 ∈ I ⊢ ψ : PG(x)−

⊢ φ SI ψ : PG(x)−
S−
PG

0 /∈ I ⊢ φ : PG(x)+

⊢ φ UI ψ : PG(x)+
UL+

PG

⊢ φ : PG(x)+ ⊢ ψ : PG(x)+

⊢ φ UI ψ : PG(x)+
ULR+

PG

Past-guardedness
0 ∈ I ⊢ ψ : PG(x)−

⊢ φ UI ψ : PG(x)−
U−

PG

⊢ φ : PG(x)+

⊢ I φ : PG(x)+
 +

PG

Γ ⊢ ⊤ : C ⊤
C

Γ ⊢ ⊥ : S ⊥
S

e ∈ C Γ (e) = C
Γ ⊢ e(t1, . . . , tk) : C EC

e ∈ S Γ (e) = S
Γ ⊢ e(t1, . . . , tk) : S ES

Γ ⊢ φ : S
Γ ⊢ ¬φ : C ¬

C
Γ ⊢ φ : C
Γ ⊢ ¬φ : S ¬

S
Γ ⊢ φ : C

Γ ⊢ ∃x. φ : C ∃
C

Γ ⊢ φ : S ⊢ φ : PG(x)+

Γ ⊢ ∃x. φ : S ∃S

Γ ⊢ φ : C Γ ⊢ ψ : C
Γ ⊢ φ ∧ ψ : C ∧C

Γ ⊢ φ : S
Γ ⊢ φ ∧ ψ : S ∧

SL
Γ ⊢ ψ : S

Γ ⊢ φ ∧ ψ : S ∧
SR

0 ∈ I Γ ⊢ ψ : C
Γ ⊢ φ SI ψ : C SC

0 /∈ I Γ ⊢ φ : S
Γ ⊢ φ SI ψ : S SSL

0 ∈ I Γ ⊢ φ : S Γ ⊢ ψ : S
Γ ⊢ φ SI ψ : S SSLR

Γ ⊢ ψ : S
Γ ⊢ φ UI ψ : S US

b ̸=∞ Γ ⊢ ψ : C
Γ ⊢ φ U[0,b] ψ : C UCR

b ̸=∞ Γ ⊢ φ : C Γ ⊢ ψ : C
Γ ⊢ φ U[a,b] ψ : C UCLR

Typing of formulae as
causable/suppressable

Γ ⊢ φ : C b > 0

Γ ⊢ #[0,b) φ : C #C Γ ⊢ φ : S
Γ ⊢ #I φ : S #

S

Fig. 15: Typing rules for EMFOTL from Hublet et al. [25, Section 4]

Scaling Up Proactive Enforcement: Technical Report 25

lete /∈ domΓ

Γ ⊢ e(t1, . . . , ti = x, . . . , tk) : PG+
{e}(x)

E+
PG

Γ ⊢ x = c : PG+
∅ (x)

=+
PG

Γ ⊢ φ : PG¬p
E (x)

Γ ⊢ ¬φ : PGp
E(x)

¬PG
x ̸= z Γ ⊢ φ : PGp

E(z)

Γ ⊢ ∃x. φ : PGp
E(z)

∃PG
x ̸= z Γ ⊢ φ : PGp

E(z)

Γ ⊢ ∀x. φ : PGp
E(z)

∀PG

Γ ⊢ φ : PG+
E(x)

Γ ⊢ φ ∧ ψ : PG+
E(x)

∧L+
PG

Γ ⊢ ψ : PG+
E(x)

Γ ⊢ φ ∧ ψ : PG+
E(x)

∧R+
PG

Γ ⊢ φ : PG−
E(x) Γ ⊢ ψ : PG−

E′ (x)

Γ ⊢ φ ∧ ψ : PG−
E∪E′ (x)

∧−
PG

v ∈ x ∀u ∈ fv(t). ∃Eu ⊆ Γ−1
(C). Γ ⊢ φ : PG+

Eu
(u)

aggPG,x
Γ ⊢ x← ω(t; y) φ : PG+⋃

u∈fv(t)
Eu

(v)

v ∈ y Γ ⊢ φ : PGp
E(v)

aggPG,y
Γ ⊢ x← ω(t; y) φ : PGp

E(v)

lete ∈ domΓ Γ (lete,i,p) = E

Γ ⊢ e(x1, . . . , xi = x, . . . , xk) : PGp
E(x)

letPG

0 /∈ I Γ ⊢ φ : PG+
E(x)

Γ ⊢ φ SI ψ : PG+
E(x)

SL+
PG

Γ ⊢ ψ : PG+
E(x)

Γ ⊢ φ SI ψ : PG+
E(x)

SR+
PG

0 ∈ I Γ ⊢ ψ : PG−
E(x)

Γ ⊢ φ SI ψ : PG−
E(x)

S−
PG

0 /∈ I Γ ⊢ φ : PG+
E(x)+

Γ ⊢ φ UI ψ : PG+
E(x)

UL+
PG

Γ ⊢ φ : PG+
E(x) Γ ⊢ ψ : PG+

E′ (x)

Γ ⊢ φ UI ψ : PGE∪E′ (x)+
ULR+

PG

Past-guardedness
0 ∈ I Γ ⊢ ψ : PG−

E(x)

Γ ⊢ φ UI ψ : PG−
E(x)

U−
PG

Γ ⊢ φ : PG+
E(x)

Γ ⊢ I φ : PG+
E(x)

 +
PG

Γ ⊢ φ : τ ′ τ ⊑ τ ′

Γ ⊢ φ : τ
cast

Γ ⊢ ⊤ : Cα
⊤C

Γ ⊢ ⊥ : Sα ⊥
S

e∈C ∨ lete∈domΓ Γ (e) = Cs ∀x∈
⋃k

i=1 fv(ti). ∃E ⊆ Γ−1(Cn). Γ (x) = PG+
E

⋃k
i=1 fn(ti) ⊆ Fs

Γ ⊢ e(t1, . . . , tk) : Cs
ECs

e ∈ C ∨ lete ∈ domΓ Γ (e) = Cn ∀x ∈
⋃k

i=1 fv(ti). ∃E ⊆ Γ−1(Cn). Γ (x) = PG+
E

Γ ⊢ e(t1, . . . , tk) : Cn
ECn

lete ∈ domΓ Γ (e) = Ss ∀x ∈
⋃k

i=1 fv(ti). ∃E ⊆ Γ−1(Cn). Γ (x) = PG+
E

⋃k
i=1 fn(ti) ⊆ Fs

Γ ⊢ e(t1, . . . , tk) : Ss
ESs

lete ∈ domΓ Γ (e) = Sn ∀x ∈
⋃k

i=1 fv(ti). ∃E ⊆ Γ−1(Cn). Γ (x) = PG+
E

Γ ⊢ e(t1, . . . , tk) : Sn
ESn

e ∈ S Γ (e) = S
Γ ⊢ e(t1, . . . , tk) : S0

ES0
Γ ⊢ φ : Sα
Γ ⊢ ¬φ : Cα

¬C
Γ ⊢ φ : Cα

Γ ⊢ ¬φ : Sα ¬
S

Γ, x : PG+
∅ ⊢ φ : Cα

Γ ⊢ ∃x. φ : Cα
∃C

Γ, x : PG+
E ⊢ φ : Sα Γ ⊢ φ : PG+

E(x)

Γ ⊢ ∃x. φ : Sα ∃S

Γ ⊢ φ : Cα Γ ⊢ ψ : Cα

Γ ⊢ φ ∧ ψ : Cα
∧C

Γ ⊢ φ : Sα
Γ ⊢ φ ∧ ψ : Sα ∧

SL
Γ ⊢ ψ : Sα

Γ ⊢ φ ∧ ψ : Sα ∧
SR

0 ∈ I Γ ⊢ ψ : Cα

Γ ⊢ φ SI ψ : Cα
SC

0 /∈ I Γ ⊢ φ : Sα
Γ ⊢ φ SI ψ : Sα SSL

0 ∈ I Γ ⊢ φ : Sα Γ ⊢ ψ : Sα
Γ ⊢ φ SI ψ : Sα SSLR

Γ ⊢ ψ : Sα
Γ ⊢ φ UI ψ : Sα US

b ̸=∞ Γ ⊢ ψ : Cα

Γ ⊢ φ U[0,b] ψ : Cα
UCR

b ̸=∞ Γ ⊢ φ : Cα Γ ⊢ ψ : Cα

Γ ⊢ φ U[a,b] ψ : Cα
UCLR

Γ ⊢ φ : Cα b > 0

Γ ⊢ #[0,b) φ : Cα
#C

Γ ⊢ φ : Sα
Γ ⊢ #I φ : Sα

#S

Γ ∪ {lete,i,p : E | Γ ⊢ φ1 : PGp
E(xi)}, lete : ⊥ ⊢ φ2 : τ2

Γ ⊢ let e(x1, . . . , xk) = φ1 in φ2 : τ2
letO

Γ ⊢ φ1 : τ1 Γ ∪ {lete,i,p : E | Γ ⊢ φ1 : PGp
E(xi)}, lete : ⊥, e : τ1 ⊢ φ2 : τ2

Γ ⊢ let e(x1, . . . , xk) = φ1 in φ2 : τ2
let

Typing of formulae as
causable/suppressable

∀z ∈ fv(φ) \ y. Γ ⊢ φ : PG(z)+Ez
Γ, ∀z. z : PGEz ⊢ φ : Sα |y| > 0

Γ ⊢ x← ω(t; y) φ : Sα
aggS

Fig. 16: Extended typing rules for EMFOTL

26 F. Hublet et al.

Figure 16 (top) shows the full, extended EMFOTL past-guardedness rules. If
φ has no let bindings, then none of the past-guardedness rules uses the context
Γ . In this case, we write ⊢ φ : PGp

E(x) instead of Γ ⊢ φ : PGp
E(x).

We prove:

Lemma 4. Let φ be an EMFOTL formula without let bindings. For p ∈ {+,−},
if ⊢ φ : PGp

E(x), then x is past-guarded in pφ, i.e., for any v, i such that if
v, i ⊨ pφ and x ∈ dom v, we have v(x) ∈ AD∗σ..i,E(φ).

Proof. Similar to the proof of Lemma 1 in [25].

A.2 Monitoring MFOTL with function applications and aggregations

In the following, we assume that α-conversion has been applied to ensure that
all bound variables are distinct from free variables and that each bound variable
is bound by a single quantifier.

Each internal node of a PDT has k ≥ 1 subtrees, each of which is labeled
by a finite or cofinite set Dk ⊆ D such that the {Di}1≤i≤k are a partition of D.
As a result, exactly one of the Di must be infinite. In the following, we call the
corresponding ith subtree of a PDT its infinite subtree and the other subtrees
of this PDT its finite subtrees.

We first show that well-formed PDTs map every valuation to a Boolean value.

Definition 7. A PDT pdt is well-formed with respect to a set of variables V
iff for any node n labeled by LClos f t it contains, for any 1 ≤ i ≤ |t| and z ∈
fv(ti)∩V , there exists a node n′ in pdt such that n′ is labeled by ℓ ∈ {LEx z, LAll z}
and n is contained in a finite subtree of n′.

Lemma 5. Let pdt be a PDT and V be the set of all variables occurring in at
least one label of pdt . If pdt is well-formed with respect to V , then specialize pdt v
terminates and returns a Boolean.

Proof. The only potential source of non-termination in the definition of specialize
is the evaluation of [[f(t)]]v when specialize reaches a LClos f t node. Evaluating
[[f(t)]]v succeeds iff for all 1 ≤ i ≤ |t|, fv(ti) ⊆ dom v. Visiting LEx z or LVar z
adds z to dom v, and hence the definition of well-formedness ensures that all
fv(ti) are in dom v. As a consequence, all evaluations of [[f(t)]]v succeed.

Recall the definition of monitorability:

Definition 4. An MFOTL formula φ without let bindings is monitorable iff both
of the following conditions hold:

1. For any quantified subformula Qx. ψ of φ, Q ∈ {∀,∃}, either ⊢ ψ : PG+
E(x)

for some E, or ⊢ ψ : PG−E(x) for some E, or x does not appear inside any
function argument in ψ.

2. For any subformula x ← ω(t; y) ψ of φ and any z ∈ fv(ψ) \ y, we have
⊢ ψ : PG+

E(z) for some E.

Scaling Up Proactive Enforcement: Technical Report 27

Next, we present an extension of the monitoring algorithm in [32,33] that
can monitor all MFOTL formulae that are monitorable as per Definition 4. Our
extended algorithm is applied after unrolling let bindings. For space reasons, we
describe a slightly simplified algorithm with the following restrictions:

– We cover only the ∧, ∃, ¬, S, and U operators as well as aggregations.
– We do not cover the PG rules for S and U. As in Hublet et al. [25], cover-

ing these rules requires an extension of the present algorithm that can re-
turn approximate verdicts (i.e., conservative verdicts for formulae containing
future operators based only on the knowledge of past and present events).
This extension is implemented in both WhyEnf and EnfGuard.

Algorithm 1 contains helper functions on PDTs that were introduced in the
PDT-based monitor WhyMon [33]. To be able to efficiently apply functions on
pairs of PDTs (pdt1, pdt2)—typically, using the apply2 function in Algorithm 1—
it is convenient to assume that the sequences of labels in the nodes of the two
PDTs are consistent, i.e., that if a node labeled by ℓ occurs above a node labeled
by ℓ′ in pdt1, then no node labeled by ℓ′ occurs above a node labeled by ℓ in
pdt2, and vice versa exchanging pdt1 and pdt2. This is ensured by computing a
fixed order of labels ℓ that has to be respected in all PDTs that may be combined
using apply2 and similar functions. We will use the following definitions:

Definition 8. A label sequence ℓ is well-formed iff

1. All LVar nodes in ℓ appear before all LEx and LAll nodes;
2. All LEx and LAll nodes in ℓ appear before all LCons nodes;
3. ℓ contains no duplicates; and
4. ℓ never contains two of LVar z, LEx z, and LAll z for the same variable z.

Definition 9. A PDT pdt is adapted to a (well-formed) label sequence ℓ iff ℓ
contains all labels of nodes in pdt and, whenever a node labeled by ℓ1 occurs
above a node labeled by ℓ2 in pdt , then ℓ1 appears before ℓ2 in ℓ.

The function apply2 (resp. apply3) in Algorithm 1 takes a sequence ℓ of variables
and two (resp. three) PDT arguments adapted to ℓ. Being adapted to the same
sequence of labels, such PDTs are pairwise consistent. The return value of apply2
(resp. apply3) is another PDT adapted to ℓ.

Our monitoring algorithm uses the following datatypes.

