Multi-Head Monitoring of Metric Temporal Logic
 Martin Raszyk, David Basin, Srđan Krstić, and Dmitriy Traytel

ETHzürich

Organisation of the Talk

Introduction - Monitoring Problem and Metric Temporal Logic

Online vs Multi-Head Monitoring

MTL Multi-Head Monitor

Evaluation

Future Work

Roadmap

Introduction - Monitoring Problem and Metric Temporal Logic

Online vs Multi-Head Monitoring

MTL Multi-Head Monitor

Evaluation

Future Work

Monitoring Problem

Example Property ${ }^{1}$

Every alarm is followed by a shut down event in 10 time units unless all clear is sounded first.

[^0]Linear Temporal Logic (with Past and Future) Syntax:

$$
\begin{gathered}
\varphi=\underset{\uparrow}{p}|\neg \varphi| \varphi \vee \varphi|\odot \varphi| \bigcirc \varphi|\varphi \mathrm{S} \varphi| \varphi \mathrm{U} \varphi \\
p: \text { atomic proposition }
\end{gathered}
$$

Linear Temporal Logic (with Past and Future) Syntax:

$$
\begin{gathered}
\varphi=\underset{\uparrow}{p}|\neg \varphi| \varphi \vee \varphi|\odot \varphi| \bigcirc \varphi|\varphi \mathrm{S} \varphi| \varphi \mathrm{U} \varphi \\
p: \text { atomic proposition }
\end{gathered}
$$

Semantics:

- φ (previous)

Linear Temporal Logic (with Past and Future) Syntax:

$$
\begin{gathered}
\varphi=\underset{\uparrow}{p}|\neg \varphi| \varphi \vee \varphi|\odot \varphi| \bigcirc \varphi|\varphi \mathrm{S} \varphi| \varphi \mathrm{U} \varphi \\
p: \text { atomic proposition }
\end{gathered}
$$

Semantics:

- φ (previous)
$O \quad$ (next)

Linear Temporal Logic (with Past and Future)
Syntax:

$$
\begin{gathered}
\varphi=\underset{\uparrow}{p}|\neg \varphi| \varphi \vee \varphi|\odot \varphi| \bigcirc \varphi|\varphi \mathrm{S} \varphi| \varphi \mathrm{U} \varphi \\
p: \text { atomic proposition }
\end{gathered}
$$

Semantics:

- φ (previous)
$\bigcirc \quad$ (next)
$\varphi \mathrm{S} \psi \quad$ (since)

Linear Temporal Logic (with Past and Future)

Syntax:

$$
\begin{gathered}
\varphi=\underset{\downarrow}{p}|\neg \varphi| \varphi \vee \varphi|\odot \varphi| \bigcirc \varphi|\varphi \mathrm{S} \varphi| \varphi \mathrm{U} \varphi \\
p: \text { atomic proposition }
\end{gathered}
$$

Semantics:

- φ (previous)
$\bigcirc \quad$ (next)

$$
0
$$

$-\quad$

$$
\begin{array}{llll}
& & & \varphi \\
0 & 0 & \circ & 0
\end{array}
$$

○

$$
\bigcirc
$$

\square

$$
\begin{array}{ll}
& \varphi \\
& \circ
\end{array}
$$

$\varphi \mathrm{S} \psi \quad$ (since)
$\varphi \cup \psi \quad$ (until)

$$
\begin{aligned}
& \bullet \\
& \bullet \\
& \varphi \\
& \bullet
\end{aligned}
$$

\square
$\begin{array}{ll}\varphi & \varphi \\ 0 & 0\end{array}$

Example Property

Every alarm is followed by a shut down event in 10 time units unless all clear is sounded first.

Atomic propositions:

$$
P=\{\text { alarm, shut_down, all_clear }\}
$$

Example Property

Every alarm is followed by a shut down event in 10 time units unless all clear is sounded first.

Atomic propositions:

$$
P=\{\text { alarm, shut_down, all_clear }\}
$$

Example Property

Every alarm is followed by a shut down event in 10 time units unless all clear is sounded first.

Atomic propositions:

$$
P=\{\text { alarm, shut_down, all_clear }\}
$$

Example Property

Every alarm is followed by a shut down event in 10 time units unless all clear is sounded first.

Atomic propositions:

$$
P=\{\text { alarm, shut_down, all_clear }\}
$$

Example Property

Every alarm is followed by a shut down event in 10 time units unless all clear is sounded first.

