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Abstract—Metaheuristics are search procedures used to solve
complex, often intractable problems for which other approaches
are unsuitable or unable to provide solutions in reasonable times.
Although computing power has grown exponentially with the
onset of Cloud Computing and Big Data platforms, the domain
of metaheuristics has not yet taken full advantage of this new
potential. In this paper, we address this gap by proposing Hyper-
Spark, an optimization framework for the scalable execution of
user-defined, computationally-intensive heuristics. We designed
HyperSpark as a flexible tool meant to harness the benefits (e.g.,
scalability by design) and features (e.g., a simple programming
model or ad-hoc infrastructure tuning) of state-of-the-art big data
technology for the benefit of optimization methods. We elaborate
on HyperSpark and assess its validity and generality on a library
implementing several metaheuristics for the Permutation Flow-
Shop Problem (PFSP). We observe that HyperSpark results are
comparable with the best tools and solutions from the literature.
We conclude that our proof-of-concept shows great potential for
further research and practical use.

Index Terms—Parallel Metaheuristics, Programming Model,
Hyperheuristics, Optimization, Framework

I. INTRODUCTION

The word Metaheuristic (from ancient Greek meta = “be-
yond, higher-level" and heuriskein = “to find") defines a
class of search algorithms able to find near-optimal solutions
for hard optimization problems by working on an abstract
plane [41]. While ordinary heuristics are explicitly designed to
efficiently tackle a specific problem, by exploiting a profound
knowledge about it, metaheuristic algorithms implement a
more general optimization schema, flexible and easily adapt-
able to multiple different problems, which usually entails a re-
duced design and implementation time. The main shortcoming
of this class of methods is the relative inefficiency with respect
to ad hoc solutions. For these reasons, metaheuristics are
typically applied in scenarios where no satisfactory heuristic
is known.

Research Context. Metaheuristic approaches, often hy-
bridized with local search techniques [42] are popular in
Search-Based Software Engineering (SBSE) [19], [22], e.g., in
defect prediction [27], [28], automated testing [24] and more
[21], [23]. However, to achieve further generality, streamline
the creation of new metaheuristics, and organize the knowl-
edge acquired over the years metaheuristic optimization frame-
works (MOFs) have been proposed. A MOF is an abstraction

that provides a diverse set of reusable components, and the
necessary mechanisms to selectively alter them with user-
defined functions to handle specific optimization problems.
Parejo surveys [33] and compares systematically top existing
MOFs. The major drawbacks are summarized as follows: (a)
MOFs have minimal support for parallel and distributed execu-
tion; (b) MOFs lack support for the activity of hyperheuristics
programming (i.e., the search-based selection and combination
of multiple search methods into a single optimization solution
[7]); and (c) MOFs are not designed according to known
software engineering best practices.

Research Objective. In response to the above limitations,
we take a software engineering perspective on the problem
and propose HyperSpark, a MOF that features a transparently-
distributed programming model to create parallel-by-design
search methods. In fact, HyperSpark supports the design of
parallel metaheuristics and their execution on a cluster of
distributed and interconnected computational nodes by rely-
ing on the programming model of Apache Spark1.The key
contribution of this paper is the detailed outline and proof-of-
concept evaluation of a programming environment for parallel
search algorithms with particular reference to metaheuristics.

Research Solution Features. The main properties featured
by HyperSpark are:

(1) User-invisible parallelization - as it handles code dis-
tribution and parallelization transparently; (2) Configurability
- as it exposes configuration parameters to fine tune the
execution and parallelization of optimization algorithms (e.g.,
number of execution nodes, number of used cores per node,
etc); (3) Flexibility - as it exposes a programming model that
allows users to, e.g., (a) define arbitrary parallelization strate-
gies, (b) design and run hyperheuristics (combining different
metaheuristics); (4) Cooperation - as it allows for synchronous
communication among parallel instances of the algorithm
and, therefore, supports a large class of cooperative parallel
search algorithms, which are yet to be fully explored both in
theory and practice [26]; (5) Extensibility - as it is developed
in a object-oriented and functional programming language
(Scala) with mechanisms (e.g., inheritance, traits, implicits,
and late binding) that facilitate the adaptation of metaheuristic