Definition 10. Let I be the set (and type) of non-empty intervals of N and Lbl
the type of labels. Define the following algebraic datatypes:

Buf := [(N,N,PdtBool)]
MFormula := MPredE [Term] [Lbl] | MEqTermD [Lbl]

| MAndMFormulaMFormula (Buf,Buf) [Lbl]

| MExistsVMFormula | MNegMFormula [Lbl]

| MSinceMFormula IMFormula (Buf,Buf) (Pdt SInfo) [Lbl]

| MUntilMFormula IMFormula (Buf,Buf) [(N,N)] (PdtUInfo) [Lbl]
| MAggΩ [V] [V] [V]FormulaMFormula [Lbl]

28 F. Hublet et al.

1 let all_leaves pdt =
2 case pdt of
3 Leaf a ⇒ {a}
4 | Node_ parts ⇒ fold (λs (_, pdt). s ∪ all_leaves pdt) ∅ parts
5 let simplify′ pdt =
6 case pdt, all_leaves pdt of
7 Leaf a,_ | _, {a} ⇒ Leaf a, {a}
8 | Node t parts ⇒
9 let l = map (λ(D, pdt). (D, simplify′ pdt)) parts in

10 map (λ(D, (pdt,_)). (D, pdt)) l, fold (λ s (_, (_, s′)). s ∪ s′) ∅ l
11 let simplify pdt = fst (simplify′ pdt) // Ensures ∀v. specialize (simplify pdt) v = specialize pdt v

12 let merge2 f parts1 parts2 = // Helper function for apply2
13 case parts1 of
14 [] ⇒ parts2
15 | (D1, pdt1) : parts1 ⇒
16 [(D1 ∩D2, f pdt1 pdt2) | (D2, pdt2) ∈ parts2 ∧D1 ∩D2 ̸= ∅]
17 · merge2 f parts1 [(D2 \D1, f pdt1 pdt2) | (D2, pdt2) ∈ parts2 ∧D2 \D1 ̸= ∅]
18 let apply1 f pdt = // Ensures ∀v. specialize (apply1 f pdt) v = f (specialize pdt v)
19 case pdt of
20 Leaf a ⇒ Leaf (f a)

21 | Node t parts ⇒ Node t (map (λ(D, pdt). (D, apply1 f pdt)) parts)

22 let apply2 ℓ f pdt1 pdt2 = // Ensures ∀v. specialize (apply2 ℓ f pdt1 pdt2) v

23 case pdt1, pdt2, ℓ of // = f (specialize pdt1 v) (specialize pdt2 v)
24 Leaf a1, Leaf a2,_ ⇒ Leaf (f a1 a2)

25 | Leaf a1,Node ℓ2 parts2, ℓ : ℓ if ℓ = ℓ2 ⇒
26 Node ℓ2 (map (λ(D, pdt). (D, apply1 (f a1) pdt)) parts2)

27 | Node ℓ1 parts1, Leaf a2, ℓ : ℓ if ℓ = ℓ1 ⇒
28 Node ℓ1 (map (λ(D, pdt). (D, apply1 (λa1. f a1 a2) pdt)) parts1)

29 | Node ℓ1 parts1,Node ℓ2 parts2, ℓ : ℓ if ℓ = ℓ1 = ℓ2 ⇒
30 Node ℓ1 (merge2 (apply2 ℓ f) parts1 parts2)

31 | Node ℓ1 parts1,Node ℓ2 parts2, ℓ : ℓ if ℓ = ℓ1 ̸= ℓ2 ⇒
32 Node ℓ1 (map (λ(D, pdt). (D, apply2 ℓ f pdt pdt2)) parts1)

33 | Node ℓ1 parts1,Node ℓ2 parts2, ℓ : ℓ if ℓ = ℓ2 ̸= ℓ1 ⇒
34 Node ℓ2 (map (λ(D, pdt). (D, apply2 ℓ f pdt1 pdt)) parts2)

35 | Node ℓ1 parts1,Node ℓ2 parts2, ℓ : ℓ if ℓ ̸= ℓ2 ∧ ℓ ̸= ℓ1 ⇒
36 apply ℓ f pdt1 pdt2
37 | _,_, [] ⇒ fail

38 let applyn ℓ f pdts = // Similar for nary f
39 apply1 f (fold_right (λpdt pdt′. apply2 ℓ (:) pdt pdt′) pdts (Leaf []))

40 let apply3 ℓ f pdt1 pdt2 pdt3 = // Similar for trinary f
41 applyn ℓ (λ[a1, a2, a3]. f a1 a2 a3) [pdt1, pdt2, pdt3]

42 let split_prod ℓ pdt = apply1 ℓ (λ(a1,_). a1) pdt, apply1 ℓ (λ(_, a2). a2) pdt // Split pairs

Algorithm 1: Functions on PDTs

Scaling Up Proactive Enforcement: Technical Report 29

The following overloaded function pdts can be used to extract all PDTs of a Buf
or MFormula object as follows:

pdts (buf) := {pdt | (_,_, pdt) ∈ buf }

pdts (φ) :=



pdts(buf 1) ∪ pdts(buf 2)

if φ = MAndφ1 φ2 (buf 1, buf 2) ℓ

pdts(buf 1) ∪ pdts(buf 2) ∪ {aux}
if φ = MSinceφ1 I φ2 (buf 1, buf 2) aux ℓ

pdts(buf 1) ∪ pdts(buf 2) ∪ {aux}
if φ = MUntilφ1 I φ2 (buf 1, buf 2) tstps aux ℓ

∅ otherwise.

Furthermore, define as lb : MFormula → [Lbl] the function that returns the
sequence of labels stored in the last parameter of any MFormula. Finally, we
naturally relate MFormula objects to MFOTL formulae using an ◁ relation in
P(MFormula×MFOTL) defined inductively as follows:

reorder ℓ (filter (λx. ∄z. x = LCons z) (map lbl_of_term t)) ⩽ ℓ

MPred e t ℓ ◁ e(t)

[lbl_of_term] ⩽ ℓ

MEq t c ℓ ◁ t ≈ c

φ1 ◁ Φ1 φ2 ◁ Φ2 lb(φ1) = lb(φ2) = ℓ

MAndφ1 φ2 (buf 1, buf2) ℓ ◁ Φ1 ∧ Φ2

φ1 ◁ Φ1 lb(φ1) = ex_labelx ℓ LExx is the first LEx z or LAll z label in ℓ

MExistsxφ1 ℓ ◁ ∃x. Φ1

φ1 ◁ Φ1 lb(φ1) = map neg_label ℓ

MNegφ1 ℓ ◁ ¬Φ1

φ1 ◁ Φ1 φ2 ◁ Φ2 lb(φ1) = lb(φ2) = ℓ

MSinceφ1 I φ2 (buf 1, buf 2) aux ℓ ◁ Φ1 SI Φ2

φ1 ◁ Φ1 φ2 ◁ Φ2 lb(φ1) = lb(φ2) = ℓ

MUntilφ1 I φ2 (buf 1, buf 2) tstps aux ℓ ◁ Φ1 UI Φ2

φ1 ◁ Φ1 lb(φ1) = agg_labels ℓ y (lblΦ1)

MAggω x t y Φ1 φ1 ℓ ◁ x← ω(t; y) Φ1.

Algorithms 2 and 3 show our variant of a (standard) monitoring algorithm
for φ SI ψ and φ UI ψ operators [9,33] using Boolean PDTs. For each S or U
subformula, the monitor maintains an auxiliary state (aux for S, (tstps, aux)
for U). The update functions take as input a sequence of labels ℓ, the interval
I, the auxiliary state, and a buffer buf that stores evaluations of φ and ψ at
past timepoints. Each such evaluation is reported as a triple (ts, tp, pdt) where
ts is timestamp, tp a timepoint, and pdt a PDT adapted to ℓ representing the
truth value of the respective formula at timepoint tp with timestamp ts. The
update functions return a pair of an updated auxiliary state and a sequence
of evaluations (ts, tp, pdt) of the overall formula at all timepoints for which an
evaluation could be computed using the provided input.

30 F. Hublet et al.

1 let since_init =
2 Leaf {beta_alphas_in = []; beta_alphas_out = []}
3 let since_update1 I ts tp bα bβ aux =
4 let out, in = if bα then aux.beta_alphas_out, aux.beta_alphas_in else [], [] in
5 let out = if bβ then out · [ts] else out in
6 let out′ = filter (λts′. ∀i ∈ I. ts− ts′ < i) out in
7 let in′ = filter (λts′. ts− ts′ ∈ I) in · filter (λts′. ts− ts′ ∈ I) out in
8 {beta_alphas_in = in′; beta_alphas_out = out′},¬(in′ = [])

9 let since_update ℓ I buf aux =
10 case buf of
11 (tsα, tpα, eα) : esα, (tsβ , tpβ , eβ) : esβ if (tsα, tpα) = (tsβ , tpβ) ⇒
12 let aux , b = split_prod ℓ ((simplify ◦ apply3) ℓ (since_update1 I tsα tpα) eα eβ aux) in
13 let aux , bs = since_update ℓ I (esα, esβ) aux in
14 aux , (tpα, tsα, b) : bs

15 | _,_ ⇒ aux , []

Algorithm 2: Monitoring SI

1 let until_init =
2 Leaf {n_alpha_in = []; n_alpha_out = []; beta_in = []; beta_out = []}
3 let until_update1 I ts tp aux =
4 let out¬α = filter (λ(ts′, tp′). ∀i ∈ I. ts′ − ts > i) aux .n_alpha_out in
5 let in¬α = filter (λ(ts′, tp′). tp′ ≥ tp) (aux .n_alpha_out · aux .n_alpha_in) in
6 let outβ = filter (λ(ts′, tp′). ∀i ∈ I. ts′ − ts > i) aux .beta_out in
7 let inβ = filter (λ(ts′, tp′). ts′ − ts ∈ I) (aux .beta_out · aux .beta_in) in
8 let b = ∃(ts′, tp′) ∈ inβ . ∄(ts′′, tp′′) ∈ in¬α. tp

′′ ∈ [tp, tp′] in
9 {n_alpha_in = inα; n_alpha_out = outα; beta_in = inβ ; beta_out = outβ}, b

10 let load1 I ts tp bα bβ aux =
11 let out¬α = if ¬bα then aux .n_alpha_out · [(ts, tp)] else aux .n_alpha_out in
12 let outβ = if bβ then aux .beta_out · [(ts, tp)] else aux .beta_out in
13 (outα, outβ)

14 let load ts buf aux =
15 case buf of
16 (tsα, tpα, eα) : esα, (tsβ , tpβ , eβ) : esβ if (tsα, tpα) = (tsβ , tpβ) ⇒
17 let aux = apply3 ℓ (load1 I tsα tpα) eα eβ aux in
18 load tsα (esα, esβ) aux

19 | _,_ ⇒ ts, buf , aux

20 let until_update ℓ I buf tstps aux =
21 let ts′, buf , aux = load⊥ buf aux in
22 let until_loop_update tstps aux =
23 case tstps of
24 (ts, tp) : tstps if ts′ ̸= ⊥ ∧ ∀i ∈ I. ts′ − ts > i ⇒
25 let aux , b = split_prod ℓ (apply1 ℓ ((simplify ◦ until_update1) I ts tp) aux) in
26 let aux , bs = until_loop_update tstps aux in
27 aux , (tpα, tsα, b) : bs

28 | _,_ ⇒ aux , []

29 in until_loop_update tstps aux

Algorithm 3: Monitoring UI

Scaling Up Proactive Enforcement: Technical Report 31

1 let buf2_take f buf =
2 case buf of
3 (ts1, tp1, es1) : buf 1, (ts2, tp2, es2) : buf 2 if (ts1, tp1) = (ts2, tp2) ⇒
4 let es, buf = buf2_take f (buf 1, buf 2) in (ts1, tp1, f es1 es2) : es, buf

5 | _ ⇒ [], buf

6 let tstps2_add tstps es1 es2 =
7 case es1, es2 of
8 (ts1, tp1,_) : es1, (ts2, tp2,_) : es2 if (ts1, tp1) = (ts2, tp2) ⇒
9 tstps2_add (tstps [(ts, tp)]) es1 es2

10 | (ts1, tp1,_) : es1, (ts2, tp2,_) : _ if tp1 < tp2 | (ts1, tp1,_) : es1, [] ⇒
11 let tstps = tstps · (if ∀(ts′, tp′) ∈ tstps. tp′ < tp1 then [(ts1, tp1)] else []) in
12 tstps2_add tstps es1 es2

13 | (ts1, tp1,_) : _, (ts2, tp2,_) : es2 | [], (ts2, tp2,_) : es2 ⇒
14 let tstps = tstps · (if ∀(ts′, tp′) ∈ tstps. tp′ < tp2 then [(ts2, tp2)] else []) in
15 tstps2_add tstps es1 es2

16 | [], [] ⇒ tstps

17 let apply1_label f g pdt =
18 case pdt of
19 Leaf a ⇒ Leaf (f a)

20 | Node t parts ⇒ Node (g t) (map (λ(D, pdt). (D, apply1_label f g pdt)) parts)

21 let neg_label ℓ =
22 case t of
23 LAll z ⇒ LEx z

24 | LEx z ⇒ LAll z

25 | _ ⇒ ℓ

26 let ex_label x ℓ = map (λℓ. if ℓ = LEx x then LVar x else ℓ) ℓ
27 let neg_apply1 f pdt = apply1_label f neg_label pdt

28 let quant_exists x pdt = apply1_label (λx. x) (λz. if z = LVar x then LEx x else z) pdt
29 let reorder x y =
30 case x of
31 x : x if x ∈ y ⇒ x : reorder x (y \ x)
32 | x : x ⇒ reorder x y

33 | [] ⇒ y

34 let agg_labels ℓ y ℓ
′ = reorder (filter (λℓ. ∃y ∈ y. ℓ = LVar y) ℓ) ℓ

′

Algorithm 4: Auxiliary functions

32 F. Hublet et al.

1 let fv φ =
2 case φ of
3 e(t1, . . . , tk) ⇒

⋃k
i=1(fv ti)

4 | t ≈ c ⇒ fv t

5 | φ1 ∧ φ2 ⇒ fvφ1 ∪ fvφ2

6 | ∃x. φ1 ⇒ fvφ1 \ x
7 | ¬φ1 ⇒ fvφ1

8 | φ1 SI φ2 ⇒ fvφ1 ∪ fvφ2

9 | φ1 UI φ2 ⇒ fvφ1 ∪ fvφ2

10 | x← ω(t; y) φ ⇒ x ∪ y
11 let lbl_of_term t =
12 case t of
13 x if x ∈ V ⇒ LVar x

14 | c if c ∈ D ⇒ LCons c

15 | e(u) ⇒ LClos e u

16 let lbl′ φ =
17 case φ of
18 e(t1, . . . , tk) ⇒ [], {LClos e u | 1 ≤ i ≤ k, ti = e(u)}
19 | t ≈ c ⇒ [], {LClos e u | t = e(u)}
20 | ∃x. φ1 ⇒ let x1, t1 = lbl′ φ1 in [LEx x] · x1, t1

21 | ¬φ1 ⇒ let x1, t1 = lbl′ φ1 in (map neg_label x1), t1

22 | φ1 ∧ φ2 | φ1 SI φ2 | φ1 UI φ2 ⇒
23 let x1, t1 = lbl′ φ1 and x2, t2 = lbl′ φ2 in x1 · x2, t1 ∪ t2
24 | x← ω(t; y) φ1 ⇒ [], ∅
25 let lbl φ = let x, t = lbl′ φ in sorted_list {LVar z | z ∈ fvφ} · x · sorted_list t

// lbl assumes the existence of a total order on labels and a function sorted_list : {a} → [a]

Algorithm 5: Free variables, terms, and labels

Let fv(φ) and bv(φ) denote the bound variables of a formula φ, defined as
follows:

fv(φ) =



fv(φ1) ∪ fv(φ2) if φ = φ1 ∧ φ2 or φ1 SI φ2 or φ1 UI φ2

fv(φ1) \ {x} if φ = ∃x. φ1

fv(φ1) if φ = ¬φ1

x ∪ y if φ = x← ω(t; y) φ1

fv(φ1) \ x ∪ fv(φ2) if φ = let e(x) = φ1 in φ2

∅ if φ = e(t) or t ≈ c

bv(φ) =



bv(φ1) ∪ bv(φ2) if φ = φ1 ∧ φ2 or φ1 SI φ2 or φ1 UI φ2

bv(φ1) ∪ {x} if φ = ∃x. φ1

bv(φ1) if φ = ¬φ1

fv(φ1) \ y ∪ bv(φ1) if φ = x← ω(t; y) φ1

bv(φ1) ∪ bv(φ2) if φ = let e(x) = φ1 in φ2

∅ if φ = e(t) or t ≈ c

Definition 11. Given a well-formed label sequence ℓ
′
, we write ℓ ⩽ ℓ

′
iff ℓ is a

(well-formed) subsequence of ℓ
′
.

