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Example Property1

Every alarm is followed by a shut down event in 10 time units unless all clear
is sounded first.

1Joël Ouaknine and James Worrell, FORMATS 2008
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Linear Temporal Logic (with Past and Future)
Syntax:

ϕ = p | ¬ϕ | ϕ ∨ ϕ |  ϕ | # ϕ | ϕ S ϕ | ϕ U ϕ

p: atomic proposition

Semantics:

 ϕ (previous)
ϕ

. . .

# ϕ (next)
ϕ

. . .

ϕ S ψ (since)
ψ ϕ ϕ ϕ

. . .

ϕ U ψ (until)
ϕ ϕ ϕ ψ

. . .
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Example Property

Every alarm is followed by a shut down event in 10 time units unless all clear
is sounded first.

Atomic propositions:

P = {alarm, shut_down, all_clear}
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Metric Temporal Logic

 I ϕ
ϕ

. . .

I: interval of integer time-stamps

#I ϕ
ϕ

. . .

ϕ SI ψ
ψ ϕ ϕ ϕ

. . .

ϕ UI<∞ ψ
ϕ ϕ ϕ ψ

. . .

I<∞: finite interval of integer time-stamps
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Example Property

Every alarm is followed by a shut down event in 10 time units unless all clear
is sounded first.

MTL formula:

alarm→ (♦[0,10] all_clear ∨ ♦[10,10] shut_down)

♦I<∞ ϕ
ϕ

. . .
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MTL Monitoring Problem: Definition

Input MTL formula ϕ, time-stamped stream of events ρ.
Output Stream of Boolean values denoting whether (ρ, i) |= ϕ.

Example:
alarm→ (♦[0,10] all_clear ∨ ♦[10,10] shut_down)

Time-stamped stream ρ Boolean output stream
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Online Monitoring

Online monitor — algorithm reading event stream once, one event at a time.

Example:
ϕ = a→ ♦[0,60] b

Input stream ρ Buffered events Boolean output stream

Online monitor might need to buffer the entire trace in memory.
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Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ Buffered events Output stream

AERIAL only needs to buffer a constant number of events (independent of the trace).

9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ Buffered events Output stream

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a

Buffered events Output stream

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a

Buffered events
@0:0 a

Output stream

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0

Buffered events
@0:0 a

Output stream

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0

Buffered events
@0:0 a

Output stream
@0:1 true

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0
@0 a

Buffered events
@0:0 a

Output stream
@0:1 true

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0
@0 a

Buffered events
@0:0 a

Output stream
@0:1 true
@0:2 = @0:0

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0
@0 a
@0

Buffered events
@0:0 a

Output stream
@0:1 true
@0:2 = @0:0

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0
@0 a
@0

Buffered events
@0:0 a

Output stream
@0:1 true
@0:2 = @0:0
@0:3 true

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0
@0 a
@0
@10 b

Buffered events
@0:0 a

Output stream
@0:1 true
@0:2 = @0:0
@0:3 true

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0
@0 a
@0
@10 b

Buffered events Output stream
@0:1 true
@0:2 = @0:0
@0:3 true
@0:0 true
@10:0 true

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0
@0 a
@0
@80

Buffered events
@0:0 a

Output stream
@0:1 true
@0:2 = @0:0
@0:3 true

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0
@0 a
@0
@80

Buffered events Output stream
@0:1 true
@0:2 = @0:0
@0:3 true
@0:0 false
@80:0 true

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Related Work: AERIAL (TACAS 2017)
Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and
equivalence verdicts.

ϕ = a→ ♦[0,60] b

Input stream ρ
@0 a
@0
@0 a
@0
@80

Buffered events Output stream
@0:1 true
@0:2 = @0:0
@0:3 true
@0:0 false
@80:0 true

AERIAL only needs to buffer a constant number of events (independent of the trace).
9/18



Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

ϕ = a→ ♦[0,60] b

Heads Time-stamped stream ρ Boolean output stream

Can produce in-order explicit Boolean verdicts in constant working memory (using one
head for each atomic proposition).
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Multi-Head Monitor’s Structure

Example MTL formula:
(a S[0,4] b) ∨ (a U[0,4] b)
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Multi-Head Monitor’s Structure

Example MTL formula:
(a S[0,4] b) ∨ (a U[0,4] b)

(0, {a}) (0, {a}) (2, {a}) (4, {a, b}) (5, {a}) (10, {b})

a b

a S[0,4] b

a b

aU[0,4] b

(a S[0,4] b)∨(aU[0,4] b)
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Since Operator Evaluation
Semantics:

ϕ S[a,b] ψ
ψ ϕ ϕ ϕ

. . .