1https://spark.apache.org/
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algorithms to specific problems, fostering extensible design
and code reuse; (6) Portability - as it can run on any JVM-
enabled architecture;

Solution Evaluation. To assess HyperSpark’s efficiency
and generality in offering easy-to-use abstractions for create
suitable optimization algorithms, we implemented a proof-of-
concept library offering several methods for the widely-known
Permutation Flow-Shop Problem (PFSP) [45]. PFSP reflects a
class of scheduling problems “[...] in which the flow control
shall enable an appropriate sequencing for each job and for
processing on a set of resources in compliance with given
processing orders" [12], [45]. In particular, the goal of this
proof-of-concept was to demonstrate two properties: a) that
it is possible for the user to implement a sequential search
algorithm, that the framework then commits itself to distribute
and synchronize the various replicas in a transparent way; b)
That the technological and architectural choices underlying
HyperSpark do not prevent the achievement of results com-
parable with the state-of-the-art. We observe that the non-
optimized nor fine-tuned algorithms of the library achieve in
experimenting with PFSP results that are comparable with the
best solutions from literature, e.g., differing by around 7-14%
in terms of time overheads to achieve an acceptable solution.

Structure of the paper. The reminder of this paper is
structured as follows. Section II sets the work in context
and briefly outlines the state-of-the-art. Section III introduces
HyperSpark and outlines basic implementation details and
examples. Section IV presents and discusses the results of
an experimental evaluation of the framework. Specifically, the
efficiency of HyperSpark in solving PFSP and its comparison
with existing MOFs. Finally, Section V concludes the paper.

II. BACKGROUND AND STATE OF THE ART

The long-term goal of our intended contribution with Hyper-
Spark is two-fold. On the one hand, state-of-the-art in search-
based software engineering is rich with approaches, concepts,
prototypes, and advances specifically designed to address some
of the hardest problems in software engineering (e.g., testing,
defect analysis). However, there is a sensible gap between
operations research and Search-Based Software Engineering
(SBSE) disciplines, e.g., in applying metaheuristics and hy-
perheuristics flexibly to software engineering problems and
doing so at scale. With HyperSpark we aim to help to address
this gap by providing a programming environment built on
top of the flexible Apache Spark computing engine, making
parallelization as seamless as possible and enabling the flexible
use of metaheuristics in development and application.

On the other hand, as previously introduced, state-of-the-
art in operations research is dense with ad-hoc solutions to
parallelization of metaheuristics. HyperSpark offers a data-
intensive perspective on the matter — it is our intention to
offer a large-scale compute platform that helps to address the
scalability issues of ad-hoc solutions for the benefit of both
academics and practitioners in the field.

The framework presented in this paper is related and in-
spired by other works that can be roughly classified into two

groups: parallel MOFs and Big Data Platforms to support
metaheuristics. The first group corresponds to the current
platforms that support parallel execution of metaheuristic
algorithm: ECJ [1], ParadisEO [8], EvA2 [25], MALLBA [2],
and jMetal [14]. However, none of the MOFs above exposes a
programming model to support the design of hyperheuristics.
Besides, jMetal does not support distributed execution, while
the rest of the MOFs presented provide limited flexibility in
parallel metaheuristic design. More specifically, they do not
support a class of metaheuristics that performs the local search
using parallel and distributed neighborhood exploration [33].
The second group consists of a large body of works that
adopt different Big Data processing technologies to implement
particular algorithms [3], [34], [44] or a particular class of
algorithms [5], [16], [18].

A work that shares some analogies with our framework (as
MOF over Spark) is presented in [34]. However, the authors
extend the jMetal [14] framework only to accommodate the
streaming feature of Apache Spark without fully exploiting its
parallel and distributed execution capabilities.