Our monitoring algorithm is shown in Algorithm 6. We prove:

Scaling Up Proactive Enforcement: Technical Report 33

1 let init ℓ φ =
2 case φ of
3 e(t1, . . . , tk) ⇒ MPred e (t1, . . . , tk) ℓ

4 | t ≈ c ⇒ MEq t c ℓ

5 | φ1 ∧ φ2 ⇒ MAnd (init ℓ φ1) (init ℓ φ2) ([], []) ℓ

6 | ∃x. φ1 ⇒ MExists x (init (ex_label x ℓ)φ1) ℓ

7 | ¬φ1 ⇒ MNeg (init (map neg_label ℓ)φ1) ℓ

8 | φ1 SI φ2 ⇒ MSince (init ℓ φ1) I (init ℓ φ2) ([], [], []) since_init

9 | φ1 UI φ2 ⇒ MUntil (init ℓ φ1) I (init ℓ φ2) ([], [], []) [] until_init ℓ

10 | x← ω(t; y) φ1 ⇒ MAggω x t y φ1 (init (agg_label ℓ y (lblΦ1))φ1) ℓ

11 let pdt_of ℓ uM =
12 case ℓ of
13 [] ⇒ Leaf (M ̸= ∅)
14 | LCons c : ℓ ⇒
15 pdt_of ℓ u {(d1, . . . , dk) ∈M | ∀1 ≤ i ≤ k. ui = LCons c⇒ di = c}
16 | (t = LVar_) : ℓ | (t = LClos_ _) : ℓ ⇒
17 letM = {d | (d1, . . . , dk) ∈M, ∀1 ≤ i ≤ k. ui = t⇒ di = d} in
18 let g = λd. {(d1, . . . , dk) ∈M | ∀1 ≤ i ≤ k. ui = t⇒ di = d} in
19 Node t (map (λ d. ({d}, pdt_of ℓ u (g d)))M · [(D \M, Leaf ⊥)])
20 let eval φ (σ = ⟨τ,D⟩1≤i≤|σ|) i =
21 case φ of
22 MPred e (t1, . . . , tk) ℓ ⇒
23 letM = {(d1, . . . , dk) | e(d1, . . . , dk) ∈ Di} in
24 let ℓ′ = [lbl_of_term ti | 1 ≤ i ≤ k] in
25 [(τi, i, pdt_of (reorder ℓ ℓ

′
) ℓ

′
M)], φ

26 | MEq t c ℓ ⇒
27 [(τi, i,Node t [({c},⊤), (D \ {c},⊥)])], φ
28 | MAndφ1 φ2 (buf1, buf2) ℓ ⇒
29 let es1, φ1 = evalφ1 σ i in
30 let es2, φ2 = evalφ2 σ i in
31 let es, buf′ = buf2_take ((simplify ◦ apply2) ℓ (λb1 b2. b1 ∧ b2)) (buf1 · es1, buf2 · es2) in
32 es,MAndφ1 φ2 buf′

33 | MExists xφ1 ℓ ⇒
34 let es1, φ1 = evalφ1 σ i in
35 map (λ(ts, tp, pdt). (ts, tp, quant_exists x pdt)) es1,MExists xφ1

36 | MNegφ1 ⇒
37 let es1, φ1 = evalφ1 σ i in
38 map (λ(ts, tp, pdt). (ts, tp, neg_apply1 (λb.¬b))) es1,MNegφ1

39 | MSinceφ1 I φ2 (buf1, buf2) aux ℓ ⇒
40 let es1, φ1 = evalφ1 σ i in
41 let es2, φ2 = evalφ2 σ i in
42 let buf′ = (buf1 · es1, buf2 · es2) in
43 let es, aux′ = since_update ℓ I buf′ aux in
44 es,MSinceφ1 φ2 buf′ aux′

45 | MUntilφ1 I φ2 buf tstps aux ℓ ⇒
46 let es1, φ1 = evalφ1 σ i in
47 let es2, φ2 = evalφ2 σ i in
48 let buf′ = (buf1 · es1, buf2 · es2) in
49 let tstps′ = tstps2_add tstps es1 es2 in
50 let es, aux′ = until_update ℓ I buf′ aux in
51 es,MUntilφ1 φ2 buf′ tstps′ aux′

52 | MAggω v w y Φ1 φ1 ℓ ⇒
53 let es1, φ1 = evalφ1 σ i in
54 let es = map (aggregateω v w y (reorder [x | LVar x ∈ ℓ] (v · y))) es in
55 es,MAggω v w y Φ1 φ1

Algorithm 6: Monitoring algorithm for monitorable MFOTL formulae

34 F. Hublet et al.

Lemma 6. Let Φ be an MFOTL formula without let bindings that is monitorable
as per Definition 4. Let φ◁Φ such that ℓ := lb(φ) is well-formed. Let p ∈ {+,−}
and assume that ⊢ Φ : PGp

E(x). Define +φ := φ, −φ := MNegφ (lbφ). Let
(es, φ′) = eval ℓ (pφ)σ i and (ts, tp, pdt) in es. Then:

(i) Let n be a Leaf node of pdt with Boolean value b = ⊤ if p = + and b = ⊥
if p = −. There exists a node n′ in pdt labeled by LVar x such that n is in a
finite subtree of n′.

(ii) Let n be a node labeled by LVar x in pdt . The infinite subtree of n is reduced
to Leaf (¬b).

Proof. By induction on the derivation of ⊢ Φ : PGp
E(x).

– Rule E+
PG: In this case, Φ = e(t1, . . . , ti = x, . . . , tk), p = +, E = {e},

φ = MPred e (t1, . . . , tk). The function eval returns a single triple (τi, i, pdt =

pdt_of (reorder ℓ ℓ
′
) ℓ
′
M) where ℓ

′
is [lbl_of_term ti | 1 ≤ i ≤ k] and M

is a set of k-tuples in D. Let ℓ2 = filter (λx. ∄z. x = LCons z) ℓ
′

and ℓ3 =

filter (λx. ∄z. x = LCons z) (reorder ℓ ℓ
′
). First, observe that all labels in ℓ2 are

in lblΦ as well (see Algorithm 5). Since reorder ℓ2 ℓ′ ⩽ ℓ by φ◁Φ, it follows that
all labels in ℓ2 are in ℓ. Now, under this assumption, remark that reorder ℓ ℓ

′

(defined in Algorithm 4) returns an interleaving of a subsequence of ℓ with
the LCons labels in ℓ

′
, and hence ℓ3 ⩽ ℓ. The function pdt_of (reorder ℓ ℓ

′
)

returns a PDT composed of a single chain of nodes whose labels are exactly
those in ℓ3, with all infinite subtrees reduced to Leaf ⊥. The label LVar x is
in ℓ2 (by definition of ℓ

′
, lbl_of_term, and ℓ2), hence also in ℓ and finally

in ℓ3. Now, there is a single Leaf ⊤ node located at the bottom of the tree
within the finite subtree of all LVar nodes, which proves (i). Property (ii) is
straightforward by definition of pdt_of.

– Rule =+
PG: In this case, Φ = x = c, p = +, E = {e}, φ = MEqx c. The

function eval returns a single triple (τi, i, pdt = Node (LVar x) [({c},⊤), (D \
{c},⊥)]). The only Leaf ⊤ node is located in the finite subtree of an LVar x
node, proving (i). The only LVar x node has its only infinite subtree reduced
to ⊥, proving (ii).

– Rule ¬PG: In this case, Φ = ¬Φ1, ⊢ Φ1 : PG¬pE (x), φ1 ◁ Φ1, φ = MNegφ1 ℓ,
ℓ = lb(φ1). The algorithm first calls eval on φ1 (l. 37). Our induction hypothe-
sis applied on Φ1 and ℓ

′
shows that any Leaf (¬b) node in any PDT in es1 is lo-

cated in the finite subtree of an LVar x node. Now, every pdt in es is obtained
from such a PDT by applying the neg_apply1 function (l. 38) defined in Algo-
rithm 1. This function exchanges LEx and LAll labels in the PDT and ⊤ and
⊥ leaves. Hence, to the Leaf b node n in pdt corresponds a Leaf (¬b) node n1
in a PDT pdt1 from es1. We obtain a node n′1 labeled by LVar x in pdt1 such
that n1 is in a finite subtree of n′1. This node n′1 is mapped by neg_apply1 to a
node n′ with the same label in pdt such that n is in a finite subtree of n′, yield-
ing (i). Similarly, to every node labeled by LVar x in pdt corresponds a node
labeled by LVar x in pdt1 with an infinite subtree reduced to Leaf b, which
becomes an infinite subtree reduced to Leaf (¬b) in pdt . This proves (ii).

Scaling Up Proactive Enforcement: Technical Report 35

– Rule ∃PG: In this case, Φ = ∃z. Φ1, ⊢ Φ1 : PGp
E(x), x ̸= z, φ1 ◁ Φ1, φ =

MExists z φ1, lb(φ1) = ex_labelx ℓ, and LExx is the first LEx z or LAll z label
in ℓ. The algorithm first calls eval on φ1 (l. 34) to obtain a pair (es1, φ′1). The
definition of ex_label (see Algorithm 4) guarantees that lb(φ1) is well-formed
since LExx is the first quantified label in ℓ. Hence, our induction hypothesis
applied on Φ1 ensures that any Leaf b node in any PDT in es1 is located in a
finite subtree of an LVar x node. Now, every pdt in es is obtained from such a
PDT by applying the quant_exists z function (l. 35) defined in Algorithm 1.
This function replaces LVar z nodes by LEx z nodes and has no effect on other
nodes. Hence, to the Leaf b node n in pdt corresponds a Leaf b node n1 in
a PDT pdt1 from es1. We obtain a node n′1 labeled by LVar x ̸= LVar z in
pdt1 such that n1 is in a finite subtree of n′1. This node n′1 is mapped by
quant_exists z to a node n′ with the same label in pdt such that n is in a
finite subtree of n′, yielding (i). Similarly, to every node labeled by LVar x
in pdt corresponds a node labeled by LVar x in pdt1 with an infinite subtree
reduced to Leaf (¬b), which is preserved in pdt . This proves (ii).

– Rule ∧L+PG: In this case, Φ = Φ1 ∧ Φ2, ⊢ Φ1 : PG+
E(x), φ1 ◁ Φ1, φ =

MAndφ1 φ2, (buf 1, buf 2) ℓ, lb(φ1) = lb(φ2) = ℓ. The algorithm for MAll
first calls eval on φ1 and φ2 with label sequence ℓ (l. 29–30) to obtain
two pairs (es1, φ

′
1) and (es2, φ

′
2). It then adds the elements of es1 and es2

to buf 1 and buf 2 respectively. Hence, we can use our induction hypothe-
sis to show that at any time, each of the triples (ts1, tp1, pdt1) in buf 1 is
such that any Leaf ⊤ node n1 in pdt1 is in a finite subtree of a node n′1 la-
beled with LVar x. Every triple (ts, tp, pdt) is obtained by applying (simplify◦
apply2) ℓ (λb1 b2. b1∧b2) on a pair of PDTs from buf 1 and buf 2. Consider first
pdt ′ = apply2 ℓ (λb1 b2. b1 ∧ b2) pdt1 pdt2 where pdt1 stems from buf 1, noting
that pdt = simplify pdt ′. By the definition of apply2 (see Algorithm 1), the ∧
function is only applied after having processed all nodes from both pdt1 and
pdt2. Given the existence of our Leaf ⊤ node n in pdt , we can find, by def-
inition of simplify, another Leaf ⊤ node n′ in pdt ′ such that the whole path
from the root to n′ is preserved in pdt by simplify. From this n′, we can find
another Leaf ⊤ node n1 in pdt1 that is used by apply2 to produce the Leaf
node n′ in l. 20 or 22 of Algorithm 1. This leaf must be ⊤, since otherwise
the result of applying ∧ could not be ⊤. By the above, there exists a node
n′1 in pdt1 labeled by LVar x such that n1 is in a subtree of n′1. This node
must be in ℓ and have been entered by apply2 on its path to the leaf (l. 25
or 27), and hence there exists a node n′′ labeled by LVar x above n′ in pdt ′.
The node n can only be in a finite subtree of n′. This is clear if the node n′′
is introduced on l. 24 or 28 in Algorithm 1, since by our induction hypoth-
esis the infinite subtree of n′1 is reduced to Leaf ⊥. If the node n′′ is intro-
duced on l. 26 in Algorithm 1, then observe that the partitions are of the
form ∆i1i2 = D1i1 ∩ (D2i2 \∪

i1−1
i=1 D1i), where D11, . . . , D1k1 are partitions of

n′1 and D21, . . . , D2k2 are partitions of a node in pdt2. Assuming that only
D1k1 and D2k2 are infinite, only the partition ∆i1i2 is infinite. This partition
is associated with the PDT pdt ′′ = apply2 ℓ (λb1 b2. b1 ∧ b2) pdt1k1 pdt2k2 but
by our induction hypothesis, pdt1k1 is reduced to ⊥, hence pdt ′′ is reduced

36 F. Hublet et al.

to Leaf ⊥ by simplify. As a consequence n can only be in a finite subtree of
n′. Now, observe that the definition of simplify (see Algorithm 1) preserves
node n′′, as it contains both ⊤ leaves (in n) and ⊥ leaves (in its infinite sub-
tree). Hence, there exists a node n′′′ in pdt labeled with LVar x such that n
is in a finite subtree of n′′′. This establishes (i). For (ii), it suffices to observe
that apply2 processes a LVar x node at most once on each path leading to at
least one non-⊥ leaf and that, when it does, the only infinite subtree it gen-
erates contains apply2 ℓ (λb1 b2. b1 ∧ b2) pdt ′1 pdt

′
2, where pdt ′1 is an infinite

subtree of an LVar x node in pdt ′1. By our induction hypothesis, this subtree
is reduced to Leaf ⊥, which yields (ii) by applying the definition of apply2.

– Rule ∧R+
PG : Similar to the previous case, inverting the roles of pdt1 and pdt2.

– Rule ∧−PG: In this case, Φ = Φ1∧Φ2, ⊢ Φ1 : PG−E(x), ⊢ Φ2 : PG−E(x), φ1 ◁Φ1,
φ2 ◁ Φ2, φ = MAndφ1 φ2 (buf 1, buf 2) ℓ, lb(φ1) = lb(φ2) = ℓ. As previously,
the algorithm for MAnd first calls eval on φ1 and φ2 with label sequence ℓ (l.
29–30) to obtain two pairs (es1, φ′1) and (es2, φ

′
2). It then adds the elements

of es1 and es2 to buf 1 and buf 2 respectively. Hence, we can use our induction
hypothesis to show that at any time, each of the triples (tsi, tpi, pdt i) in
buf i, i ∈ {1, 2} is such that any Leaf ⊤ node ni in pdt i is in a finite subtree
of a node n′i labeled with LVar x. Every triple (ts, tp, pdt) is obtained by
applying (simplify ◦ apply2) ℓ (λb1 b2. b1 ∧ b2) on a pair of PDTs from buf 1
and buf 2. Consider first pdt ′ = apply2 ℓ (λb1 b2. b1 ∧ b2) pdt1 pdt2 where pdt1
stems from buf 1, noting that pdt = simplify pdt ′. By the definition of apply2
(see Algorithm 1), the ∧ function is only applied after having processed all
nodes from both pdt1 and pdt2. As in the previous case, we can find another
Leaf ⊥ node n′ in pdt ′ such that the whole path from the root to n′ is
preserved in pdt by simplify. From this n′, we can find a Leaf ⊥ node n1 in
either pdt1 or pdt2 that is used by apply2 to produce the Leaf node n′ in l.
20, 22, or 24 of Algorithm 1. By the above, there exists a node n′1 in pdt i,
i ∈ {1, 2} labeled by LVar x such that n1 is in a subtree of n′1. The rest of
the proof of (i) is as in the previous case. For (ii), it suffices to observe that
apply2 processes a LVar x node at most once on each path leading to at least
one non-⊤ leaf and that, when it does, the only infinite subtree it generates
contains apply2 ℓ (λb1 b2. b1 ∧ b2) pdt ′1 pdt

′
2, where pdt ′1 is an infinite subtree

of an LVar x node in pdt ′1 and pdt ′2 is an infinite subtree of an LVar x node
in pdt ′2. By our induction hypothesis, these subtrees are reduced to Leaf ⊤,
which yields (ii) by applying the definition of apply2.

– Rule PG+
agg,x: In this case, Φ=v ← ω(w; y) Φ1, x ∈ v, φ=MAggω v w y z Φ1 φ1.

Now, observe that the aggregation algorithm (Algorithm 9) only introduces
⊤ leaves (l. 29) after recursing on one finite subtree of each LVar v node (l.
25). This immediately shows (i). Furthermore, all the infinite subtrees of
LVar v nodes, v ∈ v, are reduced to ⊥ (l. 26), showing (ii).

– Rule PG+
agg,y: In this case, Φ = v ← ω(w; y) Φ1, x ∈ y, ⊢ Φ1 : PGp

E(x), φ =

MAggω v w y z Φ1 φ1, φ1 ◁Φ1, lb(φ1) = agg_labels ℓ y (lblΦ1). The algorithm
first calls eval on φ1 (l. 53). The definition of reorder (see Algorithm 4) that
is used in agg_labels (see Algorithm 4), ensures that lb(φ1) is well-formed
since lblΦ1 is well-formed (by definition of lbl) and the first argument of

Scaling Up Proactive Enforcement: Technical Report 37

reorder only contains LVar labels. Hence, by induction hypothesis, for any
(ts, tp, pdt1) in the sequence es1 returned by eval, any Leaf b node n in pdt1
is located in a finite subtree of a node n′ labeled with LVar x. Any pdt in es is
obtained (l. 54) by applying aggregateω v w y (reorder [x | LVar x ∈ ℓ] (v · y))
to such a pdt1. The subfunction gather (l. 7–18 in Algorithm 9) preserves all
LVar y nodes, y ∈ y, gathering a non-empty list of tuples from ⊤ leaves only.
Function agg (l. 19 in Algorithm 9) maps empty lists to None and non-empty
lists to some value since |y| > 0. Finally, function insert inserts non-⊥ leaves
only in subtrees that do not contain only None leaves. Hence, any Leaf ⊤ node
n in pdt can be mapped to at least one Leaf ⊤ node n1 in pdt1 such that both
n and n1 are in the finite subtree of an LVar x node. This proves (i). Similarly,
the Leaf ⊥ infinite subtrees of pdt1 are unaffected by aggregate, yielding (ii).

Lemma 7. Let Φ be an MFOTL formula without let bindings that is monitorable
as per Definition 4. Let φ◁Φ such that lb(φ) is well-formed. Let p ∈ {+,−} and
assume that ⊢ Φ : PGp

E(x). Let (es, φ′) = eval ℓ (pφ)σ i and (ts, tp, pdt) in es.
Let n be a node in pdt labeled by ℓ = LClos e t, 1 ≤ i ≤ |t|. Finally, assume that
pdt is adapted to ℓ. Then there exists a node n′ in pdt labeled by LVar x such that
n is in a finite subtree of n′.