∆

Idea (assuming b 6=∞)
Store all the time-stamp differences ∆ ∈ [0, b].

Need to store a set of natural numbers and (efficiently)
I query the maximum element,
I remove the maximum element,
I insert a zero,
I increase all elements by δ.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[] (Σ = 0)

represents the multiset {}.

Each operation takes amortized constant time and space complexity is linear in Σ.
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Example:

[0] (Σ = 0)

represents the multiset {0}.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[0, 4] (Σ = 4)

represents the multiset {4}.

Each operation takes amortized constant time and space complexity is linear in Σ.

13/18



Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[0, 4, 2] (Σ = 6)

represents the multiset {6}.

Each operation takes amortized constant time and space complexity is linear in Σ.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[0, 4, 2, 0] (Σ = 6)

represents the multiset {6, 0}.

Each operation takes amortized constant time and space complexity is linear in Σ.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[0, 4, 2, 02] (Σ = 6)

represents the multiset {6, 02}.

Each operation takes amortized constant time and space complexity is linear in Σ.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[0, 4, 2, 02, 1] (Σ = 7)

represents the multiset {7, 12}.

Each operation takes amortized constant time and space complexity is linear in Σ.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[0, 4, 2, 02, 1, 0] (Σ = 7)

represents the multiset {7, 12, 0}.

Each operation takes amortized constant time and space complexity is linear in Σ.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[0, 4, 2, 02, 1, 0, 3] (Σ = 10)

represents the multiset {10, 42, 3}.

Each operation takes amortized constant time and space complexity is linear in Σ.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[0, 4, 2, 02, 1, 0, 3] (Σ = 4)

represents the multiset {10, 42, 3}.

Each operation takes amortized constant time and space complexity is linear in Σ.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[02, 1, 0, 3] (Σ = 4)

represents the multiset {42, 3}.

Each operation takes amortized constant time and space complexity is linear in Σ.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[02, 1, 0, 3] (Σ = 4)

represents the multiset {42, 3}.

Each operation takes amortized constant time.
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Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

[02, 1, 0, 3] (Σ = 4)

represents the multiset {42, 3}.

Each operation takes amortized constant time and space complexity is linear in Σ.

13/18



Until Operator Evaluation
Semantics:

ϕ U[a,b] ψ
ϕ ϕ ϕ ψ

. . .

Idea
Store all the time-stamp differences ∆ ∈ [0, b] such that

phi U[a,b] ψ
ϕ ϕ ϕ ϕ

. . .

∆

We can reuse Delta Queue!
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Space and Time Complexity
Size |ϕ| number of MTL operators in ϕ (a S[4,∞] b) ∨ (a U[0,4] b)
Temporal Size ‖ϕ‖ plus interval bounds (a S[4,∞] b) ∨ (a U[0,4] b)

Theorem
Multi-head monitor’s state for MTL formula ϕ requires O(‖ϕ‖) registers storing
time-stamps and indices into the trace.

a b

a S[4,∞] b

[0, 2, 02, 1]

a b

aU[0,4] b

[0, 1, 2, 02]

(a S[4,∞] b)∨(aU[0,4] b)

Claim
Multi-head monitor for MTL formula ϕ runs in amortized time O(|ϕ|) per event.
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Benchmarking Experiments — Average Case

Formula pseudo-random formula of given size.
Trace pseudo-random trace of fixed length.
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Benchmarking Experiments — Worst Case
Formula MTL formula of size O(n) encoding that a bit string x ∈ {0, 1}n precedes

a distinguished labeled bit string y ∈ {0, 1}n.
Trace all bit strings x ∈ {0, 1}n followed by a single bit string y ∈ {0, 1}n

(pattern repeated to obtain a fixed length trace).
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Multi-Head Monitoring of Metric Dynamic Logic

Syntax:

ϕ = p | ¬ϕ | ϕ ∨ ϕ | |r〉I | 〈r |I r = ? | ϕ? | r + r | r · r | r∗

Building up on the following result2:

L(2DFT) = L(f -2NFT)

(

L(1DFT) ( L(f -1NFT) ( L(mh-1DFT)

2Martin Raszyk, David A. Basin, Dmitriy Traytel: From Nondeterministic to Multi-Head
Deterministic Finite-State Transducers. ICALP 2019.
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