Atomic propositions:

$$
P=\{\text { alarm, shut_down, all_clear }\}
$$

Metric Temporal Logic

Metric Temporal Logic

Metric Temporal Logic

Metric Temporal Logic

Example Property

Every alarm is followed by a shut down event in 10 time units unless all clear is sounded first.

MTL formula:

$$
\text { alarm } \rightarrow\left(\diamond_{[0,10]} \text { all_clear } \vee \diamond_{[10,10]} \text { shut_down }\right)
$$

MTL Monitoring Problem: Definition

Input MTL formula φ, time-stamped stream of events ρ.
Output Stream of Boolean values denoting whether $(\rho, i) \models \varphi$.

MTL Monitoring Problem: Definition

Input MTL formula φ, time-stamped stream of events ρ. Output Stream of Boolean values denoting whether $(\rho, i) \models \varphi$.

Example:

$$
\text { alarm } \rightarrow\left(\diamond_{[0,10]} \text { all_clear } \vee \diamond_{[10,10]} \text { shut_down }\right)
$$

Time-stamped stream ρ
Boolean output stream

MTL Monitoring Problem: Definition

Input MTL formula φ, time-stamped stream of events ρ. Output Stream of Boolean values denoting whether $(\rho, i) \models \varphi$.

Example:

$$
\text { alarm } \rightarrow\left(\diamond_{[0,10]} \text { all_clear } \vee \diamond_{[10,10]} \text { shut_down }\right)
$$

Time-stamped stream ρ
Boolean output stream
@O all_clear

MTL Monitoring Problem: Definition

Input MTL formula φ, time-stamped stream of events ρ. Output Stream of Boolean values denoting whether $(\rho, i) \models \varphi$.

Example:

$$
\text { alarm } \rightarrow\left(\diamond_{[0,10]} \text { all_clear } \vee \diamond_{[10,10]} \text { shut_down }\right)
$$

Time-stamped stream ρ
@O all_clear

Boolean output stream
@0 true

MTL Monitoring Problem: Definition

Input MTL formula φ, time-stamped stream of events ρ. Output Stream of Boolean values denoting whether $(\rho, i) \models \varphi$.

Example:

$$
\text { alarm } \rightarrow\left(\diamond_{[0,10]} \text { all_clear } \vee \diamond_{[10,10]} \text { shut_down }\right)
$$

Time-stamped stream ρ
@O all_clear
@10 alarm

Boolean output stream
@O true

MTL Monitoring Problem: Definition

Input MTL formula φ, time-stamped stream of events ρ. Output Stream of Boolean values denoting whether $(\rho, i) \models \varphi$.

Example:

$$
\text { alarm } \rightarrow\left(\diamond_{[0,10]} \text { all_clear } \vee \diamond_{[10,10]} \text { shut_down }\right)
$$

Time-stamped stream ρ
@0 all_clear
@10 alarm
@20 all_clear

Boolean output stream
@O true

MTL Monitoring Problem: Definition

Input MTL formula φ, time-stamped stream of events ρ. Output Stream of Boolean values denoting whether $(\rho, i) \models \varphi$.

Example:

$$
\text { alarm } \rightarrow\left(\diamond_{[0,10]} \text { all_clear } \vee \diamond_{[10,10]} \text { shut_down }\right)
$$

Time-stamped stream ρ
@0 all_clear
@10 alarm
@20 all_clear

Boolean output stream

@0	true
@10	true
@20	true

MTL Monitoring Problem: Definition

Input MTL formula φ, time-stamped stream of events ρ. Output Stream of Boolean values denoting whether $(\rho, i) \models \varphi$.

Example:

$$
\text { alarm } \rightarrow\left(\diamond_{[0,10]} \text { all_clear } \vee \diamond_{[10,10]} \text { shut_down }\right)
$$

Time-stamped stream ρ
@O all_clear
@10 alarm
@20 all_clear
@30 alarm

Boolean output stream

@0	true
@10	true
@20	true

MTL Monitoring Problem: Definition

Input MTL formula φ, time-stamped stream of events ρ. Output Stream of Boolean values denoting whether $(\rho, i) \models \varphi$.