Finally, from a multi-agent perspective, Multi-Agent MOFs
such as MAGMA [29] or followup works by Lopes et al.
[17] offer an orthogonal perspective wherefore metaheuristic
agents offer specific implementations of multi-agent systems
(MAS) [4] to solve optimization problems with agent-based
metaheuristic algorithms.

III. HYPERSPARK: AN OVERVIEW

This section illustrates our research solution. First, we focus
on how HyperSpark pursuits that goal, elaborating on its archi-
tecture (see Sec. III-A). Second, we present the programming
model and a typical workflow (Sec. III-B), the framework
runtime model is presented in Sec. III-C and, lastly, Sec. III-D
presents some usage scenarios.

A. HyperSpark Core Architecture

The primary goal of HyperSpark is to provide a program-
ming environment that is general enough to accommodate
various representations of Problem instances, solved employ-
ing different kinds of search Algorithms that produce sets of
Solutions with some arbitrary encoding. We refine previous
research [14] to distill a generic scheme.

The core architectural entities of HyperSpark are shown in
white boxes on Figure 1. The architecture consists of a single
Scala trait2 and three classes that capture the main concepts
enforced by HyperSpark. The Algorithm trait represents a
generic optimization method: its purpose is solving a problem,
represented as an instance of Problem class and producing a
(set of) Solution object(s). The Problem is an abstract class
defined to encode the solution space and objective function
of a particular problem. Given a Solution object, a Problem
object must provide a value of the objective function, typed
V for that solution. We argue that this design is simple and
flexible enough to accommodate any arbitrary combination

2Traits are specific concepts inherited from the Scala programming lan-
guage similar, but more powerful than Java interfaces.



Fig. 1: Class diagram of HyperSpark base classes and traits.

of a problem representation, search algorithm, and solution
encoding. Users can implement custom algorithms by mixing3

in the Algorithm trait and overriding their solve method.
Entities colored in grey on Figure 1 exemplify how users
can extend HyperSpark elements. In order to introduce a new
algorithm represented by the class UserAlgorithm, one needs
to mix in the Algorithm trait. Similarly, user-defined problems
and solutions need to extend the respective base classes with
instances describing the extensions.

It is worth noticing that in the HyperSpark core architecture
there is no reference to parallelization whatsoever. This is due
to the particular policy that the framework enforces, which
can be resumed with the expression, “write locally, distribute
painlessly". It means that the developer is encouraged to
write plain single-threaded methods to tackle the considered
problem, as it were to be executed on a local machine.
The framework takes care of autonomously and transparently
distributing the code, running it in parallel, and collecting
results following user specifications.

B. Programming Model and Typical Workflow

As previously seen, the first step for the developer interested
in creating a parallel and distributed algorithm is to provide a
suitable implementation for the core elements of HyperSpark,
that is providing the appropriate problem representation, so-
lution encoding, and at least one (single-threaded) algorithm.
Without loss of generality, we refer to the most straightforward
case of one single algorithm to be parallelized; nonetheless,
HyperSpark is able to seamlessly handle the cooperation of
multiple different algorithms (as in a hyperheuristic).

The immediately following step consists in extending and
instantiating a HyperSpark execution workflow. Figure 2 il-
lustrates the base workflow executed by the framework. In a
nutshell, HyperSpark iteratively splits the problem, distributes
the algorithm code to the available computational nodes,
executes it, aggregates the outcomes and uses them to feedback

3Mixing in traits in Scala is analogous to implementing interfaces in Java.
Yet, mixing is more powerful as, besides establishing the type hierarchy, it
also allows the sub-type to inherit both trait’s functionality and state.

the process. In the following, we describe the internal details
of each phase behind this process.