Proof. By systematic inspection of Algorithm 6, observe that any such pdt is
obtained by applying simplify to another PDT pdt ′. Hence, n has at least one
subtree containing a Leaf ⊤ node n′′ and one subtree containing a Leaf ⊥ node
(otherwise, simplify would have removed n, see Algorithm 1, l. 3). By Lemma 6,
there exists a node n′ labeled by LVar x such that n′′ is in a finite subtree of n′.
Since n′′ is a child of both n and n′, then either n is a child of n′ or vice versa.
But since ℓ is well-formed and pdt is adapted to ℓ, the label LVar z cannot come
after the label LClos e t, and hence that n must be a child of n′ through one of
its finite subtrees.

Theorem 2. Let Φ be an MFOTL formula without let bindings that is moni-
torable as per Definition 4. Let φ ◁ Φ such that ℓ := lb(φ) is well-formed, and
V be the set of bound variables of Φ. Assume that for any subformula ψ ◁ Ψ of
φ, for all pdt ∈ pdts(ψ), pdt is adapted to lb(ψ) and well-formed with respect to
bv(Ψ). Then the function evalφσ i returns a pair (es, φ′) such that for all pdt ∈
pdts(es) ∪ pdts(φ′), pdt is adapted to lb(φ) and well-formed with respect to V .

Proof. By structural induction on Φ. Denote ℓ := lb(φ).

– If Φ = e(t), then φ = MPred e t and V = ∅. The function eval returns a single
triple (τi, i, pdt = pdt_of (reorder ℓ ℓ

′
) ℓ
′
M) where ℓ

′
is [lbl_of_term ti | 1 ≤

i ≤ k] and M is a set of k-tuples in D. Let ℓ2 = filter (λx. ∄z. x = LCons z) ℓ
′

and ℓ3 = filter (λx. ∄z. x = LCons z) (reorder ℓ ℓ
′
). First, observe that all labels

in ℓ2 are in lblΦ as well (see Algorithm 5). Since φ ◁ Φ, it follows that all
labels in ℓ2 are in ℓ. Now, under this assumption, remark that reorder ℓ ℓ

′

(defined in Algorithm 4) returns an interleaving of a subsequence of ℓ with
the LCons labels in ℓ

′
, and hence ℓ3 ⩽ ℓ. The function pdt_of (reorder ℓ ℓ

′
)

38 F. Hublet et al.

clearly returns a PDT adapted to ℓ3. Since ℓ3 ⩽ ℓ, pdt is also adapted to ℓ.
Since V = ∅, it is also trivially well-formed with respect to V .

– If Φ = t ≈ c, then φ = MEq t c and V = ∅. The function eval returns a single
triple (τi, i, pdt = Node t [({c},⊤), (D \ {c},⊥)]). Remark that in this case,
lblΦ = [lbl_of_term t] (see Algorithm 5). Since φ ◁ Φ, then lbl_of_term t is
contained in ℓ and pdt is adapted to ℓ. Since V = ∅, it is also trivially well-
formed with respect to V .

– If Φ = Φ1 ∧ Φ2, then φ = MAndφ1 φ2, φ1 ◁ Φ1, φ2 ◁ Φ2, lb(φ1) = lb(φ2) = ℓ
By our induction hypothesis and assumption on pdts(φ), we obtain that the
triples in buf 1 ·es1 and buf 2 ·es2 l. 29–30 contain PDTs that are adapted to ℓ
and well-formed with respect to bv(Φ1) and bv(Φ2), respectively. Each PDT
returned by eval on l. 32 is of the form pdt = apply2 ℓ (λb1 b2. b1∧b2) pdt1 pdt2
where pdt1 stems from es1 and pdt2 from es2. Since both pdt1 and pdt2 are
adapted to ℓ, by definition of apply2 (see Algorithm 1), the label sequence on
any path in pdt is an interleaving of a label sequence on a path in pdt1 and a
label sequence on a path in pdt2. As a consequence, since pdt1 and pdt2 are
both adapted to ℓ, then pdt is also adapted to ℓ. Now, let z ∈ V and consider
a node labeled n with some label ℓ containing z in pdt . Without loss of
generality, assume z ∈ bv(Φ1). Then, since bv(Φ1)∩bv(Φ2), ℓ labels a node n1
in pdt1. Since pdt1 is well-formed with respect to bv(Φ1), there exists a node
n′1 higher up in pdt1 that is labeled with ℓ′ ∈ {LEx z, LAll z} and such that
n1 is in a finite subtree of n′1. The label ℓ′ is also in ℓ, since pdt1 is adapted
to ℓ. Moreover, as ℓ is well-formed, ℓ′ appears before ℓ in ℓ. In this case, the
definition of apply2 ensures that a node n′ labeled by ℓ′ and with the same
partitions as m′ has been inserted into pdt above the node n, such that n is in
a finite subtree of n′. We conclude that pdt is well-formed with respect to V .

– If Φ = ∃x. Φ1, then φ = MExistsxφ1, φ1 ◁ Φ1, lb(φ1) = ex_labelx ℓ, LExx
is the first quantified label in ℓ, and V = bv(Φ1) ∪ {x} where by assump-
tion x /∈ bv(Φ1). By our induction hypothesis, we obtain that the triples
in es1 l. 34 contain PDTs that are adapted to ex_label ℓ ℓ and well-formed
with respect to bv(Φ1). Now, observe that the definition of ex_label ensures
that, just as LExx was the first LEx or LAll label in lblΦ (and hence the
first LEx or LAll label in ℓ occurring in lblΦ), LVar x is now the last LVar
label in ex_labelx ℓ occurring in lblΦ1. Each returned PDT is of the form
pdt = quant_existsx pdt1 where pdt1 stems from es1. Since pdt1 is adapted
to ex_labelx ℓ and quant_existsx replaces any instance of a LVar x label by
LExx (see Algorithm 4), we see that pdt is adapted to ℓ.
Now, let z ∈ V = bv(Φ1) ∪ {x} and consider a node n in pdt labeled with
some label ℓ containing z. Let n1 be the node in pdt1 that is mapped to n
by quant_existsx. If z ∈ bv(Φ1), then by assumption z ̸= x and, since pdt1
is well-formed with respect to bv(Φ1), there exists a node n′1 in pdt1 labeled
with ℓ′ ∈ {LEx z, LAll z} such that n1 is in a finite subtree of n′1. This node
is mapped by quant_existsx to a node n′ also labeled by ℓ′ in pdt . Since
the two trees are isomorphic, n is in a finite subtree of n′. If z = x, we use
the definition of monitorability (Definition 4) to obtain ⊢ Φ1 : PGp

E(x) for
some E and p ∈ {+,−}. The case when x does not appear in any function

Scaling Up Proactive Enforcement: Technical Report 39

application in Φ1 can be ruled out since only function applications give rise
to LClos labels. Using Lemma 7, we can now obtain a node n′1 in pdt1 that
is labeled with LVar x and such that n1 is in a finite subtree of n′1. By the
same isomorphism as above and the definition of quant_existsx, this proves
the existence of a node n′ in pdt labeled by LExx such that n is in a finite
subtree of n′.

– If Φ = ¬Φ1, then φ = MNegφ1, φ1 ◁ Φ1, lb(φ1) = map neg_label ℓ V =
bv(Φ1). By our induction hypothesis, we obtain that the triples in es1 l. 37
contain PDTs that are adapted to ℓ

′
:= map neg_label ℓ and well-formed

with respect to bv(Φ) = V . Each PDT returned by eval on l. 38 is of the
form pdt = neg_apply (λb. b) pdt1 where pdt1 stems from es1. That is, pdt is
obtained from pdt1 by exchanging LEx and LAll labels and ⊤ and ⊥ leaves.
Since pdt1 is adapted to ℓ

′
, pdt is thus adapted to map neg_label ell

′
= ℓ.

Moreover, since pdt1 is adapted well-formed with respect to V , then pdt , that
has the same LClos and LVar labels and the same quantified labels modulo
the exchange of LAll and LEx, is also well-formed with respect to V .

– The cases of S and U are similar to the case of ∧ above.
– If Φ = v ← ω(w; y) Φ1, then φ = MAggω v w y Φ1, φ1, φ1 ◁ Φ1, V = ∅,

lb(φ1) = agg_labels ℓ y (lblΦ1). The definition of reorder (see Algorithm 4)
that is used in agg_labels (see Algorithm 4), ensures that lb(φ1) is well-
formed. By our induction hypothesis, we obtain that the triples in es1 l. 53
contain PDTs that are adapted to ℓ

′
and well-formed with respect to bv(Φ1).

Each returned PDT is of the form pdt = aggregateω v,w y z pdt1 where z =
reorder [x | LVar x ∈ ℓ] (v · y) and pdt1 stems from es1. Moreover, using the
monitorability of Φ as per Definition 4 and Lemma 6, we know that for any
Leaf ⊤ node n in pdt , z ∈ fv(Φ1) \ y, there exists a node n′ in pdt such that
n′ is labeled by LVar z and n is contained in a finite subtree of n′. Hence, the
gather in Algorithm 9, when it reaches l. 10, only finds ℓ = ⊤ when sv already
contains a finite set of potential values for each z ∈ fv(Φ1). As a consequence,
the function tabulate terminates (i.e., the lists on l. 4 and 5 can always be
computed in finite time), producing a finite set M . The function insert inserts
Node (LVar z) variables in the order prescribed by z, hence pdt is adapted to
mapLVar z. By definition of lbl (see Algorithm 5), lblΦ = sorted_list {LVar z |
z ∈ v∪y}. Since by assumption φ◁Φ, then ℓ contains all labels in mapLVar (v·
y) (possibly reordered). Hence, mapLVar z = mapLVar (reorder [x | LVar x ∈
ℓ] (v · y)) = reorder ℓ (mapLVar (v · y)) ⩽ ℓ, and therefore pdt is adapted to ℓ.

Theorem 3. Let Φ be a closed MFOTL formula without let bindings that is
monitorable as per Definition 4. Then the sequence defined by

φ−1 = initΦ

(esi, φi) = evalφi−1 σ i i ≥ 0

is such that for any i ≥ 0, pdt ∈ pdts(esi) ∪ pdts(φ′i) and for any valuation v,
specialize pdt v terminates and returns a Boolean.

40 F. Hublet et al.

Proof. By induction on i. First, observe that the definition of init (see Algo-
rithm 6) ensures initΦ ◁ Φ. Using Theorem 2 with Φ and φ := initΦ and ob-
serving that pdts(initΦ) only contains PDTs reduced to leaves, we obtain that
eval (initΦ)σ i returns a pair (es0, φ0) such that for all pdt ∈ pdts(es0), pdt is
well-formed with respect to bv(φ). By systematic inspection of Algorithm 6, we
see that bv(φ) is also the set of all variables that can appear in any label of pdt .
Hence, by Lemma 5, specialize pdt v returns a Boolean. The step case is similar.

Consider the following variant of the specialize function where conjunctions
and disjunctions are computed over both finite and infinite partitions (l. 5–6).
This function is not executable; however, it is mathematically well-defined on all
PDTs and its output is the same as specialize on all PDTs that are well-formed
with respect to the set V of labels appearing in them.

1 let specialize′ pdt v =
2 case pdt of
3 | Leaf ℓ ⇒ ℓ

4 | Node (LVar x) parts ⇒ let (_, pdt ′) = find parts (v x) in specialize′ pdt ′ v

5 | Node (LExx) parts ⇒
∨

(D,pdt′)∈parts

∨
d∈D specialize′ pdt ′ v[x 7→ d]

6 | Node (LAllx) parts ⇒
∧

(D,pdt′)∈parts

∧
d∈D specialize′ pdt ′ v[x 7→ d]

7 | LClos f t ⇒ specialize′ (find parts [[f(t))]]v) v

Algorithm 7: specialize′ function

We have:

Lemma 8. Let pdt and V be the set of labels appearing in pdt . If pdt is well-
formed with respect to V and adapted to a well-formed label sequence ℓ, then for
any valuation v, specialize′ pdt v = specialize pdt v.

Proof. Since ℓ is well-formed, there cannot be any LVar x nodes below a LExx
or LAllx node. Hence, the variables set in the LEx or LAll cases are only relevant
when an LClos node is reached. Such a node is never reached in an infinite subtree
of an LEx or LAll node since pdt is well-formed with respect to V . Hence, the
execution of specialize and specialize′ on pdt are the same, since the two only
differ by the setting of the variables in infinite subtrees of LEx and LAnd nodes.

For aggregations, we prove:

Lemma 9. Let φ = x ← ω(t; y) φ1 and z = fv(φ1) \ y. Let v be a valua-
tion and pdt1 a PDT such that specialize′ pdt1 v = Satφ1

(v, i, σ) and pdt1 is
adapted to a well-formed label sequence map lbl_of_term y · ℓ for some ℓ. Let
pdt = aggregateω x t y z pdt1. Then specialize′ pdt v = Satφ(v, i, σ).

Proof. Let z=fv(φ1)\y. Let pdt2=gather [] t y pdt1, pdt3=apply1 [] (agg y ω) pdt2.
Then pdt = insert ∅x z pdt3. The function gather l. 7–18 in Algorithm 9 ensures

specialize′ pdt2 v = [[[t]]v′ | dom v′ = fv(φ1) ∧ v|y = v′|y ∧ specialize pdt1 v
′].

Scaling Up Proactive Enforcement: Technical Report 41

Functions apply1 and specialize′ commute, and hence

specialize′ pdt3 v = agg y ω [[[t]]v′ | dom v′ = fv(φ1) ∧ v|y = v′|y ∧ specialize pdt1 v
′]

= agg y ω [[[t]]v[z 7→d] | v[z 7→ d], i ⊨σ φ1, d ∈ D|z|]

= letM = [[[t]]v[z 7→d] | v[z 7→ d], i ⊨σ φ1, d ∈ D|z|] in

if M = [] ∧ |y| = 0 then None else ωM

Finally, the function insert l. 7–18 in Algorithm 9 is such that

specialize′ (insert ∅x z pdt3) v[x 7→ d] = d ∈ (specialize′ pdt3 v)

whence for all v with x · y ⊆ dom v,

specialize′ pdt v = specialize′ (insert ∅x z pdt3) v
= v(x) ∈ (specialize′ pdt3 v)

= letM = [[[t]]v[z 7→d] | v[z 7→ d], i ⊨σ φ1, d ∈ D|z|] in

v(x) ∈ ω(M) ∧ |y| > 0 =⇒M ̸= []

= v, i ⊨σ x← ω(t; y) φ1

= v, i ⊨σ φ.

By Lemma 8, we get

Lemma 3. Let φ = x ← ω(t; y) φ1 be monitorable and z = fv(φ1) \ y. Let
pdt1 be well-formed with respect to bv(φ1) and adapted to some well-formed
label sequence map lbl_of_term y · ℓ for some ℓ. Assume that for any valua-
tion v, specialize pdt1 v = Satφ1(v, i, σ). Let pdt = aggregatex t y z pdt1. Then
specialize pdt v = Satφ(v, i, σ).

We sketch the proof of the following standard correctness theorem:

Theorem 4. Let Φ be a closed MFOTL formula without let bindings that is
monitorable as per Definition 4. Let σ = ⟨(τ,D)1≤i≤|σ|⟩. Then the sequence
defined by

φ−1 = initΦ

(esi, φi) = evalφi−1 σ i i > 0

is such that for any i ≥ 0, for (ts, tp, pdt) in esi and for any valuation v, we
have τtp = ts and specialize′ pdt v = (if v, tp ⊨σ Φ then ⊤ else ⊥).

Proof (sketch). Denote

P (buf , σ = ⟨(τ,D)1≤i≤|σ|⟩, Φ) := ∀(ts, tp, pdt) ∈ buf . τtp = ts

∧ specialize′ pdt v = (if v, tp ⊨σ Φ then ⊤ else ⊥).

Our algorithm fulfills the following invariant Ii for all i:
(Ii) All of the following hold:

42 F. Hublet et al.

1. P (esi, σ, Φ)

2. For any subformula MAndφ1 φ2 (buf 1, buf 2) ℓ of φ and corresponding sub-
formula Φ1 ∧ Φ2 of Φ, for j ∈ {1, 2}, P (buf j , σ, Φi).

3. For any subformula MSinceφ1 I φ2 (buf 1, buf 2) aux ℓ and corresponding sub-
formula Φ1 SI Φ2 of Φ, for j ∈ {1, 2}, P (buf j , σ, Φi).