Example:

$$
\text { alarm } \rightarrow\left(\diamond_{[0,10]} \text { all_clear } \vee \diamond_{[10,10]} \text { shut_down }\right)
$$

Time-stamped stream ρ
@O all_clear
@10 alarm
@20 all_clear
@30 alarm
@45 all_clear

Boolean output stream

@0	true
@10	true
@20	true

MTL Monitoring Problem: Definition

Input MTL formula φ, time-stamped stream of events ρ. Output Stream of Boolean values denoting whether $(\rho, i) \models \varphi$.

Example:

$$
\text { alarm } \rightarrow\left(\diamond_{[0,10]} \text { all_clear } \vee \diamond_{[10,10]} \text { shut_down }\right)
$$

Time-stamped stream ρ
@0 all_clear
@10 alarm
@20 all_clear
@30 alarm
@45 all_clear

Boolean output stream

@0	true
@10	true
@20	true
@30	false
@45	true

Roadmap

Introduction - Monitoring Problem and Metric Temporal Logic

Online vs Multi-Head Monitoring

MTL Multi-Head Monitor

Evaluation

Future Work

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.

Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time. Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
Boolean output stream

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.
Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
@O
a

Buffered events
Boolean output stream

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time. Example:

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
a
@O

Buffered events
Boolean output stream

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time. Example:

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
a
@O

Buffered events
Boolean output stream

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time. Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
a
@0
@O
a

Buffered events
Boolean output stream

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.

Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
@0
@0
a

Buffered events
Boolean output stream

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.

Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
@0
@0
a

Buffered events
Boolean output stream

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.

Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
@0
@0
@0

Buffered events
Boolean output stream

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.

Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
@0
@0
@0
@10 b
a
a
b

Buffered events
@O
@0
@0
@O

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.

Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
Buffered events

@0	a
@0	
@0	a
@0	
@10	b

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.

Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
@0
@O
@O
@80

Buffered events
Boolean output stream

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.

Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
@0
@0 a
@O
@80

Buffered events
Boolean output stream

@0	false
@O	true
@O	false
@0	true
@80	true

Online Monitoring

Online monitor - algorithm reading event stream once, one event at a time.

Example:

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
Buffered events
Boolean output stream
@O
@0
@0
0 a
@0
@0
@80
a

Online monitor might need to buffer the entire trace in memory.

Related Work: AERIAL (TACAS 2017)

Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

Related Work: AERIAL (TACAS 2017)

Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream $\rho \quad$ Buffered events Output stream

Related Work: AERIAL (TACAS 2017)

Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream $\rho \quad$ Buffered events Output stream @O a

Related Work: AERIAL (TACAS 2017)

Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
@O
a

Buffered events
Output stream

Related Work: AERIAL (TACAS 2017)

Idea

Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ
@O
a
@0

Buffered events
@0:0 a

Output stream

Related Work: AERIAL (TACAS 2017)

Idea

Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Input stream ρ
@O
a
@0

Buffered events
@0:0
a

Output stream @0:1 true

Related Work: AERIAL (TACAS 2017)

Idea

Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Input stream ρ	Buffered events	Output stream
@0 a	@0:0 a	@0:1 true
@0		
@0 a		

Related Work: AERIAL (TACAS 2017)

Idea

Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Input stream ρ	Buffered events	Output stream
@ a	$@ 0: 0 \quad \mathrm{a}$	@0:1
@		
$@ 0: 2$	true	
@		

Related Work: AERIAL (TACAS 2017)

Idea

Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
a
@0
@0
a
@0

Buffered events
@0:0
a

Output stream
@0:1 true
@0:2 = @0:0

Related Work: AERIAL (TACAS 2017)

Idea

Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Input stream ρ	Buffered events	Output stream	
$@ 0$	a	$@ 0: 0$	a

Related Work: AERIAL (TACAS 2017)

Idea

Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Input stream ρ		Buffered events		Output stream	
@0	a	@0: 0	a	@0:1	true
@0				@0:2	$=@ 0: 0$
@0	a			@0:3	true
@0					
@10	b				

Related Work: AERIAL (TACAS 2017)

Idea

Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ	Buffered events	Output stream	
@0 a		@0:1	true
@0		@0:2	$=@ 0: 0$
@0 a		@0:3	true
@0		@0:0	true
@10 b		@10:0	true

Related Work: AERIAL (TACAS 2017)

Idea

Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Input stream ρ
@0
a
@0
@0 a
@0
@80

Buffered events
@0: 0
a

Output stream
@0:1 true
@0:2 = @0:0
@0:3 true

Related Work: AERIAL (TACAS 2017)