Starting from a problem (i.e., solution space and objective
function), the framework can optionally split it into different
sub-problems. This means, for example, that each parallel
instance is assigned to a different region of the solution
space to explore, or a different objective function to optimize.
Splitting a problem, however, is a specific task that highly
depends on the particular problem at hand as well as its
representation; this is consequently left at the discretion of
the user. Assuming that the problem is indeed split, for each
(sub-)problem the user may specify an algorithm to solve it.
There are no constraints on the type of algorithm that can
be used as long as the user provides a meaningful way to
aggregate the outcomes (see solution aggregation phase). The
framework does not provide a default value for the algorithm
selection - this is consequently a mandatory step. If the user
specifies a single algorithm at this step, it will be executed in
parallel. This use makes sense in scenarios whereby multiple
algorithm instances are set for cooperative optimization.

In the next step of the workflow in Figure 2, HyperSpark
allows the users to (optionally) specify a seeding strategy; it
determines the way an initial solution is generated at each
iteration of HyperSpark (also referred to as stage). Since
this step is optional, HyperSpark does not provide initial
defaults. Nonetheless, it must be pointed out that this phase
is of paramount importance when it comes to design an
effective parallel optimization as it defines a way to implement
information distribution and collaboration among the instances
of the algorithm. For example, at each iteration, the user can
be interested in preserving the best solution and using it to
generate good seeds for the next stage.

At this point, the framework distributes and runs the algo-
rithm. To avoid high synchronization times the user is encour-
aged to implement algorithms that stops after the same amount
of time as HyperSpark has to wait that all the algorithms
complete their execution to collect the solutions generated and
combine them suitably. Such a programming model allows
the user to easily implement an aggregation function that
combines solutions from different algorithms. In case the user
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is not interested in particular re-combination strategies, the
framework provides by design a simple aggregation function
that returns the solution featuring the minimum value of the
objective function.

Finally, the stopping condition of the entire workflow is
an arbitrary predicate that determines when HyperSpark stops
its execution - this stopping condition is checked after each
iteration of the parallel execution (stage). This condition is
an arbitrary predicate since it can depend on various aspects
of the execution. For instance, one can just specify a fixed
number of iterations, specify a timeout, or a more complex
condition that depends on the solution, e.g., solution precision
must be within a fixed threshold. Once the above workflow
is fully instantiated for the metaheuristic at hand, HyperSpark
performs transparent parallel and distributed execution of the
selected algorithms.

C. Runtime Model

As previously stated, the HyperSpark architecture relies
on the Apache Spark project and inherits its runtime model.
Spark is a leading, efficient, general, open source Big Data
processing engine. A Spark application runs on an independent

Listing 1: Example of HyperSpark workflow definitiom
1 val problem =

PFSProblem.fromResources("inst_ta054.txt")
2 val conf = new FrameworkConf()
3 .setProblem(problem)
4 .setNAlgorithms(new GAAlgorithm(), 4)
5 .setStoppingCondition( new

TimeExpired(100))
6 .setDeployment("local", 4)
7 val solution = Framework.run(conf)
8 println(solution)

set of processes (supervised by agents called executors in
Spark lingo) distributed on a cluster and coordinated by a
primary process (called the driver). A driver program cannot
decide on the node, core and memory allocation for executors,
but rather delegates this to a cluster manager.

More specifically, once the driver program is executed, it
connects to a cluster manager (either Mesos, YARN, or a
standalone Spark cluster manager), which allocates resources.
By communicating with the cluster manager, the driver pro-
gram sets up executors to run singular algorithms, sends the
code to execute (packaged into JAR files) to the executors and
coordinates their execution. More details on the internal Spark
runtime model are beyond the scope of this paper; the reader
is, nonetheless, referred to Apache Spark homesite for more
details.