Moreover, for any valuation v,

(specialize′ aux v).beta_alphas_in= [τi − δ | δ ∈ I ∧ v, i ⊨σ Φ1 S[δ,δ] Φ2]

(specialize′ aux v).beta_alphas_out= [τi − δ | δ ∈ [0,min I) ∧ v, i ⊨σ Φ1 S[δ,δ] Φ2].

4. For any subformula MUntilφ1 I φ2 (buf 1, buf 2) tstps aux ℓ of φ and corre-
sponding subformula Φ1 UI Φ2 of Φ, for j ∈ {1, 2}, P (buf j , σ, Φi).

Moreover, if |tstps| > 1, then for all (ts, tp) ∈ tstps. τtp = ts and for any
valuation v and (ts, tp) = fst tstps, we have

(specialize′ aux v).beta_in = [(τi′ , i
′) | τi′ − ts ∈ I ∧ v, i′ ⊨σ Φ2]

(specialize′ aux v).beta_out = [(τi′ , i
′) | τi′ − ts ∈ [0,min I) ∧ v, i′ ⊨σ Φ2]

(specialize′ aux v).n_alpha_in = [(τi′ , i
′) | τi′ − ts ∈ I ∧ ¬(v, i′ ⊨σ Φ1)]

(specialize′ aux v).n_alpha_out = [(τi′ , i
′) | τi′ − ts ∈ [0,min I) ∧ ¬(v, i′ ⊨σ Φ1)].

These invariants are standard and similar to those used in previous work [9,4,32,25].
The algorithm itself follows a similar top-down approach as, e.g., VeriMon [4],
producing a verdict for formula φ at timepoint i only when enough timepoints
after i have been read to complete evaluate the truth value of φ at i for any val-
uation. The truth value of temporal operators is computed in a forward manner
using standard unrolling formulae. The PDTs of subformulae are combined us-
ing the apply functions, which commute with specialize and specialize′ (see Algo-
rithm 1). Lemma 3 provides the additional correctness arguments for our novel
extended aggregations.

The conclusion follows from the invariant, Theorem 4, and Lemma 8.

A.3 Monitoring MFOTL with let bindings

We first extend our definition of monitorability to support let bindings:

Scaling Up Proactive Enforcement: Technical Report 43

Definition 12. The fact that x does not appear in any function argument of φ,
denoted NF(φ, x), is defined as follows:

NF′(φ, x,m) :=



NF′(φ1, x,m) ∪ NF′(φ2, x,m)

if φ = φ1 ∧ φ2 or φ1 SI φ2 or φ1 UI φ2

NF′(φ1, x,m)

if φ = ∃z. φ1 or ¬φ1

NF′(φ2, x,m[e 7→ (φ1, x)])

if φ = let e(x) = φ1 in φ2

NF′(φ1, xi,m)

if φ = e(t),m(e) = (φ1, x),∃1 ≤ i ≤ |t|. x ∈ fv(ti)

⊥ if φ = e(t), e /∈ domm, ∃1 ≤ i ≤ |t|. x ∈ fv(ti)

⊤ otherwise

NF(φ, x) := NF′(φ, x, ∅)

Definition 13. An MFOTL formula φ where all event names are either bound
or in E is monitorable iff both of the following conditions hold:

1. For any quantified subformulae Qx. ψ of φ, Q ∈ {∀,∃} in the scope of bound
predicates e1(t1) = φ1, . . . , ek(tk) = φk (introduced in the order e1, . . . , ek
above Qx. ψ), either Γk ⊢ ψ : PG+

E(x) for some E, or Γk ⊢ ψ : PG−E(x) for
some E, or NF′(ψ, x,m′), where m′ = {ei 7→ (φi, ti) | 1 ≤ i ≤ k}, Γ0 = Γ ,
and for all 1 ≤ i ≤ k, Γi = Γi−1∪{lete,i,p : E | Γi−1 ⊢ φi : PGp

E(ti)}, lete : ⊥.
2. For any subformula x ← ω(t; y) ψ of φ with bound predicates as in the

previous case and any z ∈ fv(ψ) \ y, we have Γk ⊢ ψ : PG+
E(z) for some E.

Finally, we show that if Φ is monitorable as per Definition 13, unrolling let
bindings in Φ yields a formula Φ′ that is monitorable as per Definition 4. As
Theorem 3 guarantees that our monitoring algorithm returns well-formed PDTs
after unrolling let, this shows that the procedure that first unrolls let bindings
and then uses Algorithm 6 returns well-formed PDTs.

We first formally define unrolling:

unroll(φ,m) =



unroll(φ1,m) ∧ unroll(φ2,m) if φ = φ1 ∧ φ2

∃x. unroll(φ1,m) if φ = ∃x. φ1

¬unroll(φ1,m) if φ = ¬φ1

unroll(φ1,m) SI unroll(φ2,m) if φ = φ1 SI φ2

unroll(φ1,m) UI unroll(φ2,m) if φ = φ1 UI φ2

x← ω(t; y) (unroll(φ1,m)) if φ = x← ω(t; y) φ1

unroll(φ2,m[e 7→ (unroll(φ1,m), x)]) if φ = let e(x) = φ1 in φ2

φ1[t/x] if φ = e(t),m(e) = (φ1, x)

e(t) if φ = e(t), e /∈ domm

t ≈ c if φ = t ≈ c

44 F. Hublet et al.

Just as we had done for variables, we henceforth assume that there is no
shadowing of let bindings, i.e., the names of let bindings have been converted, if
necessary, to ensure that each event name is bound at most once.

We prove:

Lemma 10. If Γ ⊢ φ1 : PGp
E(xk) and tk = x such that x /∈ bv(φ1), then

Γ ⊢ φ1[t/x] : PGp
E(x).

Proof. By straightforward induction on the PG rules.

Lemma 11. If NF′(φ, x,m), then NF′(φ, x, unroll(φ,m)).

Proof. By straightforward induction on φ.

Lemma 12. If φ is monitorable as per Definition 13, then unroll(φ, ∅) is mon-
itorable as per Definition 4.

Proof. By structural induction on φ, we first prove:
(Pφ) Let m and Γ such that

1. domm = {e | lete ∈ domΓ};
2. For all e ∈ domm and m(e) = (φ1, x), we have bv(φ1)∩ (fv(φ)∪ bv(φ)) = ∅,

and for all 1 ≤ i ≤ |x|, p′ ∈ {+,−}, if lete,i,p′ : E′ ∈ Γ then Γ ⊢ φ1 :

PGp′

E′(xi);
3. Γ ⊢ φ : PGp

E(x).

Then Γ ⊢ unroll(φ,m) : PGp
E(x).

– If φ = e(t), then given 3., two PG rules can have been applied: E+
PG or letPG.

If E+
PG has been applied, then we have E = {e}, p = +, and 1 ≤ k ≤ |t| such

that x = tk, and lete /∈ domΓ . In this case, assumption 1. gives e ∈ domm
and unroll(φ,m) = φ, and assumption 3. yields the conclusion. If letPG has
been applied, then we have 1 ≤ k ≤ |t| such that x = tk, lete ∈ domΓ , and
Γ (lete,k,p) = E. By assumption 2., we get φ1 and x such that m(e) = (φ1, x)
and Γ ⊢ φ1 : PGp

E(xk) and x /∈ bv(φ1). Furthermore, unroll(φ,m) = φ1[t/x].
Using Lemma 10, we obtain Γ ⊢ φ1[t/x] : PGp

E(tk), i.e., Γ ⊢ unroll(φ,m) :
PGp

E(x).
– If φ = t ≈ c, then unroll(φ,m) = φ and 3. yields the conclusion.
– If φ = φ1 ∧ φ2, assume Pφ1

and Pφ2
. Given 3., three PG rules can have

been applied: ∧L+PG, ∧R+
PG , and ∧−PG. In the first case, we have p = + and

Γ ⊢ φ1 : PG+
E(x). Since fv(φ1) ⊆ fv(φ) and bv(φ1) ⊆ bv(φ), we can

use 1.–2. and Pφ1
to obtain Γ ⊢ unroll(φ1,m) : PG+

E(x). Now, unroll(φ1 ∧
φ2,m) = unroll(φ1,m) ∧ unroll(φ2,m), and hence we apply ∧+PG using Γ ⊢
unroll(φ1,m) : PG+

E(x) to show Γ ⊢ unroll(φ1 ∧ φ2,m) : PG+
E(x). The proof

is similar for ∧R+
PG exchanging the role of φ1 and φ2. In the third case, we

have p = − and Γ ⊢ φ1 : PG−E1
(x), Γ ⊢ φ2 : PG−E2

(x), E = E1 ∪ E2. Since
fv(φ) = fv(φ1) ∪ fvφ2 and bv(φ) = bv(φ1) ∪ bvφ2, we can again use 1.–2.
with Pφ1

and Pφ2
to show Γ ⊢ unroll(φi,m) : PG+

Ei
(x), i ∈ {1, 2}. We then

apply ∧−PG to get Γ ⊢ unroll(φ,m) : PG+
E(x).

Scaling Up Proactive Enforcement: Technical Report 45

– If φ = ∃z. φ1, assume Pφ1
. Given 3., only rule ∃PG can have been applied.

We get x ̸= z and Γ ⊢ φ : PGp
E(x). Since fv(φ) ∪ bv(φ) = fv(φ1) ∪ bv(φ1),

we can use 1.–2. and Pφ1 to obtain Γ ⊢ unroll(φ1,m) : PG+
E(x). Now,

unroll(∃z. φ1,m) = ∃z. unroll(φ1,m), and hence we apply ∃PG using Γ ⊢
unroll(φ1,m) : PG+

E(x) and z ̸= x to show Γ ⊢ unroll(∃z. φ1,m) : PG+
E(x).

– If φ = ¬φ1, the proof is similar to the previous case.
– If φ = x← ω(t; y) φ1, assume Pφ1 . Given 3., two rules can have been applied:

aggPG,x or aggPG,y. In the former case, p = +, v ∈ x and ∀u ∈ fv(t). ∃E ⊆
Γ−1(C). Γ ⊢ φ1 : PG+

E(u). Since fv(φ1) ∪ bv(φ1) ⊆ fv(φ1) ∪ bv(φ1) ∪ x =
fv(φ)∪bv(φ), we can use 1.–2. and Pφ1

to obtain Γ ⊢ unroll(φ1,m) : PG+
E(u)

for all u ∈ fv(t). Since unroll(φ,m) = x ← ω(t; y) (unroll(φ1,m)), we can
apply PG+

agg,x again to obtain Γ ⊢ unrollφm : PG+
E(x). The other case is

similar.
– If φ = let e(x) = φ1 in φ2, assume Pφ1 and Pφ2 . Given 3., only rule let or

letO can have been applied. We get Γ ′ ⊢ φ2 : PGp
E(x), Γ

′ = Γ ∪ {lete,i,p 7→
E | Γ ⊢ φ1 : PGp

E(xi)}, lete : ⊥. Now, unroll(φ,m) = unroll(φ2,m[e 7→
(x, unroll(φ1,m))]). We will use Pφ2

to conclude, usingm′ = m[e 7→ (x, unroll(φ1,m))]
and Γ ′ as above. To do this, we need to prove 1.–3. for φ2, m′, and Γ ′ (hence-
forth denoted 1.’–3’). Property 1.’ follows from assumption 1. and the fact
that m′ and Γ ′ extend m and Γ by mapping e and lete, respectively. For
property 2.’, we see using property 2. and the fact that fv(φ2) ∪ bv(φ2) ⊆
fv(φ)∪ bv(φ) it is enough to prove the desired equivalence for e. That is, we
must show that for all 1 ≤ i ≤ |x|, p′ ∈ {+,−}, if lete,i,p′ : E′ ∈ Γ ′ then
Γ ′ ⊢ unroll(φ1,m) : PGp′

E′(xi). Let i, p′ as above. By definition of Γ ’, we have
that lete,i,p′ : E′ ∈ Γ ′ implies Γ ⊢ φ1 : PGp′

E′(xi). If Γ ⊢ φ1 : PGp′

E′(xi), then
using Pφ1

, 1.–3., and fv(φ2)∪bv(φ2) ⊆ fv(φ)∪bv(φ) we get Γ ⊢ unroll(φ1,m) :

PGp′

E′(xi). By our assumption that each event is bound at most once by let,
this implies Γ ′ ⊢ unroll(φ1,m) : PGp′

E′(xi) as the additional types for e can-
not affect φ1. For property 3.’, we use Γ ′ ⊢ φ2 : PGp

E(x) and the fact that
PG types do not depend on any Γ (e) to obtain Γ ′ ⊢ φ2 : PGp

E(x). This con-
cludes the proof.

Using Pφ for all φ, we now prove by induction on |φ| +
∑
m(e)=(φ′,x) |φ′|

(where |φ| is the number of operators of φ), generalizing on φ, m, and Γ :
(Qφ,m,Γ) Assume that:

1. All event names in φ are either bound, in E, or in dom m;
2. domm = {e | lete ∈ domΓ};
3. For all e ∈ domm and m(e) = (φ1, x), we have bv(φ1)∩ (fv(φ)∪ bv(φ)) = ∅,

and for all 1 ≤ i ≤ |x|, p′ ∈ {+,−}, if lete,i,p′ : E′ ∈ Γ then Γ ⊢ φ1 :

PGp′

E′(xi);
4. (Rφ) for any quantified subformula Qx. ψ of φ, Q ∈ {∀,∃} in the scope

of bound predicates e1(t1) = φ1, . . . , ek(tk) = φk (introduced in the order
e1, . . . , ek above Qx. ψ), either Γk ⊢ ψ : PG+

E(x) for some E, or Γk ⊢ ψ :
PG−E(x) for some E, or NF′(ψ, x,m′), where m′ = m[ei 7→ (φi, ti) | 1 ≤ i ≤

46 F. Hublet et al.

k], Γ0 = Γ , and for all 1 ≤ i ≤ k, Γi = Γi−1 ∪ {lete,i,p 7→ E | Γi−1 ⊢ φi :
PGp

E(ti)}, lete : ⊥.
5. (Sφ) For any subformula x← ω(t; y) ψ of φ with bound predicates as in the

previous case and any z ∈ fv(ψ) \ y, we have Γk ⊢ ψ : PG+
E(z) for some E.

6. For any m(e) = (φ′, x), φ′ does not contain any let bindings and is moni-
torable as per Definition 4.

Then unroll(φ,m) is monitorable as per Definition 4, i.e.

1’. For any quantified subformula Qx. ψ of unroll(φ,m), Q ∈ {∀,∃}, either
⊢ ψ : PG+

E(x) for some E, or ⊢ ψ : PG−E(x) for some E, or NF′(ψ, x,m).
2’. For any subformula x ← ω(t; y) ψ of unroll(φ,m) and any z ∈ fv(ψ) \ y, we

have ⊢ ψ : PG+
E(z) for some E.

The property Qφ implies our lemma, since if all event names are either bound
or in E once can always set m = ∅ and Γ = ∅ to satisfy 1.–3., 6.

Let us prove Qφ,m,Γ , assuming that Qφ′,m′,Γ ′ holds for all φ′,m′, Γ ′ such
that |φ′|+

∑
m′(e)=(φ′,x) |φ′| < |φ|+

∑
m(e)=(φ′,x) |φ′|.

– If φ = e(t), e ∈ domm, m(e) = (φ1, x), then unroll(φ,m) = φ1[t/x]. By 5.,
formula φ1 does not contain any let and is monitorable. Since substituting
free variables does not affect monitorability, then φ1[t/x] is monitorable.

– If φ = e(t), e /∈ domm, then unroll(φ,m) = e(t), which is trivially moni-
torable.

– If φ = t ≈ c, then unroll(φ,m) = t ≈ c, which is trivially monitorable.
– If φ = φ1 ∧ φ2, then unroll(φ,m) = unroll(φ1,m) ∧ unroll(φ2,m). Clearly,
|φ1|+

∑
m′(e)=(φ′,x) |φ′| < |φ|+

∑
m(e)=(φ′,x) |φ′| and |φ1|+

∑
m′(e)=(φ′,x) |φ′| <

|φ| +
∑
m(e)=(φ′,x) |φ′|. Hence, Qφ1,m,Γ and Qφ2,m,Γ hold. One then checks

that 1.–6. still hold for (φ1,m, Γ) and (φ2,m, Γ), since φ1 and φ2 are sub-
formulae of φ. Hence, both unroll(φ1,m) and unroll(φ2,m) are monitorable
as per Definition 4, and unroll(φ1,m) ∧ unroll(φ2,m) is monitorable.

– The proof is similar for φ = φ1 SI φ2 and φ = φ1 UI φ2.
– If φ=¬φ1, then unroll(φ,m)=¬unroll(φ1,m). We have |φ1|+

∑
m′(e)=(φ′,x) |φ′|

< |φ|+
∑
m(e)=(φ′,x) |φ′|. Hence, Qφ1,m,Γ holds. One then checks that 1.–6.

still hold for (φ1,m, Γ), since φ1 is a subformula of φ. Hence, unroll(φ1,m)
and unroll(φ2,m) is monitorable as per Definition 4, and ¬unroll(φ1,m) is
monitorable.