Idea

Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ	Buffered events	Outpu	stream
@0 a		@0:1	true
@0		@0:2	= @0:0
@0 a		@0:3	true
@0		@0:0	false
@80		@80:0	true

Related Work: AERIAL (TACAS 2017)

Idea
Represent the Boolean output stream implicitly using out-of-order verdicts and equivalence verdicts.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Input stream ρ	Buffered events	Output stream	
@0 a		@0:1	true
@0		@0:2	= @0:0
@0 a		@0:3	true
@0		@0:0	false
@80		@80:0	true

AERIAL only needs to buffer a constant number of events (independent of the trace).

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads
Time-stamped stream ρ
Boolean output stream
@0
a
@0
@O a
@0
@10 b

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads
Time-stamped stream ρ
Boolean output stream
@0
a
@0
@0 a
@0
@10 b

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads
Time-stamped stream ρ
Boolean output stream
@0
a
@0

- @O
a
@0
@10 b

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Heads	Time-stamp	
	$@ 0$	a
	$@ 0$	
	@0	a
	$@ 0$	
	$@ 10$	b

Boolean output stream

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads
Time-stamped stream ρ
Boolean output stream
@0
a
@0
@0 a
@0

- @10 b

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Heads
Time-stamped stream ρ
@0
a
Boolean output stream
@0
@0 a
@0

- @10 b

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Heads
Time-stamped stream ρ
@O a
@0
a
@0

- @10 b

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads Time-stamped stream ρ @O a
@0
@0
@0
@10 b

Boolean output stream

@0	true
@0	true
@0	true

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads Time-stamped stream ρ
@0 a
@0
@0 a
@0
@10 b

Boolean output stream

@0	true
@0	true
@0	true
@0	true

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Heads Time-stamped stream ρ
@0
a
@0
@0 a
@0
@10 b
Boolean output stream

@0	a	@0	true
@0		$@ 0$	true
@0	a	$@ 0$	true
@0		$@ 0$	true
$@ 10$	b	$@ 10$	true

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads
Time-stamped stream ρ
Boolean output stream
@0
a
@0
@0 a

- @0
@80 b

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Heads
Time-stamped stream ρ
Boolean output stream
@0
a
@0
@0 a
@0

- @80 b

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Heads
Time-stamped stream ρ
@O
a
Boolean output stream
@0
@0 a
@0

- @80 b

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads Time-stamped stream ρ
@O
a
@0

- @0
a
@0
- @80 b

Boolean output stream
@0 false

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads Time-stamped stream ρ
©0
a
@0
@0
a
@0

- @80 b

Boolean output stream

@0	false
@0	true
@0	false

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow\rangle_{[0,60]} \mathrm{b}
$$

Heads Time-stamped stream ρ
@O
@0
@0
@0
@80 b

Boolean output stream

@0	false
@0	true
@0	false
@0	true

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads Time-stamped stream ρ
@O
a
@0
@0
a
@0
@80 b

Boolean output stream

@0	false
@0	true
@0	false
@0	true
@80	true

Multi-Head Monitoring

Idea
Read multiple events from the event stream at once.

$$
\varphi=\mathrm{a} \rightarrow \diamond_{[0,60]} \mathrm{b}
$$

Heads Time-stamped stream ρ

@0	a	@0	false
$@ 0$		$@ 0$	true
$@ 0$	a	$@ 0$	false
$@ 0$		$@ 0$	true
$@ 80$	b	$@ 80$	true

Can produce in-order explicit Boolean verdicts in constant working memory (using one head for each atomic proposition).

Roadmap

```
Introduction - Monitoring Problem and Metric Temporal Logic
```

Online vs Multi-Head Monitoring

MTL Multi-Head Monitor

Evaluation

Future Work

Multi-Head Monitor's Structure

Example MTL formula:

$$
\left(a \mathrm{~S}_{[0,4]} b\right) \vee\left(a \mathrm{U}_{[0,4]} b\right)
$$

Multi-Head Monitor's Structure

Example MTL formula:

$$
\left(a \mathrm{~S}_{[0,4]} b\right) \vee\left(a \mathrm{U}_{[0,4]} b\right)
$$

Multi-Head Monitor's Structure

Example MTL formula:

$$
\left(a \mathrm{~S}_{[0,4]} b\right) \vee\left(a \mathrm{U}_{[0,4]} b\right)
$$

Since Operator Evaluation

Semantics:

Since Operator Evaluation

Semantics:

Idea (assuming $b \neq \infty$)
Store all the time-stamp differences $\Delta \in[0, b]$.