D. Usage Scenarios

In this section, the use of HyperSpark is presented, and
some insights are provided utilizing two illustrative examples.
Suppose an implementation of the genetic algorithm from [36]
for the PFSP (see Sec. IV for more details) is available and the
used wish to run four instances of the algorithm in parallel.
This scenario can be realized in HyperSpark as in Listing 1.
The first line instantiates an object of the PFSProblem class,
which is our custom representation of the PFSP. This is
done through a factory method fromResources that reads the
instance parameters from a file. Next, a HyperSpark configura-
tion object called FrameworkConf is created that exposes the
main API of HyperSpark. When developing the configuration
object, we committed to the convention over configuration
design paradigm. This means that all of the setter methods,
excluding the ones defining the problem and the algorithms,
are optional. If the user does not set a particular property,
the framework uses a reasonable default value. The execution
will not start until the run method is executed passing the

Listing 2: More complex example of HyperSpark workflow definitiom
1 val problem =

PFSProblem.fromResources("inst_ta054.txt")
2 val conf = new FrameworkConf()
3 .setProblem(problem)
4 .setNAlgorithms( new HGAlgorithm(), 100)
5 .setSeedingStrategy( new

SlidingWindow(sqrt(problem.numOfJobs)))
6 .setStoppingCondition(new TimeExpired(100))
7 .setStages(5)
8 .setDeployment("spark", 20)
9 .setProperty(spark.executor.cores,5)

10 .setProperty(spark.executor.memory,8g)
11 val solution = Framework.run(conf)
12 println(solution)



configuration object, as shown in line 7. Lines 3–6 constitute
a minimalist example of the use of the HyperSpark program-
ming model, and they define a simple high-level execution
workflow. In Line 3 we specify that all the algorithms solve
the same problem instance. Line 4 states that the algorithm
GAAlgorithm has to be executed four times in parallel with no
cooperation and stop after 100 seconds of execution (line 5).
The setDeployment method is used to specify the deployment
mode and the number of parallel execution processes. In this
case, the local mode is used that creates four processes on the
local machine to execute the algorithms. Other modes include
spark (Spark standalone cluster manager), mesos (i.e., using
Mesos) and yarn-client or yarn-cluster for YARN.

The extended example reported in Listing 2 shows how
to set up the execution of algorithms that cooperate syn-
chronously. Specifically, line 4 specifies that 100 instances
of the cooperative hybrid genetic algorithm from [48] imple-
mented in the HGAlgorithm class are run in parallel on the
same problem. The cooperation is facilitated by adopting an
appropriate seeding strategy and setting a certain number of
stages to a value greater than 1 (line 7). In particular, the
seeding strategy provides a function that generates a seed
solution for each instance at stage n altering the results
of the solution aggregation phase at stage n − 1. In the
specific case reported here, the solution aggregation returns
the minimal makespan solution found during a stage whereas
the seeding strategy, named SlidingWindow, operates selecting
w adjacent elements (window) of a base permutation and
randomly permuting the others. Then, the window is shifted
one position. The process is repeated until a new solution is
generated for each instance of the algorithm.

In line 7 we set the number of stages in the workflow that we
expect the framework to execute. Consequently, the framework
executes each stage in roughly 20 seconds to account for the
100-second stopping condition. At the end of each stage, the
outcomes of each instance are aggregated and reported to the
next stage to allow for a suitable cooperation mechanism.
Lastly, HyperSpark will deploy the executors using the Spark
standalone cluster manager (line 8); assigning to each executor
five cores (line 9) and 8 gigabytes of memory (line 10).

IV. EVALUATION

The aim of this Section is to present the proof-of-concept
experiments carried out to evaluate HyperSpark and discuss
the achieved results.

A. Research Questions and Evaluation Scope
In the scope of our evaluation, we set out to understand the

degree to which our research solution offers a valid program-
ming environment alternative to ad hoc solutions specifically
designed to address PFSP or to support specific approaches.
Hence, we aim at operating a proof-of-concept [11], by
evaluating the computational overhead (if any). Similarly, we
aims at comparing HyperSpark processing results to the state-
of-the-art.