– If φ = ∃x. φ1, then unroll(φ,m) = ∃x. unroll(φ1,m). We have |φ1|+
∑
m′(e)=(φ′,x) |φ′| <

|φ|+
∑
m(e)=(φ′,x) |φ′|. Hence, Qφ1,m,Γ holds. One then checks that 1.–6. still

hold for (φ1,m, Γ), since φ1 is a subformula of φ. Hence, unroll(φ1,m) and
unroll(φ2,m) is monitorable as per Definition 4, and unroll(φ1,m) is mon-
itorable. To show that ∃x. unroll(φ1,m) is monitorable, we must addition-
ally prove that either ⊢ unroll(φ1,m) : PG+

E(x), ⊢ unroll(φ1,m) : PG−E(x),
or x does not appear inside any function argument in unroll(φ1,m). By 4.,
we know that either Γ ⊢ φ1 : PG+

E(x), or Γ ⊢ φ1 : PG+
E(x), or x does

not appear inside any function argument in φ1, Hence, Γ ⊢ φ1 : PGp
E(x)

implies ⊢ unroll(φ1,m) : PGp
E(x) by our lemma. If NF′(φ1, x,m), then

NF′(unroll(φ1,m), x,m) by Lemma 11.

Scaling Up Proactive Enforcement: Technical Report 47

– If φ = let e(x) = φ1inφ2, then unroll(φ,m) = unroll(φ2,m[e 7→ (unroll(φ1,m), x)]).
Let m′ = m[e 7→ (unroll(φ1,m), x)], Γ ′ = Γ ∪ {lete,i,p : E | Γ ⊢ φ1 :
PGp

E(xi)}, lete : ⊥. We have |φ2|+
∑
m′(e)=(φ′,x) |φ′| = |φ1|+|φ2|+

∑
m(e)=(φ′,x) |φ′| =

|φ|−1+
∑
m(e)=(φ′,x) |φ′| < |φ|+

∑
m(e)=(φ′,x) |φ′|, and henceQφ2,m′,Γ ′ holds.

If we can check 1.–6. forQφ2,m′,Γ ′ , our conclusion follows since unroll(φ,m) =
unroll(φ2,m

′). Property 1. holds by assumption 1. and the fact that the only
additional free event in φ2 is e, which is in domm′. Property 2. holds by
definition of m′ and Γ ′. Property 3. holds by assumption 3., the fact that
fv(φ2) ∪ bv(φ2) ⊆ fv(φ) ∪ bv(φ), and the definition of Γ ′. For property 4.,
observe that there is now one less bound predicate in any quantified subfor-
mula of φ2 with respect to the corresponding subformula of φ. However, the
new Γi in Rφ2 (henceforth denoted Γ ′i) are such that Γ ′i = Γi+1 for all i,
since Γ ′0 = Γ ′ = Γ ∪ {lete,i,p : E | Γ ⊢ φ1 : PGp

E(xi)}, lete : ⊥ = Γ1. Hence,
the latest Γ ′i , say, Γ ′k′ , is equal to the previous latest Γi, Γk. Similarly, the
new m′ (henceforth denoted m′′) is such that m′′ = m′. Given a quantified
subformula Qx.ψ of φ2, then by Rφ either Γk = Γ ′k′ ⊢ ψ : PGp

E(x), which
concludes this case, or NF′(ψ, x,m′′) = NF′(ψ, x,m′), which concludes too.
For property 5., the proof is as for property 4., using assumption 5. For
property 6., observe that m′ only adds a formula unroll(φ1,m) to m, which
by construction of unroll does not contain a let binding. Moreover, we have
|φ1| +

∑
m(e)=(φ′,x) |φ′| < |φ| +

∑
m(e)=(φ′,x) |φ′|, and hence Qφ1,m,Γ holds.

As before, we show that unroll(φ,m) is monitorable, yielding the conclusion.
– If φ = x ← ω(t; y) φ1, then unroll(φ,m) = x ← ω(t; y) (unroll(φ1,m)). We

have |φ1|+
∑
m′(e)=(φ′,x) |φ′| < |φ|+

∑
m(e)=(φ′,x) |φ′|. Hence, Qφ1,m,Γ holds.

One then checks that 1.–6. still hold for (φ1,m, Γ), since φ1 is a subformula
of φ. Hence, unroll(φ1,m) is monitorable as per Definition 4. To show that
x ← ω(t; y) (unroll(φ1,m)) is monitorable, we must additionally prove that
for all z ∈ fv(unroll(φ1,m)) \ y, we have ⊢ unroll(φ1,m) : PG+

E(z). By 5.,
we know that Γ ⊢ φ1 : PG+

E(z) for all z ∈ fv(unroll(φ1,m)) \ y. Hence,
Γ ⊢ φ1 : PG+

E(x) implies ⊢ unroll(φ1,m) : PG+
E(x) by our lemma, which

concludes the proof.

Similar to previous work [45], we can show that

Lemma 13. Let v, i, σ, and φ such that all events in φ are bound or in E.
Then v, i ⊨σ φ⇐⇒ v, i ⊨σ unroll(φ, ∅).

From this, Lemma 12 and Theorem 4, we get:

Theorem 5. Let Φ be a closed MFOTL formula that is monitorable as per Def-
inition 13. Let σ = ⟨(τ,D)1≤i≤|σ|⟩. Then the sequence defined by

φ−1 = init (unroll(Φ, ∅))
(esi, φi) = evalφi−1 σ i i > 0

is such that for any i ≥ 0, for (ts, tp, pdt) in esi and for any valuation v, we
have τtp = ts and specialize pdt v = (if v, tp ⊨σ Φ then ⊤ else ⊥).

48 F. Hublet et al.

A.4 Enforcing EMFOTL with function applications

The full, extended set of EMFOTL typing rules is shown in Figure 16. It types
functions to elements of the type lattice in Figure 7. Note the presence of new
subtypes C0 and S0 of Cs and Ss that denote the fact that the respective formula
can be caused or suppressed without any new event being caused (typically, by
only suppressing events). In the rules, the symbol Cα (Sα, resp.) stands for any
of C, C0, Cs, or Cn (for any of S, S0, Ss, or Sn, resp.).

O

Cs Cn

C0

SsSn

S0

C S

CS

⊑

¬

Fig. 17: Extended type lattice

Lemma 1. cl(F,X) is finite for a finite set of stable functionsF and a finiteX.

Proof. Let D = max(X ∪
⋃
f∈F Cf) and d ∈ cli(F,X) for i ≥ 0. By induction

on i and the stability of the functions in F , we can show that d ⪯ D. Since ⪯ is
well-founded, then Y = {d ∈ D | d ⪯ D} is finite and cl(F,X) ⊆ Y is finite.

Lemma 2. Let D ∈ DBω, k ≥ 1, and disjoint Cs,Cn ⊆ C such that ∀i ≥ 2,

Di−Di−1⊆{e(d1, ..., da(e)) | e∈C ∧ ∀i∃f ∈ cl(Fs, Di−1), d′ ∈ADDi,Cn
(φ)a(f). di=f̂(d′)}

∪ {e(d1, ..., da(e)) | e∈Cs ∧ ∀i∃f ∈ clk(F, Di−1), d′ ∈ADDi,Cn
(φ)a(f). di=f̂(d′)},

where ADDi,E(φ) :=AD⟨(0,Di)⟩,E(φ), then D is eventually constant.

Proof. By induction, each event e(d) ∈ Di is such that each di is either in
X = cl(Fs,ADD0,E(φ)) (if e ∈ Cs), or in Y = clk(F, X) (if e ∈ Cn). By the
definition of the set Fs, both X and Y are finite.

Given our modified monitoring algorithm, the correctness proofs in [25] are
still applicable since the main loop of the enforcement algorithm is unchanged.
Only the termination lemma [25, Lemma 11] needs to be modified:

Lemma 14. When Γ ⊢ φ : C, for all p, σ, X, τ , v, b, any call to enfpτ,b(φ, σ,X, v)
terminates.

Scaling Up Proactive Enforcement: Technical Report 49

Proof. In the following, we consider the full pseudocode of the enforcement al-
gorithm given by Hublet et al. [25]. This pseudocode differs from the simplified
presentation in Algorithm 5 by enforcing all operators as they appear in the ba-
sic syntactic description of MFOTL (rather than −→, ∀, ♦, etc.)

By structural induction on φ. As in [25], the only non-trivial cases are those
involving a fix point computation: causation of ∧ and suppression of ∃, aggrega-
tions, SLRI , and SLRI .

In all three cases, we observe that at each iteration of the fp function, |DS |+
|DC |+ |X| grows strictly. If this quantity stops growing, then the loop is escaped
and the algorithm terminates. Let σ = ⟨(τ,D′)1≤i≤|σ|⟩ and ∆ :=

⋃|σ|
i=1D

′
i be

the set of all events occurring in σ. By contradiction, assume that some fix
point computation in enf never terminates. For all i, denote by Di the set {0}∪
clδ(φ)(Ω,∆)∪const(φ)∪DC at the end of the ith iteration. We now show that the
sequence D satisfies the conditions of Lemma 2. Let i ≥ 2 and e(d) ∈ Di−Di−1.
Then e(d) has been caused in the ith iteration of fp. Let DSi and DCi be the sets
DS andDC at the beginning of this iteration. By systematic inspection of enf and
the typing rules, we know that e ∈ C and either (i) Γ (e) ∈ Cs and d is obtained
by applying only functions in Fs to some {v(x) | x ∈ x} where each x ∈ x is such
that there exists E ⊆ C with Γ (E) ⊆ Cn and Γ (x) = PG+

E ; or (ii) Γ (e) ∈ Cn and
d is obtained by applying any number of functions to some {v(x) | x ∈ x} where
each x ∈ x is such that there exists E ⊆ C with Γ (E) ⊆ Cn and Γ (x) = PG+

E . In
both cases, for each x ∈ x, the judgement x : PG+

E can only have been introduced
into Γ by the application of ∃S or ∃C, If ∃S was applied, then ⊢ φ′ : PG+

E(x)
for some φ′. If ∃C was applied, then E = ∅ and v(x) = 0. By Lemma 4, we get
v(x) ∈ AD∗σ..|σ|−1·(τ|σ|,D|σ|∪DC\DS),E(φ

′) ⊆ AD∗σ..|σ|−1·(τ|σ|,D|σ|∪DC\DS),E(φ) ⊆
AD∗

σ..i−1·(τ|σ|,D|σ|∪DC\DS),Cn
(φ). Hence, in (i), we get that each di is equal to

f(d′) where d′ ∈ ADDi−1,Cn
(φ) and f ∈ cl(Fs, Di−1), while in (ii), we get that

each di is equal to f(d′) where d′ ∈ ADDi−1,Cn
(φ) and f ∈ clk(F, Di−1) where k

is the largest number of nested function calls in any term of φ. This is exactly
the conditions in Lemma 2. Hence, we get that D is eventually constant from
some iteration j. For the execution to continue indefinitely, either DS or X must
grow beyond iteration j. But X can only contain finitely many (say, m) future
obligations determined by the syntax of φ (see [25]) and DS is always a subset
of existing events, i.e., a subset of Dj , which is finite. Hence, after at most
j +m+ |Dj | iterations, the quantity |DS |+ |DC |+ |X| must stop growing and
the algorithm terminates.

A.5 Enforcing EMFOTL with aggregations

The following lemma shows the soundness of our approach to suppressing aggre-
gations:

Lemma 15. Let φ, y such that |y| > 0, and z = z1, . . . , zk = fv(φ) \ y.
For all v, i, and σ, we have

v, i ⊨σ x← ω(t; y) φ =⇒ v, i ⊨σ ∃z1, . . . , zk. φ.

50 F. Hublet et al.

Proof. Let v such that v, i ⊨σ x← ω(t; y) φ,M =
[
[[t]]v[z 7→d] | v[z 7→ d], i ⊨σ φ, d ∈ D|z|

]
,

and M ̸= []. We obtain v such that d ∈ D|z| and v[z 7→ d], i ⊨σ φ. Hence,
v, i ⊨σ ∃z1, . . . , zk. φ.

Observe that rule aggS is applicable iff k instances of ∃S for z1, . . . , zk are
applicable. Hence, the correctness theorem [25, Theorem 1] can be straightfor-
wardly adapted to support aggregations.

A.6 Enforcing EMFOTL with let bindings

Similarly to monitoring, our enforcement algorithm unrolls let bindings before
enforcing the formula. We only need to show:

Lemma 16. If φ is enforceable, then unroll(φ, ∅) is enforceable.

Proof. More generally, we prove by induction on Γ ⊢ φ : τ :
(Pφ) Let m, Γ , and τ ∈ {C,C0,Cn,Cs,S,S0,Sn,Ss} such that

1. domm = {e | lete ∈ domΓ};
2. For all e ∈ domm and m(e) = (φ1, x), we have bv(φ1)∩ (fv(φ)∪ bv(φ)) = ∅,

and for all 1 ≤ i ≤ |x|, p′ ∈ {+,−}, if lete,i,p′ : E′ ∈ Γ then Γ ⊢ φ1 :

PGp′

E′(xi) and if e : τ ′ ∈ Γ then Γ ⊢ φ1 : τ ′;
3. Γ ⊢ φ : τ .

Then Γ ⊢ unroll(φ,m) : τ .
Setting m = ∅, τ = C, this proves the desired property.

– Rule cast: In this case, Γ ⊢ φ : τ ′ and τ ⊑ τ ′. Then, by our induction
hypothesis, we get Γ ⊢ unroll(φ,m) : τ ′. Applying rule cast again, we get
Γ ⊢ unroll(φ,m) : τ .

– Rules ⊤C, ⊤S: Trivial.
– Rule ECs : In this case, e ∈ C∨lete ∈ domΓ , Γ (e) = Cs, ∀x ∈

⋃k
i=1 fv(ti). ∃E ⊆

Γ−1(Cn). Γ (x) = PG+
E , and φ = e(t), τ = Γ (e).

If e ∈ C, then unroll(φ,m) = φ and the conclusion follows. If lete ∈ domΓ ,
then unroll(φ,m) = φ1[t/x] where m(e) = (φ1, x). By 2., we get Γ ⊢ φ1 : Cs.
Now, observe that our assumptions on

⋃k
i=1 fv(ti) and

⋃k
i=1 fn(ti) guarantee

that even after substituting t into x in φ1, all ECs rules used in Γ ⊢ φ1 : Cs
remain applicable. The PG rules for newly introduced variables (in quanti-
fiers or aggregations) are unaffected since there is no shadowing. As a con-
sequence, Γ ⊢ φ1[t/x] : Cs, and hence Γ ⊢ unroll(φ,m) : Cs.

– Rules ECn , ES0 , ESn , ECn : Similar to the previous case.
– Rule ¬C: In this case, φ = ¬φ1 and Γ ⊢ φ : Sα. Since fv(φ) = fv(φ1) and

bv(φ) = bv(φ1), our induction hypothesis yields Γ ⊢ unroll(φ1,m) : Sα. Now,
unroll(φ,m) = ¬unroll(φ1,m), hence we can use rule ¬C to show Γ ⊢ φ : Cα.

– Rules ¬S, ∃C, ∧SL, ∧SR, SC, SSL, US, UCR, #C, #S: Similar to the previous
case.

Scaling Up Proactive Enforcement: Technical Report 51

– Rule ∃S: In this case, φ = ∃x. φ1, Γ, x : PG+
E ⊢ φ : Sα, and Γ ⊢ φ :

PG+
E(x). Let Γ ′ = Γ, x : PG+

E . Cleary, by our assumptions and the fact that
fv(φ1) ∪ bv(φ1) ⊆ bv(φ) ∪ fv(φ), the induction hypothesis is applicable to
φ1, Γ ′, and m. By the sublemma in Lemma 12, we additionally get Γ ⊢
unroll(φ,m) : PG+

E(x). We obtain Γ ⊢ unroll(φ1,m) : Sα and apply ∃S again
to get Γ ⊢ φ : Sα.

– Rule aggS: Similar to the previous case.
– Rule ∧C: In this case, φ = φ1 ∧ φ2, Γ ⊢ φ1 : Cα, and Γ ⊢ φ2 : Cα. Since

fv(φ1) ∪ bv(φ1) ⊆ fv(φ) ∪ bv(φ) and fv(φ2) ∪ bv(φ2) ⊆ fv(φ) ∪ bv(φ), our
induction hypothesis yields Γ ⊢ unroll(φ1,m) : Cα and Γ ⊢ unroll(φ2,m) :
Cα. Now, unroll(φ,m) = unroll(φ1,m)∧ unroll(φ2,m), hence we can use rule
∧C to show Γ ⊢ φ : Cα.