Since Operator Evaluation

Semantics:

Idea (assuming $b \neq \infty$)
Store all the time-stamp differences $\Delta \in[0, b]$.

Need to store a set of natural numbers and (efficiently)

- query the maximum element,

Since Operator Evaluation

Semantics:

Idea (assuming $b \neq \infty$)
Store all the time-stamp differences $\Delta \in[0, b]$.

Need to store a set of natural numbers and (efficiently)

- query the maximum element,
- remove the maximum element,

Since Operator Evaluation

Semantics:

Idea (assuming $b \neq \infty$)
Store all the time-stamp differences $\Delta \in[0, b]$.

Need to store a set of natural numbers and (efficiently)

- query the maximum element,
- remove the maximum element,
- insert a zero,

Since Operator Evaluation

Semantics:

Idea (assuming $b \neq \infty$)
Store all the time-stamp differences $\Delta \in[0, b]$.

Need to store a set of natural numbers and (efficiently)

- query the maximum element,
- remove the maximum element,
- insert a zero,
- increase all elements by δ.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum! Example:

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
\text { [] } \quad(\Sigma=0)
$$

represents the multiset $\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum! Example:

$$
[0] \quad(\Sigma=0)
$$

represents the multiset $\{0\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
[0,4] \quad(\Sigma=4)
$$

represents the multiset $\{4\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
[0,4,2] \quad(\Sigma=6)
$$

represents the multiset $\{6\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
[0,4,2,0] \quad(\Sigma=6)
$$

represents the multiset $\{6,0\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
\left[0,4,2,0^{2}\right] \quad(\Sigma=6)
$$

represents the multiset $\left\{6,0^{2}\right\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
\left[0,4,2,0^{2}, 1\right] \quad(\Sigma=7)
$$

represents the multiset $\left\{7,1^{2}\right\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum! Example:

$$
\left[0,4,2,0^{2}, 1,0\right] \quad(\Sigma=7)
$$

represents the multiset $\left\{7,1^{2}, 0\right\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
\left[0,4,2,0^{2}, 1,0,3\right] \quad(\Sigma=10)
$$

represents the multiset $\left\{10,4^{2}, 3\right\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
\left[0,4,2,0^{2}, 1,0,3\right] \quad(\Sigma=4)
$$

represents the multiset $\left\{10,4^{2}, 3\right\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
\left[0^{2}, 1,0,3\right] \quad(\Sigma=4)
$$

represents the multiset $\left\{4^{2}, 3\right\}$.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
\left[0^{2}, 1,0,3\right] \quad(\Sigma=4)
$$

represents the multiset $\left\{4^{2}, 3\right\}$.
Each operation takes amortized constant time.

Delta Queue

Idea
Just store all inserted zeros and increases in a list and keep track of its sum!

Example:

$$
\left[0^{2}, 1,0,3\right] \quad(\Sigma=4)
$$

represents the multiset $\left\{4^{2}, 3\right\}$.
Each operation takes amortized constant time and space complexity is linear in Σ.

Until Operator Evaluation

Semantics:

$$
\varphi \mathrm{U}_{[a, b]} \psi \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \begin{array}{lllllll}
\varphi & \varphi & \varphi & \psi & & \\
& \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \ldots
\end{array}
$$

Until Operator Evaluation

Semantics:

$$
\varphi \mathrm{U}_{[a, b]} \psi
$$

Idea
Store all the time-stamp differences $\Delta \in[0, b]$ such that

Until Operator Evaluation

Semantics:

$$
\varphi \mathrm{U}_{[a, b]} \psi
$$

Idea
Store all the time-stamp differences $\Delta \in[0, b]$ such that

We can reuse Delta Queue!