In this evaluation scope two research questions are ad-
dressed, namely:

TABLE I: List of algorithms implemented in HyperSpark-PFSP library

Algorithm Authors Year Ref. Name
NEH Nawaz, Enscore and

Ham
1983 [30] NEH

Iterated Greedy Ruiz and Stützle 2007 [37] IG
Genetic Algorithms Reeves 1995 [36] GA
Hybrid Genetic Algorithms Zheng and Wang 2003 [48] HG
Simulated Annealing Osman and Potts’s ad-

daption for PFSP
1989 [32] SA

Improved S-Annealing Xu and Oja 1990 [46] ISA
Taboo Search Taillard 1996 [39] TS
Taboo Search + Backjump Novicki and Smutnicki 1996 [31] TSAB
Ant Colony Optimization Dorigo and Stützle 2010 [13] ACO
Max Min Ant System Stützle 1997 [38] MMAS
mMMAS Rajendran and Ziegler 2004 [35] MMMAS
PACO Rajendran and Ziegler 2004 [35] PACO

TABLE II: Time overhead analysis - highest and lowest values for time
percentages highlighted in bold.

Instance IDInstance IDInstance ID # CPU# CPU# CPU time (s)time (s)time (s) ωP (s)ωP (s)ωP (s) ωI (s)ωI (s)ωI (s) ωT (s)ωT (s)ωT (s)
∑

ω (%)
∑

ω (%)
∑

ω (%)

ta001 1 15.0 2.8 5.8 0.6 61.3
ta001 8 16.2 2.9 7.2 0.2 63.6
ta001 16 20.6 4.7 7.6 0.6 62.6
ta001 24 25.9 6.5 9.4 0.4 63.1
ta001 32 30.9 7.8 11.8 0.6 65.2
ta001 40 36.9 10.3 12.8 0.6 64.1
ta111 1 341.5 18.1 5.2 0.2 6.9
ta111 8 346.4 20.9 4.4 0.2 7.4
ta111 16 367.9 36.4 4.8 0.4 11.3
ta111 24 371.7 32.6 6.2 0.4 10.5
ta111 32 382.3 37.3 7.2 0.6 11.8
ta111 40 405.3 46.3 11.8 0.8 14.5

• (1) is the *time-overhead* introduced by HyperSpark
acceptable in the context of parallel cooperative opti-
mization?

• (2) are the algorithms implemented using HyperSpark
competitive with respect to the state-of-the-art in terms
of *solution quality*?

B. Evaluation Target and Materials

In response to the previous two research questions, we
carried out two different experiments, both involving the
Permutation Flow Shop Problem (PFSP), a well-known NP-
Complete optimization problem [20] arising from the field of
machine scheduling. This problem comes with the well-known
Taillard’s benchmark [40], which consists of 120 instances
providing different processing times, number of jobs (ranging
from 20 to 500), and number of machines (from 5 to 20). Each
job/number of machines combination features 10 instances.
Also, another reason behind the selection of PFSP as a case
study is the fact that, for many problem instances, the optimal
solution is known and freely available.

Simply put, the PFSP can be defined as a set J of n
jobs that need to be processed on a set M of m machines.
Every job has to go through all the machines in the same
predetermined order. Without loss of generality, we can
reorder the machines in such a way that each job has to visit
them in order, from machine 1 to machine m. Each job j is
associated with a fixed, non-negative, and known in advance
processing time pij for each machine i. Furthermore, at any
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point in time, each machine can process at most one job,
and each job can be processed by (at most) one machine.
As a consequence, each machine of the line processes
the same sequence of jobs. This problem aims to find a
particular sequence that optimizes a specific performance
metric. Research on the PFSP introduced several distinct
optimization criteria. The most commonly studied objective
(also the one used in this work) is the minimization of the
maximum completion time (i.e., Makespan):

Cmax = maxnj=1{Cmj};

where Cmj is the completion time of job j on machine m.
The Makespan minimization is directly related with the maxi-
mization of machine utilization and reduction of the work-in-
progress. For the purposes of the evaluation, we implemented
a library of algorithms (listed in Table I) published in the
literature for the considered case study problem. This library
is open-source, integral part of the contributions conveyed
in this paper, and shipped directly within our distribution of
HyperSpark. All the algorithms are single-threaded and no
specific speed up is implemented.