– Rules SSLR, UCLR: Similar to the previous case.
– Rule let: In this case, φ = let e(x) = φ1 inφ2, Γ ⊢ φ1 : τ1, Γ ′, e : τ1 ⊢ φ2 : τ2,

where Γ ′ = Γ ′ = Γ ∪ {lete,i,p : E | Γ ⊢ φ1 : PGp
E(xi)}, lete : ⊥. Let

m′ = m[e 7→ (unroll(φ1,m), x)]. Since fv(φ1) ∪ bv(φ1) ⊆ fv(φ) ∪ bv(φ), our
induction hypothesis on φ1 applied with Γ andm yields Γ ⊢ unroll(φ,m) : τ1.
Similarly, since fv(φ2)∪bv(φ2) ⊆ fv(φ)∪bv(φ) and our induction hypothesis
on φ2 applied with Γ ′ ∪{e 7→ τ1} and m′ yields Γ ′ ⊢ unroll(φ,m′) : τ2. Now,
unroll(φ,m) = unroll(φ2,m

′). Since Γ ′ difers from Γ only by the typing of
e, lete, and lete,i,p, which do not occur in unroll(φ2,m

′), we conclude that
Γ ⊢ unroll(φ,m) : τ2.

– Rule letO: Similar to the previous case.

A.7 Wrapping up

Combining the results from the previous sections, we have:

Theorem 1. Let φ be a closed formula with function applications, aggregations,
and let bindings in our extended EMFOTL fragment. Let fo denote the set of
future obligations, enf ′ the modified enf function, and unroll(φ) := unroll(φ, ∅).
Then Eφ = (P(fo), {(unroll(φ), ∅,+)}, enf ′) is sound with respect to L(φ).

Proof. From the soundness theorem [25, Theorem 1] modified by Lemma 14 and
Lemma 15, together with Lemma 16. The transformation []p in [25] is extended
as follows to cover the suppression of aggregations after unrolling:

[x← ω(t; y) φ]− = ∃z1, . . . , zk. [φ]− where z = fv(φ) \ y.

Similarly to previous work [25, Appendix C], we can further restrict our
fragment EMFOTL to a fragment TEMFOTL for which our algorithm provides
transparent enforcement. This is done by (i) modifying the typing rules as de-
scribed in Figure 18, where SRP denotes the set of strictly relative-past formulae
introduced by Hublet et al. [24], and (ii) removing the rule aggS. All other rules
remain as in Figure 16.

52 F. Hublet et al.

Γ ⊢ φ : Sα ψ ∈ SRP

Γ ⊢ φ ∧ ψ : Sα
∧SL

Γ ⊢ ψ : Sα φ ∈ SRP

Γ ⊢ φ ∧ ψ : Sα
∧SR

0 ∈ I Γ ⊢ ψ : Cα φ,ψ ∈ SRP

Γ ⊢ φ SI ψ : Cα
SC

0 /∈ I Γ ⊢ φ : Sα φ,ψ ∈ SRP

Γ ⊢ φ SI ψ : Sα
SSL

0 ∈ I Γ ⊢ φ,ψ : Sα φ,ψ ∈ SRP

Γ ⊢ φ SI ψ : Sα
SSLR

b ̸=∞ Γ ⊢ ψ : Cα φ ∈ SRP

Γ ⊢ φ U[0,b] ψ : Cα
UCR

Γ ⊢ ψ : Sα φ ∈ SRP

Γ ⊢ φ UI ψ : Sα
US

Fig. 18: Modified extended typing rules for TEMFOTL

Theorem 6. Let φ be a closed formula with function applications, aggregations,
and let bindings in our extended TEMFOTL fragment. Then Eφ is sound and
transparent with respect to L(φ).

Proof (sketch). By induction on φ, we first prove that φ ∈ TEMFOTL =⇒
unroll(φ) ∈ TEMFOTL. Since aggregations are not transparently enforceable
and function applications do not affect transparency, the rest of the proof is as
in [25, Theorem 2].

B Typing of example formula (grubbs)

grubbs = let badReboot(s, dc) = φ1 in

let cntReboots(dc, c) = φ2 in

□[0s,∞)(∀dc. ∀l . φ3 −→ φ4)

φ1 = reboot(s, dc) ∧ ¬([0s,∞)(¬reboot(s, dc) S[0s,∞) intendReboot(s, dc)))

φ2 = c ← CNT(i ; dc)(♦[0s,1799s] badReboot(s, dc) ∧ tp(i))

φ3 = (dc, l ← GRUBBS(dc, c;)(cntReboots(dc, c))) ∧ (l ≈ 1)

φ4 = alert(conc(conc("Data center ", string_of_int(dc)),

" has rebooted too often")))

First, define:

Γ1 ≡ alert : Cn, reboot : O
Γ2 ≡ Γ1, letbadReboot : ⊥, letbadReboot,2,+ : {reboot}, badReboot : O
Γ3 ≡ Γ2, letcntReboots : ⊥, letcntReboots,1,+ : {reboot}, letcntReboots,2,+ : {tp}, cntReboots : O
Γ ′3 ≡ Γ3, dc : PG+

{reboot}

Γ4 ≡ Γ ′3, l : PG+
{reboot}

Scaling Up Proactive Enforcement: Technical Report 53

Then, consider the subproofs P4, P3, P
1
2 , P

2
2 , P1:

alert ∈ C Γ4(alert) = Cn Γ4(x) = PG+
{reboot} Γ4(reboot) = O

ECn

Γ4 ⊢ φ4 : Cn
P4

For v ∈ {dc, l}:
letcntReboots ∈ dom Γ3

Γ3(letcntReboots,1,+) = {reboot}
letPG

Γ3 ⊢ cntReboots(dc, c) : PG+
{reboot}(dc)

P ′3(v)

v ∈ [dc, l]

dc ∈ [dc, l] P ′3(v)

letcntReboots ∈ dom Γ3

Γ3(letcntReboots,2,+) = {tp}
letPG

Γ3 ⊢ cntReboots(dc, c) : PG+
{tp}(c)

aggPG,x
Γ3 ⊢ dc, l ← GRUBBS(dc, c;)(cntReboots(dc, c)) : PG+

{reboot,tp}(dc)
∧L+PG

Γ3 ⊢ φ3 : PG+
{reboot,tp}(v)

P3(v)

dc ∈ [dc]

letbadReboot ∈ dom Γ2

Γ2(letbadReboot,2,+) = {reboot}
letPG

Γ2 ⊢ badReboot(s, dc) : PG+
{reboot}(dc)

∧L+PG
Γ2 ⊢ badReboot(s, dc) ∧ tp(i) : PG+

{reboot}(dc)
♦+

PG
Γ2 ⊢ ♦[0s,1799s] badReboot(s, dc) ∧ tp(i) : PG+

{reboot}(dc)
aggPG,y

Γ2 ⊢ φ2 : PG+
{reboot}(dc)

P 1
2

c ∈ [c] {tp} ⊆ Γ−12 (C)

E+
PG

Γ2 ⊢ tp(i) : PG+
{tp}(i)

∧R+
PG

Γ2 ⊢ badReboot(s, dc) ∧ tp(i) : PG+
{tp}(i)

♦+
PG

Γ2 ⊢ ♦[0s,1799s] badReboot(s, dc) ∧ tp(i) : PG+
{tp}(i)

aggPG,x
Γ2 ⊢ φ2 : PG+

{tp}(c)

P 2
2

E+
PGΓ1 ⊢ reboot(s, dc)
∧L+PG

Γ1 ⊢ φ1 : PG+
{reboot}(dc)

P1

54 F. Hublet et al.

The final proof is as follows:

P3(l)

Γ ′3 ⊢ φ3 : PG+
{reboot}(l) −→−PG

Γ ′3 ⊢ φ3 −→ φ4 : PG−{reboot}(l)

C ⊑ Cn
P4

Γ4 ⊢ φ4 : Cn
cast

Γ4 ⊢ φ4 : C
−→CR

Γ4 ⊢ φ3 −→ φ4 : C
∀C

Γ ′3 ⊢ ∀l. φ3 −→ φ4 : C
P ′

P1

P 1
2 P 2

2

P ′

P3(dc)

Γ3 ⊢ φ3 : PG+
{reboot}(dc) −→−PG

Γ3 ⊢ φ3 −→ φ4 : PG−{reboot}(dc) ∀C
Γ3 ⊢ ∀dc. ∀l. φ3 −→ φ4 : C

□C
Γ3 ⊢ □[0s,∞) ∀dc. ∀l. φ3 −→ φ4 : C

letO
Γ2 ⊢ let cntReboots(dc, c) = φ2 in ... : C letO

Γ1 ⊢ grubbs : C

C Relevant event names and future obligations

The set RFO(φ) := RFO+(φ) of relevant future obligations is computed as follows
after unrolling let bindings [25]:

RFOp(¬φ1) = RFO−p(φ1)

RFO+(φ1 ∧ φ2) = RFO+(φ1) ∪ RFO+(φ2)

RFO−(φ1 ∧SL φ2) = RFO−(φ1)

RFO−(φ1 ∧SR φ2) = RFO−(φ2)

RFOp(∃x. φ1) = RFOp(φ1)

RFOp(#I φ1) = {(λτ. (¬TP) UI−(τ−ts) (TP ∧ φ1), v, p) | ts, v}
RFO+(φ1 SI φ2) = RFO+(φ2)

RFO−(φ1 S
SL
I φ2) = RFO−(φ1)

RFO−(φ1 S
SR
I φ2) = RFO−(φ2)

RFO+(φ1 U
CLR
I φ2) = RFO+(φ1) ∪ RFO+(φ2) ∪ {λτ. (TP→ φ1) UI−(τ−ts) (TP ∧ φ2), v,+) | ts, v}

RFO+(φ1 U
CR
I φ2) = RFO−(φ2) ∪ {λτ. (TP→ φ1) UI−(τ−ts) (TP ∧ φ2), v,+) | ts, v}

RFO−(φ1 UI φ2) = RFO−(φ2) ∪ {λτ. (TP→ φ1) UI−(τ−ts) (TP ∧ φ2), v,−) | ts, v}
RFO−(x← ω(t; y) φ) = RFO−(∃v1, . . . , vk. φ) where fv(φ) \ y = {v1, . . . , vk}

The set RE(φ) of relevant event names comprises of all event names that
occur in φ after unrolling let bindings.

Scaling Up Proactive Enforcement: Technical Report 55

D Benchmark formulae

D.1 gdpr

consent = □(∀data, dataid, dsid. use(data, dataid, dsid)
−→ (♦ legal_grounds(dsid, data))

∨ (¬ds_revoke(dsid, data) S ds_consent(dsid, data)))

deletion = □(∀data, dataid, dsid. ds_deletion_request(data, dataid, dsid)

−→ ♢[0,30] delete(data, dataid, dsid))

information = □(∀data, dataid, dsid. collect(data, dataid, dsid)
−→ (# inform(dsid) ∨ ♦ inform(dsid)))

lawfulness = □(∀data, dataid, dsid. use(data, dataid, dsid)
−→ ♦(ds_consent(dsid, data) ∨ legal_grounds(dsid, data)))

sharing = □(∀data, dataid, dsid, processorid.
(ds_deletion_request(data, dataid, dsid)

∧ ♦ share_with(processorid, dataid))

−→ ♢[0,30] notify_proc(processorid, dataid))

gdpr = consent ∧ delete ∧ information ∧ sharing

D.2 gdprfun

consent = □(∀data, dataid, dsid. use(data, dataid, dsid)
−→ (♦ legal_grounds(dsid, data))

∨ (eq(owner(data, dataid), dsid) ≈ 1

∧ has_consent(dsid, data) ≈ 1))

management = □(∀data, dsid.
(ds_consent(dsid, data)

−→ call_function("register_consent",

register_consent(dsid, data)))

∧ (ds_revoke(dsid, data)

−→ call_function("revoke_consent",

revoke_consent(dsid, data)))

deletion = □(∀data, dataid.
ds_deletion_request(data, dataid, owner(data, dataid))

−→ ♢[0,30] delete(data, dataid, owner(data, dataid)))

information = □(∀data, dataid, dsid.
collect(data, dataid, dsid)

−→ call_function("register_owner",

register_owner(data, dataid, dsid))

∧ (# inform(dsid) ∨ ♦ inform(dsid)))

sharing = □(∀data, dataid, processorid.
(ds_deletion_request(data, dataid, owner(data, dataid))

∧ ♦ share_with(processorid, dataid))

−→ ♢[0,30] notify_proc(processorid, dataid))

gdpr = consent ∧ management ∧ deletion ∧ information ∧ sharing

Python:

56 F. Hublet et al.

owners = {}
consent = set ()

def has_consent (dsid , data) :
return (dsid , data) in consent

def r eg i s t e r_consent (dsid , data) :
consent . add ((dsid , data))
return 1

def revoke_consent (dsid , data) :
global consent
i f (dsid , data) in consent :

consent . remove ((dsid , data))
return 1

def reg i s ter_owner (data , dataid , ds id) :
owners [(data , data id)] = ds id
return 1

def owner (data , data id) :
return owners . get ((data , data id) , "None")

D.3 nokia

del-1-2 = □(∀user , data. delete(user , "db1", data) ∧ eq(data, "[unknown]") ≈ 0

−→ ((♦[0,1s) ♢[0,30h)(∃user2 . delete(user2 , "db2", data)))

∨ ((♢[0,1s) ♦[0,30h)(∃user2 . insert(user2 , "db1", data)))

∧ (■[0,30h) □[0,30h)(¬(∃user2 . delete(user2 , "db3", data)))))))

del-2-3 = □(∀user , data. delete(user , "db2", data) ∧ eq(data, "[unknown]") ≈ 0

−→ ♦[0,1s) ♢[0,60s](∃user2 . delete(user2 , "db3", data)))

del-3-2 = □(∀user , data. delete(user , "db3", data) ∧ eq(data, "[unknown]") ≈ 0

−→ ♦[0,60s) ♢[0,1s)(∃user2 . delete(user2 , "db2", data)))

delete = □(∀user , data. delete(user , "db2", data) −→ user ≈ "script")

ins-1-2 = □(∀user , data. insert(user , "db1", data) ∧ eq(data, "[unknown]") ≈ 0

−→ ♦[0,1s) ♢[0,30h](∃user2 . insert(user2 , "db2", data)

∨ delete(user2 , "db1", data)))

ins-2-3 = □(∀user , data. insert(user , "db2", data) ∧ eq(data, "[unknown]") ≈ 0

−→ ♦[0,1s) ♢[0,60s](∃user2 . insert(user2 , "db3", data)))

ins-3-2 = □(∀user , data. insert(user , "db3", data) ∧ eq(data, "[unknown]")

−→ ♦[0,60s) ♢[0,1s](∃user2 . insert(user2 , "db2", data)))

insert = □(∀user , data.insert(user , "db2", data) −→ user ≈ "script")

script1 = let any_operation(script, db, data)- =

select(script, db, data) ∨ insert(script, db, data)

∨ delete(script, db, data) ∨ update(script, db, data) in

let running(script) =

(¬♦[0,1s) ♢[0,1s) end(script)) S (♦[0,1s) ♢[0,1s) start(script)) in

□(∀db, data. any_operation("script", db, data)

−→ (running("script") ∨ (♦[0,1s) ♢[0,1s) end("script"))))

select = □(∀user , data. select(user , "db2", data)
−→ user ≈ "script" ∨ user ≈ "triggers"

update = □(∀user , data. ¬update(user , "db2", data))

Scaling Up Proactive Enforcement: Technical Report 57

D.4 ic

validation = let node_added_to_subnet(node_id,node_addr , subnet) =

registry__node_added_to_subnet(node_id,node_addr , subnet) in

let node_removed_from_subnet(node_id,node_addr) =

registry__node_removed_from_subnet(node_id,node_addr) in

let in_subnet(node_id,node_addr , subnet) =

♦[0s,∞) originally_in_subnet(node_id,node_addr , subnet)

∧ ¬(♦[0s,∞) node_removed_from_subnet(node_id,node_addr))

∨ ¬node_removed_from_subnet(node_id,node_addr)

S[0s,∞) node_added_to_subnet(node_id,node_addr , subnet) in

let subnet_size(subnet_id,n) =

n ← CNT(node_id; subnet_id)

(∃node_addr . in_subnet(node_id,node_addr , subnet_id)) in

let block_added(node_id, subnet_id, block , t_add) =

validated_BlockProposal_Added(node_id, subnet_id, block)

∧ (∃node_addr . in_subnet(node_id,node_addr , subnet_id))

∧ ts(t_add) in

let validated(block , subnet_id, t_add) =

∃n_validated. ∃n_subnet. (

n_validated ← CNT(valid_node; block , subnet_id, t_add)

(♦[0s,∞) block_added(valid_node, subnet_id, block , t_add)

∨ (∃add_node. ∃node_addr .