Space and Time Complexity

$\begin{array}{lll}\text { Size } & |\varphi| & \text { number of MTL operators in } \varphi \\ \text { Temporal Size } & \|\varphi\| & \left(a \mathrm{~S}_{[4, \infty]} b\right) \vee\left(a \mathrm{U}_{[0,4]} b\right) \\ \text { plus interval bounds } & \left(a \mathrm{~S}_{[4, \infty]} b\right) \vee\left(a \mathrm{U}_{[0,4]} b\right)\end{array}$

Space and Time Complexity

Size $\quad|\varphi| \quad$ number of MTL operators in $\varphi \quad\left(a S_{[4, \infty]} b\right) \vee\left(a U_{[0,4]} b\right)$
Temporal Size $\|\varphi\|$ plus interval bounds $\left(a S_{[4, \infty]} b\right) \vee\left(a U_{[0,4]} b\right)$

Theorem

Multi-head monitor's state for MTL formula φ requires $O(\|\varphi\|)$ registers storing time-stamps and indices into the trace.

$\left(a \mathrm{~S}_{[4, \infty]} b\right) \vee\left(a \bigcup_{[0,4]} b\right)$	
$a \mathrm{~S}_{[4, \infty]} b$	${ }^{a} \mathrm{U}_{[0,4]} b$
$\left[0,2,0^{2}, 1\right]$	[0, 1, 2, $\left.0^{2}\right]$
$\square{ }^{\text {a }}$	$a \quad b$

Space and Time Complexity

Size $\quad|\varphi| \quad$ number of MTL operators in $\varphi \quad\left(a S_{[4, \infty]} b\right) \vee\left(a U_{[0,4]} b\right)$
Temporal Size $\|\varphi\|$ plus interval bounds $\left(a S_{[4, \infty]} b\right) \vee\left(a U_{[0,4]} b\right)$

Theorem

Multi-head monitor's state for MTL formula φ requires $O(\|\varphi\|)$ registers storing time-stamps and indices into the trace.

Claim
Multi-head monitor for MTL formula φ runs in amortized time $O(|\varphi|)$ per event.

Roadmap

```
Introduction - Monitoring Problem and Metric Temporal Logic
```

Online vs Multi-Head Monitoring

MTL Multi-Head Monitor

Evaluation

Future Work

Benchmarking Experiments - Average Case

Formula pseudo-random formula of given size.
Trace pseudo-random trace of fixed length.

Hydra -a Aerial -— MonPoly \longrightarrow

Benchmarking Experiments - Worst Case

Formula MTL formula of size $O(n)$ encoding that a bit string $x \in\{0,1\}^{n}$ precedes a distinguished labeled bit string $y \in\{0,1\}^{n}$.
Trace all bit strings $x \in\{0,1\}^{n}$ followed by a single bit string $y \in\{0,1\}^{n}$ (pattern repeated to obtain a fixed length trace).

Hydra -a Aerial —— MonPoly ——

Roadmap

```
Introduction - Monitoring Problem and Metric Temporal Logic
```

Online vs Multi-Head Monitoring

MTL Multi-Head Monitor

Evaluation

Future Work

Multi-Head Monitoring of Metric Dynamic Logic

Syntax:

$$
\varphi=p|\neg \varphi| \varphi \vee \varphi| | r\rangle_{l} \mid\left\langle\left. r\right|_{,} \quad r=\star\right| \varphi ?|r+r| r \cdot r \mid r^{*}
$$

${ }^{2}$ Martin Raszyk, David A. Basin, Dmitriy Traytel: From Nondeterministic to Multi-Head Deterministic Finite-State Transducers. ICALP 2019.

Multi-Head Monitoring of Metric Dynamic Logic

Syntax:

$$
\varphi=p|\neg \varphi| \varphi \vee \varphi| | r\rangle_{I} \mid\left\langle\left. r\right|_{l} \quad r=\star\right| \varphi ?|r+r| r \cdot r \mid r^{*}
$$

Building up on the following result ${ }^{2}$:

$$
\begin{aligned}
& \mathcal{L}(2 \mathrm{DFT})=\mathcal{L}(f-2 \mathrm{NFT}) \\
& \quad \cup \not \\
& \mathcal{L}(1 \mathrm{DFT}) \subsetneq \mathcal{L}(f-1 \mathrm{NFT}) \subsetneq \mathcal{L}(\mathrm{MH}-1 \mathrm{DFT})
\end{aligned}
$$

[^1]
[^0]: ${ }^{1}$ Joël Ouaknine and James Worrell, FORMATS 2008

[^1]: ${ }^{2}$ Martin Raszyk, David A. Basin, Dmitriy Traytel: From Nondeterministic to Multi-Head Deterministic Finite-State Transducers. ICALP 2019.