C. Experimental Setup Features

For the experiments we exploited a workbench cluster
consisting of 10 virtual machines, each having 8 CPU cores
running at 2.4 GHz and 15 GB of RAM at their disposal for
a total of 80 CPU cores and 150 GB. Furthermore, in all the
experiments the algorithms are stopped as soon as a timeout
of µs = n ·m/2 · 60 milliseconds is reached (n and m are,
respectively, the number of jobs and number of machines for a
certain instance of the problem. The execution time has been
measured in milliseconds of actual CPU compute time as in
the best practices from literature [43]; in this way, more time is
assigned to larger (in terms of number of jobs and machines)
and harder-to-solve problems.

The Apache Spark environment has been installed in Stan-
dalone mode, meaning that it manages directly both applica-
tion scheduling and provisioning of hardware resources. This
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Fig. 4: Execution time vs overheads - a 500-job instance

mode of operation has proven to greatly hamper the perfor-
mance [47]. Consequently, we argue that the evaluation of our
research solution is harnessing a baseline and improvement-
free performance that HyperSpark can to deliver. Conversely,
in future work, we plan to experiment with HyperSpark
assessing possible performance boosts using specific resource
managers.

D. Experiment 1 – Framework overhead estimation

The aim here is to evaluate the overhead introduced by the
framework due to context creation (initialization, denoted ωI ),
data and code distribution to the nodes and synchronization
(evaluated with parallelization, ωP ) and context termination
(ωT ) with respect to the cluster and instance sizes. Therefore,
we set up the following experiment. We increased the number
of cores available linearly, that is, we considered configura-
tions with 1, 8, 16, 32, 40 cores respectively. Subsequently, five
Taillard’s instances of size 20, 50, 100, 200 and 500 jobs were
randomly chosen; replicating approaches from the literature
[43], each one of them was solved five times using one
algorithm from our library (namely IG) without cooperation
(number of stages equal to 1). Notice that such a choice does
not reduce the generality of the experiment since the algorithm
and cooperation are factors that do not influence the overhead.

Table II reports an excerpt from the data harvested in the
experiment. We can observe that the overhead due to paral-
lelism and synchronization ωP depends on either the cluster
or instance size, going from 3 to 47 seconds. Conversely,
initialization depends on the cluster size only; however, the
growth is quite limited, remaining in the range 5-13 seconds.
The termination overhead, instead, is constant and less than
1 second. Figure 3 is a barchart representing variation of the
overheats when the number of CPUs allocated is increased
for a 20-job/5-machine case. Conversely, by increasing the
problem size (bottom half of Tab. II), we noticed that the
impact of the total overhead in percentage (

∑
ω), which

showed quite high values (up to 70%) on small instances (in
the range of the tens of jobs), accounts only for 7-14% for



TABLE III: Average RPD from best known solution for methods (IG, HG)
parallelized with SS, SPSW and SPFW strategies

RPD (%)

HG IG HG IG HG IG
|J ||J ||J | |M ||M ||M | SS SS SPSW SPSW SPFW SPFW
50 5 0.18 0.10 0.15 0.06 0.15 0.06

10 2.24 1.74 2.27 1.74 2.28 1.75
20 3.42 2.87 3.50 2.62 3.52 2.67

100 5 0.19 0.10 0.21 0.16 0.21 0.16
10 1.32 1.11 1.38 1.50 1.38 1.49
20 3.98 3.58 4.17 3.96 4.17 4.02

200 10 0.87 1.05 0.92 1.03 0.90 1.03
20 3.65 3.76 3.73 3.87 3.76 3.87

Avg. 1.98 1.79 2.04 1.87 2.05 1.88

the instance with 500 jobs. Such different impact is outlined
clearly in Figure 4.

Summary for RQ1. All previous observations lead to
the conclusion that the proposed solution shows an over-
head on small problems but can be, instead, considered
suitable to large (over one hundred jobs) optimization
problems, that is, those that would benefit the most from
HyperSpark parallelism.