♦[0s,∞) block_added(add_node, subnet_id, block , t_add)

∧ validated_BlockProposal_Moved(valid_node, subnet_id, block)

∧ in_subnet(valid_node,node_addr , subnet_id))))

∧ subnet_size(subnet_id,n_subnet)

∧ (gt(float_of_int(n_validated),

fdiv(fmul(2., float_of_int(n_subnet)), 3.)) ≈ 1) in

let time_per_block(block , subnet_id, time) =

∃t_add. ∃t_validated. (

validated(block , subnet_id, t_add)

∧ ¬([0s,∞) ♦[0s,∞) validated(block , subnet_id, t_add))

∧ ts(t_validated);

time ← sub(t_validated, t_add)) in

let subnet_type_assoc(subnet_id, subnet_type) =

original_subnet_type(subnet_id, subnet_type)

∨ registry__subnet_created(subnet_id, subnet_type)

∨ registry__subnet_updated(subnet_id, subnet_type) in

let subnet_type_map(subnet_id, subnet_type) =

¬(∃subnet_type2 . subnet_type_assoc(subnet_id, subnet_type2))

S[0s,∞) subnet_type_assoc(subnet_id, subnet_type) in

∀block . ∀subnet_id. ∀time.

time_per_block(block , subnet_id, time)

∧ (subnet_type_map(subnet_id, "System") ∧ (gt(time, 3000) ≈ 1)

∨ (subnet_type_map(subnet_id, "Application")

∨ subnet_type_map(subnet_id, "VerifiedApplication"))

∧ (gt(time, 1000) ≈ 1))

−→ alert_validation_latency(block , subnet_id, time)

58 F. Hublet et al.

clean_logs = □[0s,∞)(∀node_id. ∀node_addr . ∀internal_host_id. ∀subnet_id.

∀component. ∀level. ∀message.

(let in_ic(node_id,node_addr)- =

♦[0s,∞) originally_in_ic(node_id,node_addr)

∧ ¬(♦[0s,∞) registry__node_removed_from_ic(node_id,node_addr))

∨ ¬registry__node_removed_from_ic(node_id,node_addr)

S[0s,∞) registry__node_added_to_ic(node_id,node_addr) in

let error_level(level) = level ≈ "CRITICAL" ∨ level ≈ "ERROR" in

¬(in_ic(node_id,node_addr)

∧ log(internal_host_id,node_id, subnet_id, component, level,message)

∧ error_level(level))))

finalization = □[0s,∞)(∀node2 . ∀hash2 . ∀addr2 . ∀subnet.

∀height. ∀replica_version.

(let in_ic(node_id,node_addr) =

♦[0s,∞) originally_in_ic(node_id,node_addr)

∧ ¬(♦[0s,∞) registry__node_removed_from_ic(node_id,node_addr))

∨ ¬registry__node_removed_from_ic(node_id,node_addr)

S[0s,∞) registry__node_added_to_ic(node_id,node_addr) in

finalized(node2 , subnet, height, hash2 , replica_version)

∧ in_ic(node2 , addr2)

−→ ¬(∃node1 . ∃hash1 . ∃addr1 .
♦[0s,∞) finalized(node1 , subnet, height, hash1 , replica_version)

∧ in_ic(node1 , addr1) ∧ ¬(eq(hash1 , hash2) ≈ 1))))

divergence = let node_added_to_subnet(node_id,node_addr , subnet) =

registry__node_added_to_subnet(node_id,node_addr , subnet) in

let node_removed_from_subnet(node_id,node_addr) =

registry__node_removed_from_subnet(node_id,node_addr) in

let in_subnet(node_id,node_addr , subnet) =

♦[0s,∞) originally_in_subnet(node_id,node_addr , subnet)

∧ ¬(♦[0s,∞) node_removed_from_subnet(node_id,node_addr))

∨ ¬node_removed_from_subnet(node_id,node_addr)

S[0s,∞) node_added_to_subnet(node_id,node_addr , subnet) in

∀node. ∀node_addr . ∀subnet. ∀height.
end_test() ∧ in_subnet(node,node_addr , subnet)

∧ ♦[0s,∞) replica_diverged(node, subnet, height)

−→ CUP_share_proposed(node, subnet)

Scaling Up Proactive Enforcement: Technical Report 59

height = let node_added_to_subnet(node_id,node_addr , subnet) =

registry__node_added_to_subnet(node_id,node_addr , subnet) in

let node_removed_from_subnet(node_id,node_addr) =

registry__node_removed_from_subnet(node_id,node_addr) in

let in_subnet(node_id,node_addr , subnet) =

♦[0s,∞) originally_in_subnet(node_id,node_addr , subnet)

∧ ¬(♦[0s,∞) node_removed_from_subnet(node_id,node_addr))

∨ ¬node_removed_from_subnet(node_id,node_addr)

S[0s,∞) node_added_to_subnet(node_id,node_addr , subnet) in

let subnet_increasing(subnet) =

∃node1 . ∃node2 . ∃addr1 . ∃addr2 .
in_subnet(node1 , addr1 , subnet) ∧ in_subnet(node2 , addr2 , subnet)

∧ (eq(node1 ,node2) ≈ 1)

∧ ¬(¬p2p__node_removed(node1 , subnet,node2)

S[0s,∞) p2p__node_added(node1 , subnet,node2)) in

let subnet_decreasing(subnet) =

∃node1 . ∃addr1 . ∃node2 . ∃addr2 . ∃subneta.
in_subnet(node1 , addr1 , subnet)

∧ (¬p2p__node_removed(node1 , subnet,node2)

S[0s,∞) p2p__node_added(node1 , subnet,node2)

∨ ♦[0s,∞) originally_in_subnet(node2 , addr2 , subnet)

∧ ¬(♦[0s,∞) p2p__node_removed(node1 , subnet,node2))

∧ ¬(∃subneta. ♦[0s,∞) p2p__node_added(node1 , subneta,node2)))

∧ ¬in_subnet(node2 , subneta, subnet) in

let subnet_is_changing(subnet) =

subnet_increasing(subnet) ∨ subnet_decreasing(subnet) in

let fin(node, subnet, height, hash, replica_version)- =

finalized(node, subnet, height, hash, replica_version)

∧ ¬([0s,∞) ♦[0s,∞)(

∃nodea. finalized(nodea, subnet, height, hash, replica_version))) in

∀subnet. ∀n1 . ∀height1 . ∀hash1 . ∀replica_version. ∀n2 . ∀height2 . ∀hash2 .
¬((¬subnet_is_changing(subnet)

S[81s,∞) fin(n1 , subnet, height1 , hash1 , replica_version))

∧ fin(n2 , subnet, height2 , hash2 , replica_version)

∧ (eq(height2 , add(height1 , 1)) ≈ 1))

60 F. Hublet et al.

logging = let node_added_to_subnet(node_id, subnet) =

∃node_addr . originally_in_subnet(node_id,node_addr , subnet)

∨ registry__node_added_to_subnet(node_id,node_addr , subnet) in

let node_removed_from_subnet(node_id) =

∃node_addr . registry__node_removed_from_subnet(node_id,node_addr) in

let in_subnet(node_id, subnet) =

¬node_removed_from_subnet(node_id)

S[0s,∞) node_added_to_subnet(node_id, subnet) in

let is_proper_tp() = ♦[1s,∞)⊥ in

let relevant_node(node_id, subnet) =

in_subnet(node_id, subnet) S[10m+0s,∞) in_subnet(node_id, subnet)

∧ is_proper_tp() in

let relevant_log(node_id, subnet, level,message, i) =

∃host_id. ∃component.

log(host_id,node_id, subnet, component, level,message)

∧ (match(component, "orchestrator::ic_execution_environment::") ≈ 1)

∧ ¬(node_id ≈ "") ∧ tp(i) in

letmsg_count(node_id, subnet, count) =

count ← SUM(c;node_id, subnet)

((c ← CNT(i;node_id, subnet)

(♦[0s,10m) relevant_log(node_id, subnet, level,message, i)))

∧ relevant_node(node_id, subnet)

∨ relevant_node(node_id, subnet) ∧ (c ≈ 0)) in

let typical_behavior(subnet,median) =

(median ← MED(count; subnet)(msg_count(node_id, subnet, count)))

∧ (∃n. (n ← CNT(node_id; subnet)(relevant_node(node_id, subnet)))

∧ (geq(n, 3) ≈ 1)) in

let typical_behaviors(subnet,median) =

♦[0s,10m) typical_behavior(subnet,median) in

let compute(subnet,node_id, count,min,max) =

¬(♢[0s,10m) end_test()) ∧ msg_count(node_id, subnet, count)

∧ (min ← MIN(m; subnet)(typical_behaviors(subnet,m)))

∧ (max ← MAX(m; subnet)(typical_behaviors(subnet,m))) in

let exceeds(subnet,node_id, count,min,max) =

compute(subnet,node_id, count,min,max)

∧ (gt(float_of_int(count), fmul(float_of_int(max), 1.1)) ≈ 1)

∨ compute(subnet,node_id, count,min,max)

∧ (lt(float_of_int(count), fmul(float_of_int(min), 0.9)) ≈ 1) in

∀subnet. ∀node_id. ∀count. ∀min. ∀max .

exceeds(subnet,node_id, count,min,max)

∧ ¬([0s,10m)(∃a. ∃b. ∃c. exceeds(subnet,node_id, a, b, c)))

−→ alert_continuous_violations(subnet,node_id, count,min,max)

Scaling Up Proactive Enforcement: Technical Report 61

reboot = let in_ic(node_id,node_addr) =

♦[0s,∞) originally_in_ic(node_id,node_addr)

∧ ¬(♦[0s,∞) registry__node_removed_from_ic(node_id,node_addr))

∨ ¬registry__node_removed_from_ic(node_id,node_addr)

S[0s,∞) registry__node_added_to_ic(node_id,node_addr) in

let true_reboot(ip_addr , data_center) =

∃node_id. in_ic(node_id, ip_addr) ∧ reboot(ip_addr , data_center)

∧ [0s,∞) ♦[0s,∞) reboot(ip_addr , data_center) in

let unintended_reboot(ip_addr , data_center) =

true_reboot(ip_addr , data_center)

∧ ¬([0s,∞)(¬reboot(ip_addr , data_center)

S[0s,∞) reboot_intent(ip_addr , data_center))) in

let num_reboots(data_center ,n) =

♦[0s,30m)(∃ip_addr . unintended_reboot(ip_addr , data_center))

∧ (n ← CNT(i; data_center)

(♦[0s,30m) unintended_reboot(ip_addr , data_center) ∧ tp(i))) in

□[0s,∞)(∀data_center . ∀n. num_reboots(data_center ,n) ∧ (gt(n, 2) ≈ 1)

−→ alert_reboots(data_center ,n))

unauthorized = let unauthorized_connection_attempt(local_addr , peer_addr) =

ControlPlane__spawn_accept_task__tls_server_handshake_failed(

local_addr , peer_addr) in

let node_added_to_subnet(node_id,node_addr , subnet)- =

registry__node_added_to_subnet(node_id,node_addr , subnet) in

let node_removed_from_subnet(node_id,node_addr)+ =

registry__node_removed_from_subnet(node_id,node_addr) in

let in_subnet(node_id,node_addr , subnet)- =

♦[0s,∞) originally_in_subnet(node_id,node_addr , subnet)

∧ ¬(♦[0s,∞) node_removed_from_subnet(node_id,node_addr))

∨ ¬node_removed_from_subnet(node_id,node_addr)

S[0s,∞) node_added_to_subnet(node_id,node_addr , subnet) in

∀dest_addr . ∀sender_addr . ∀dest_id. ∀subnet.
unauthorized_connection_attempt(dest_addr , sender_addr)

∧ in_subnet(dest_id, dest_addr , subnet)

−→ (∃sender_id. ∃subneta.
in_subnet(sender_id, sender_addr , subneta)

∧ (eq(subneta, subnet) ≈ 1)

∧ ♦[0s,15m+0s] in_subnet(sender_id, sender_addr , subnet))

62 F. Hublet et al.

D.5 agg

p1 = □[0s,∞)(∀u. ∀s. ∀a. withdraw(u, a)

∧ (s ← SUM(a; u)(♦[0s,30s] withdraw(u, a) ∧ tp(t)))

−→ leq(s, 10000.) ≈ 1)

p2 = □[0s,∞)(∀u. ∀s. ∀a. withdraw(u, a)

∧ (s ← SUM(a; u)(♦[0s,30s] withdraw(u, a) ∧ tp(t)))

∧ (¬limit_off(u) S[0s,∞) limit_on(u))

−→ leq(s, 10000.) ≈ 1)

p3 = □[0s,∞)(∀u. ∀s. ∀a. ∀l. withdraw(u, a)

∧ (s ← SUM(a; u)(♦[0s,30s] withdraw(u, a) ∧ tp(t)))

∧ (¬(∃l2 . limit(u, l2)) S[0s,∞) limit(u, l))

−→ leq(s, l) ≈ 1)

p4 = □[0s,∞)(∀u. ∀s. ∀m. ∀a. withdraw(u, a)

∧ (s ← AVG(a; u)(♦[0s,90s] withdraw(u, a) ∧ tp(t)))

∧ (m ← MAX(a; u)(♦[0s,7s] withdraw(u, a) ∧ tp(t)))

−→ leq(m, fmul(2., s)) ≈ 1)

p5 = □[0s,∞)(∀s. ∀u. ∀a. withdraw(u, a)

∧ (s ← AVG(c; u)(c ← CNT(t; u;♦[0s,30s] withdraw(u, a) ∧ tp(t))))

−→ leq(s, 150) ≈ 1)

p6 = □[0s,∞)(∀u. ∀c. ∀a. withdraw(u, a)

∧ (c ← CNT(k ; u)((v ← AVG(a; u)(♦[0s,30s] withdraw(u, a) ∧ tp(t)))

∧ withdraw(u, p) ∧ tp(k) ∧ (lt(fmul(2., v), p) ≈ 1)))

−→ leq(c, 5) ≈ 1)

D.6 cluster

dbscan = let unintended_reboot(s, dc) =

reboot(s, dc)

∧ ¬([0s,∞)(¬reboot(s, dc) S[0s,∞) intended_reboot(s, dc))) in

let cnt_reboots(dc, c) =

c ← CNT(i; dc)(♦[0s,1799s] unintended_reboot(s, dc) ∧ tp(i)) in

□[0s,∞)(∀dc. ∀l.

(dc, l ← DBSCAN(dc, c;)(cnt_reboots(dc, c))) ∧ (l ≈ 1)

−→ alert(conc(conc("Data center ", string_of_int(dc)),

" has rebooted too often")))

grubbs = let unintended_reboot(s, dc) =

reboot(s, dc)

∧ ¬([0s,∞)(¬reboot(s, dc) S[0s,∞) intended_reboot(s, dc))) in

let cnt_reboots(dc, c) =

c ← CNT(i; dc)(♦[0s,1799s] unintended_reboot(s, dc) ∧ tp(i)) in

□[0s,∞)(∀dc. ∀l.

(dc, l ← GRUBBS(dc, c;)(cnt_reboots(dc, c))) ∧ (l ≈ 1)

−→ alert(conc(conc("Data center ", string_of_int(dc)),

" has rebooted too often")))

Python:

Scaling Up Proactive Enforcement: Technical Report 63

import numpy as np
from s c ipy import s t a t s
from sk l e a rn . c l u s t e r import DBSCAN as D

def GRUBBS(data) :
va lues = np . array ([v for k , v in data])
keys = [k for k , v in data]

n = len (va lues)

i f n == 0 :
return []

e l i f n == 1 :
return [(keys [0] , 0)]

mean = np . mean(va lues)
std = np . std (values , ddof=1)

G = np . abs (va lues − mean) / std

t_cr i t = s t a t s . t . ppf (1 − 0 .05 / (2 ∗ n) , n − 2)
G_crit = ((n − 1) / np . sq r t (n)) ∗ \

np . sq r t (t_cr i t ∗∗2 / (n − 2 + t_cr i t ∗∗2))

i s_ou t l i e r = G > G_crit

r e s u l t = [(k , int (o u t l i e r))
for k , o u t l i e r in zip (keys , i s_ou t l i e r)]

return r e s u l t

def DBSCAN(data) :
va lues = np . array ([v for k , v in data])
keys = [k for k , v in data]

n = len (va lues)

i f n == 0 :
return []

e l i f n == 1 :
return [(keys [0] , 0)]

X = va lues . reshape (−1 , 1)

dbscan = D(eps =0.5 , min_samples=2)
l a b e l s = dbscan . f i t_p r ed i c t (X)

i s_ou t l i e r = l a b e l s == −1

r e s u l t = [(k , int (o u t l i e r))
for k , o u t l i e r in zip (keys , i s_ou t l i e r)]

return r e s u l t

	-3exScaling Up Proactive Enforcement: Technical Report-2ex