E. Experiment 2 – Solution Quality Evaluation

To evaluate the capability to achieve state-of-the-art results,
we set up an experimental evaluation on a cluster with 20
cores. All 120 available problem instances have been solved
10 times using two algorithms, namely IG and HG, with three
different seeding strategies and the average relative percentage
deviation (RPD) [10] with respect to the best known solution
has been calculated. We selected the IG and HG among
other algorithms implemented in the HyperSpark library as
they resulted the most performing ones in preliminary tests.
The three different seeding strategies we consider were the
“SameSeeds" (SS), “SeedPlusSlidingWindow" (SPSW), and
“SeedPlusFixedWindow" (SPFW).

In Table III we report the aggregate results of this second
experiment. We observe that all the considered algorithms
return similar results, which are on average about 2% worst
than the best known solution for the PFSP. This is a consider-
able outcome, considering the early stage of the HyperSpark
prototype and the fact that the considered algorithms have been
implemented, as previously outlined, without any particular
framework settings optimization [9], [15].

To complete the comparison with the state-of-the-art, we
experimented, on the same pool of instances, involving the
well-known MOF ParadisEO [8]. Both in HyperSpark and
in ParadisEO we implemented a simple genetic algorithm
without speed up (in order to normalize the results), and all
the instances of the problem have been solved 5 times. Finally,
the RPD has been calculated with respect to the best known
solutions. The main highlights for this evaluation are briefly
outlined below:

• Worst results: For both platforms the highest RPD
was achieved for instance 111, which features 500 jobs
and 20 machines, 3.8% for ParadisEO and 4.31% for
HyperSpark.

• Best results: ParadisEO has been able to find the optimal
solution for the 24% of the runs (144) while HyperSpark
found it 16.17% of the time (97 runs).

• Statistical test for the difference: Although the aver-
age values of the RPD are close, the Wilcoxon signed
rank test [6] for the differences between ParadisEO and
HyperSpark (using as paired samples the average RPD
for each problem instance, 120 pairs in total) leads us
to conclude that the ParadisEO outperforms HyperSpark
(p < 10−4).

Summary for RQ2. In conclusion, we can state that
the parallelization-synchronization approach implemented
in HyperSpark is promising and can lead, even in the pro-
totypical, non-optimized form outlined and experimented
in this article, to results that are comparable to state-of-
the-art ad-hoc solutions.

V. CONCLUSION

Research in parallelization of metaheuristics is an important
field aiming at tackle hard problems often using sub-optimal
algorithms. Similarly, the uses of such metaheuristics are
manifold, most prominently around search-based approaches
in the filed of software engineering.

The state of the art provides several previous attempts to rec-
oncile diversity and complexity of parallelization approaches
within metaheuristic optimization frameworks (MOFs). These
solutions lack: (a) support for parallel and distributed execu-
tion; (b) support for design and execution of hyperheuristics, as
well as (c) software engineering best practices in their design.
We remark that flexibly supporting aspects (a) - (c) with
parallel and distributed frameworks is necessary to support
the design and experimentation of metaheuristics in the era
of Big Data, e.g., to experiment with search-based software
engineering solutions over problems currently open or still
undergoing experimentation.

In this paper we outline, evaluate, and discuss HyperSpark,
a programming environment for execution of parallel meta-
heuristics implemented on top of the Apache Spark framework.
We aimed at providing support for modern parallel metaheuris-
tics following sound software engineering principles like, ease-
of-use, configurability, flexibility, cooperation, extensibility,
and portability. In this paper we offered an experimental proof-
of-concept evaluation to validate the approach. We conclude
that, despite some limitations mainly due to its prototypical
nature, HyperSpark has shown potential, above all when
dealing with large problem instances.

As future work, we plan to provide better framework support
for problem splitting, as well as experimenting further with
hyperheuristic algorithms and their impact in HyperSpark.
Moreover, we are looking into harnessing Scala and Java



interoperability to integrate out framework with more mature
MOFs such as jMetalḞinally, we are planning to investigate
HyperSpark extensions that facilitate asynchronous communi-
cation for better cooperative optimization.
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